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Periodontal disease (PD) is an infectious-inflammatory oral disease that is highly prevalent

among adolescence and adulthood and can lead to chronic orofacial pain and be

associated with anxiety, stress and depression. This study aimed to identify anxiety-like

behaviors in the ligature-induced murine preclinical model of PD in different phases of

the disease (i.e., acute vs. chronic). Also, we investigated orofacial mechanical allodynia

thresholds and superficial cortical plasticity along the orofacial motor cortex in both

disease phases. To this aim, 25 male Wistar rats were randomly allocated in acute

(14 days) or chronic (28 days) ligature-induced-PD groups and further divided into

active-PD or sham-PD. Anxiety-like behavior was evaluated using the elevated plus

maze, mechanical allodynia assessed using the von Frey filaments test and superficial

motor cortex mapping was performed with electrical transdural stimulation. We observed

increased anxiety-like behavior in active-PD animals in the acute phase, characterized

by decreased number of entries into the open arm extremities [t(1,7) = 2.42, p = 0.04],

and reduced time spent in the open arms [t(1,7) = 3.56, p = 0.01] and in the open arm

extremities [t(1,7) = 2.75, p= 0.03]. There was also a reduction in themechanical allodynia

threshold in all active-PD animals [Acute: t(1,7) = 8.81, p < 0.001; Chronic: t(1,6) = 60.0,

p < 0.001], that was positively correlated with anxiety-like behaviors in the acute group.

No differences were observed in motor cortex mapping. Thus, our findings show the

presence of anxiety-like behaviors in the acute phase of PD making this a suitable model

to study the impact of anxiety in treatment response and treatment efficacy.
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INTRODUCTION

Periodontal disease (PD) is a highly prevalent chronic, infectious-
inflammatory oral disease, responsible for early tooth loss,
gingival bleeding and pain (1–3). It estimated that PD affects 20–
50% of the global population, including adolescents, adults and
seniors (4). PD is associated with depression, anxiety and stress
and can lead to impoverished quality of life (5–7). Furthermore,
disorders of the periodontal ligament can induce neuronal
adaptations within the central nervous system, such as changes
in neuronal excitability and synaptic plasticity (8, 9), which could
lead to chronic and refractory craniofacial pain (1, 10, 11).

Preclinical murine models of PD are important tools for
studying the pathophysiology of the disease and providing
important insights for new therapies (12–14). A widely
used model of PD involves the placement of ligatures in
the gingival sulcus around the molar tooth (i.e., ligature-
induced periodontitis model), resulting in bacteria infiltration,
accumulation of biofilm and disrupting the gingival epithelium
(13, 15, 16). Moreover, animal models provide the opportunity
to investigate mechanisms of brain plasticity (17, 18) and distinct
aspects of acute and chronic phases of diseases (19). Although
increased anxiety-like behaviors have been reported in murine
models of inflammatory pain (20) and trigeminal neuropathic
pain (21), no study to date has evaluated the presence of anxiety-
like behaviors in distinct phases of PD (i.e., acute vs. chronic).

To address this gap, in this study, we investigated anxiety-
like behaviors in the acute and chronic phase of ligature-induced
murine model of PD and evaluated the presence of mechanical
allodynia and superficial cortical plasticity along the orofacial
motor cortex on both phases of the disease.

MATERIALS AND METHODS

Subjects
Twenty-five male Wistar rats (140–180 g) obtained from the
animal facility of the Medical School were used in the study.
Animals were housed in pairs in regular rat cages containing
wood shavings (polypropylene; 40 × 34 × 17cm), with free
access to food and water in a 12 h dark/light cycle (lights
on at 07:00) with controlled ambient temperature (22 ±

2◦C). All experiments were performed in compliance with
the guidelines for ethical use of animals in research involving
pain and nociception (22) and the recommendations of the
Brazilian Society of Neuroscience and Behavior, which in turn
are based on the US National Institutes of Health Guide for
the Care and Use of Laboratory Animals. The study was
reviewed and approved by the Ethics Committee of the Medical
School of the University of São Paulo (protocol #380/12).
Furthermore, the experiments were reported in accordance with
the Animal Research Reporting of in vivo Experiments guidelines
(ARRIVE; https://arriveguidelines.org/).

Study Design
Following habituation to the animal facility, animals were
allocated to groups Acute (14 days of PD) or Chronic (28 days of
PD) and randomly assigned to activePD or shamPD (controls),

resulting in 4 groups: (I) Acute-activePD (n = 7), (II) Acute-
shamPD (n = 7), (III) Chronic-activePD (n = 6), (IV) Chronic-
shamPD (n = 5). The experimental schedule was designed to
have both groups at the same age during behavioral tests. Prior
to receiving surgery, all animals were weighed and evaluated
for a baseline measure of mechanical allodynia using von Frey
filaments. On the following day, surgery was performed to induce
activePD or shamPD (description follows), and animals were
kept in the housing room for the number of days corresponding
to the assigned group (i.e., 14 or 28 days). A second body
weight measure was taken 7 (Acute group) or 14 (Chronic
group) days after surgery. After the waiting period, animals were
weighed and tests were performed to evaluate (I) final measure
of mechanical allodynia (von Frey filaments), (II) anxiety-like
behavior (elevated plus maze), and (III) the superficial cortical
plasticity along the orofacial motor cortex (electrical transdural
stimulation). See Figure 1A for study timeline.

Surgery for Induction of Periodontal
Disease
Animals were anesthetized with xylazine (50 mg/kg i.m.) and
ketamine (100 mg/kg i.m.) and positioned on a surgical table
designed for buccal cavity procedures. The condition of the
gingiva was evaluated for exclusion of possible pre-existing
diseases. After buccal and tongue retraction, a cotton ligature
(4.0 Ethicon, Johnson & Johnson Company) was placed around
the right mandibular first molar adjacent to the gingival margin,
knotted on the mesio-buccal side and remained subgingival
on the lingual side, as previously described (23, 24). On
activePD animals the ligature remained in place throughout the
experimental period (i.e., 14 or 28 days) and on shamPD animals
the ligature was removed immediately after placement (23). The
placement of a cotton ligature around the right mandibular first
molar tooth induces PD by facilitating bacterial invasion of the
gingival sulcus (25). The development of activePD was assessed
clinically at the end of the experiments based on the description
of the disease presented by Messer et al. (26).

Body Weight Evaluation
Body weight was assessed by a blinded rater using a digital scale
for three times throughout the study: (I) baseline measure before
the surgical procedure, (II) second measure at midpoint (7 days
for Acute group and 14 days for Chronic group), (III) third
measure on the last day of experiment. All measures were taken
on the 1st h of the light cycle.

Evaluation of Anxiety-Like Behavior
The evaluation of anxiety behavior was performed using the
elevated plus maze (EPM). This test comprises a maze elevated
50 cm above the ground, consisting of two closed arms and two
open arms with a free central area that allows the animal to move
through all spaces (27). Rats were placed at the junction of the
four arms of the maze (the central area) with the nose facing
one of the closed arms and were allowed to freely explore the
apparatus for 5min and the behavior was recorded for future
analysis by a single blinded observer using X-Plot Rat 2005 1.1.0
software (FFCLRP-USP Laboratory of Prof. Silvio Morato de
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FIGURE 1 | Study timeline (A) and illustration of the rat motor cortex area (B). PD, periodontal disease; Midpoint, day 7 for Acute group and day 14 for Chronic group;

Last day, Day 14 for Acute group and day 28 for Chronic group.

Carvalho, PhD). The apparatus was cleaned with a 5% ethanol
solution and dried with a cloth between trials. Behavioral analysis
was performed as previously described (28–30) and included
the frequency of occurrence and total time spent on (I) open
arms, (II) freezing (total absence of animal movement with the
exception of respiration), (III) stretching (stretching the full
length of the body with the forelimbs while keeping the hind
limbs in place, and returning to the previous position), (IV)
rearing (partial or total rising on the hind limbs), and (V) dipping
(sticking the head outside the maze border and toward the floor).

Mechanical Allodynia Threshold
Using a graded series of von Frey filaments (0.07–10 g–Touch
Test Sensory Evaluator, CA, USA), mechanical allodynia
thresholds were assessed on the ipsilateral whisker pad of
all animals (activePD and shamPD), 1 day prior and 14
(Acute group) or 28 (Chronic group) days after surgery.
Animals were transferred to the testing room 2 h before
testing, and then individually placed in the experimental
cage for a second habituation period of 10min. A researcher
blinded to group/condition performed the test, as previously
described (31, 32). Briefly, animals were gently restrained
with a cotton cloth and the von Frey filaments were
applied in crescent order of force, with a 10 s interval
between filaments. The smallest filament that elicited a
back off/escape/attack reaction and/or head withdrawal in three

consecutive applications was considered to be the mechanical
allodynia threshold.

Superficial Cortical Plasticity Along the
Orofacial Motor Cortex
Active-PD and sham-PD animals of both Acute and Chronic
groups were anesthetized with xylazine (50 mg/kg i.m.) and
ketamine (100 mg/kg i.m.) and positioned on a stereotaxic
apparatus (David Kopf Instruments, CA, USA). Local scalp
injection of 2% lidocaine (1 ml/animal) was applied for local
analgesia. Amedian axial incision wasmade in the scalp, followed
by bilateral craniotomy above the motor cortex (4 × 6mm,
Figure 1B), using bregma as a reference point (33, 34). Bilateral
mapping was performed via electrical transdural stimulation (1–
15 volts) through a bipolar electrode with 200µm between the
tips (34, 35). The electrode was fixed to the stereotaxic bar
and positioned in contact with the dura-mater. Stimuli were
delivered with 500µm between each other in all directions,
covering the entire exposed area. An electrical stimulator (Grass
8,800–Grass Instruments, Quincy, MA, USA) produced the
electrical stimuli that consisted of 1 s trains of 10 µs biphasic
cathodal pulses delivered at 100Hz. At each cortex point, the
electrical stimuli were gradually increased up to a maximum
of 15 volts and the animal’s motor response was visualized in
an upper side view. If no movements were seen until reaching
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FIGURE 2 | Illustrative case of moderate to severe active periodontal disease. (A) Reduction of mechanical allodynia threshold in Acute and Chronic groups at

endpoint. (B) Increase in anxiety-like behaviors in the activePD animals compared to shamPD animals of the Acute group. (C,D) Positive correlation between

mechanical allodynia thresholds and anxiety-like behaviors in the Acute group (E–H). PD, periodontal disease. *indicates p < 0.05.
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TABLE 1 | Body weight measures (g).

Body weight Group 14 Group 28

ActivePD ShamPD ActivePD ShamPD

Measure 1 147 ± 10.85 150 ± 9.12 159 ± 13.38 163 ±12.66

Measure 2 236 ± 13.25 242 ± 12.59 250 ± 17.96 268 ±20.19

Measure 3 310 ± 23.67 312 ± 17.8 335 ± 22.83 353 ±8.00

the maximum voltage, the point was considered to be non-
responsive. The same number of bilateral cortical points were
evaluated in all animals. At the end of the experiment, for
euthanasia, animals were deeply anesthetized with thiopental
150 mg/kg i.p. (Thiopentax, Cristalia).

Statistical Analysis
Sample size calculation was performed based on the work of
Meunier et al. (32) using a formula described previously (36),
considering 5% of level of significance, 80% as power of the
study, effect size of 12 and standard deviation of 1.5, resulting
in a minimum of 4.2 rats per group. Data are reported as
mean ± standard error of the mean (SEM). Statistical analysis
was performed using SPSS Statistics 17.0 (IBM, 2008, USA).
Mechanical allodynia threshold was evaluated as percentage of
change from baseline measure ([last measure/first measure] ∗

100). Animals in the activePD group that presented reduced
threshold and those in the shamPD group that maintained the
threshold were included in the statistical analysis. The orofacial
motor cortex was evaluated as the percentage of representation
along the motor cortex. One animal of each group (n = 4) died
during the cortical mapping procedure and were excluded from
statistical analysis. Mechanical allodynia, anxiety-like behaviors
(EPM) and superficial cortex mapping were analyzed using
Student’s t-test with independent measures, comparing activePD
and shamPD animals. Body weight was analyzed using two-
way repeatedmeasures ANOVA [normal distribution Chi-Square
= 3,42944, df = 1 (adjusted) p = 0,06404] and the Pearson
correlation test was used for evaluating the correlation between
mechanical allodynia and anxiety-like behaviors. The level of
significance was set at p < 0.05 for all tests.

RESULTS

Clinical evaluation of the PD at endpoint showed all animals
in the activePD groups (Acute and Chronic groups) presenting
extensive ulceration of the gingiva with involvement of
neighboring tooth, gingival inflammation, erythema, edema and
accumulation of dental plaque, consisting with moderate to
severe PD (Figure 2A) (26). No signs of PD were detected
in shamPD animals of both Acute and Chronic groups. No
differences in body weight were detected between activePD and
shamPD animals [Acute: F(4,64) = 0.033, p > 0.05; Chronic:
F(4,34) = 0.22, p > 0.05; Table 1]. There was a reduction in the
mechanical allodynia threshold in the activePD groups compared

TABLE 2 | Parameters measured in the Elevated Plus Maze (EPM) test.

EPM parameter Group 14 Group 28

Open arms entries t(1,7) = 1.29, p = 0.24 t(1,6) = 0.46, p = 0.66

Time spent in open arms t(1,7) = 3.56, p = 0.01 t(1,6) = 0.80, p = 0.45

Open arm extremities entries t(1,7) = 2.42, p = 0.04 t(1,6) = 0.68, p = 0.52

Time spent in open arm extremity t(1,7) = 2.75, p = 0.03 t(1,6) = 0.67, p = 0.52

Crossing open arms t(1,7) = 1.87, p = 0.10 t(1,6) = 0.49, p = 0.64

Stretching in open arms t(1,7) = 1.63, p = 0.14 t(1,6) = 0.91, p = 0.39

Time stretching in open arms (s) t(1,7) = 1.75, p = 0.12 t(1,6) = 0.48, p = 0.64

Time stretching in the center (s) t(1,7) = 1.10, p = 0.30 t(1,6) = 0.68, p =0.51

Total stretching t(1,7) = 0.19, p = 0.84 t(1,6) = 1.32, p = 0.23

Freezing in closed arms t(1,7) = 0.80, p = 0.44 t(1,6) = 0.29, p = 0.77

Time freezing in closed arms (s) t(1,7) = 1.09, p = 0.30 t(1,6) = 0.40, p = 0.70

Time dipping in the center (s) t(1,7) = 0.19, p = 0.84 t(1,6) = 0.92, p = 0.38

to the shamPD groups at endpoint [Acute: t(1,7) = 8.81, p< 0.001;
Chronic: t(1,6) = 60, p < 0.001; Figure 2B].

The EPM test showed an increase in anxiety-like behaviors
in the activePD animals in the Acute group compared to
shamPD animals of the same group. Specifically, the activePD
group showed a decreased number of entries into the open
arm extremities (Figure 2C) and reduced time spent in the
open arms (Figure 2D) and open arm extremities (Figure 2D;
Table 2). Also, there was a positive correlation between the
mechanical allodynia threshold and anxiety-like behaviors in the
Acute group (Figures 2E–H). No differences were observed in
the remaining EPM parameters analyzed for the Acute group,
as well as no differences in anxiety-like behaviors in animals of
the Chronic group (Table 2). There were no differences observed
between activePD and shamPD animals of both groups in the
motor response elicited by superficial motor cortex electrical
stimulation of the orofacial area, as well on areas that elicited no
response (Table 3).

DISCUSSION

Improving the knowledge on the mechanisms of PD are
fundamental to develop new therapies and improve treatment
efficacy. Preclinical models can provide important insights into
the pathophysiology of the disease, thus a better characterization
of the behavioral phenotype of these animals is necessary. The
ligature-induced model of PD used in this study can be divided
into two distinct phases: acute and chronic (19). While the
acute phase (≤14 days) is characterized by significant bone loss,
pronounced inflammation of the affected region and elevated
gene expression of pro-inflammatory cytokines, the chronic
phase (>14 days) shows no further progression of bone loss
and a constant state of inflammation (19). Thus, the presence
of inflammatory signs (e.g., of gingival growth due to edema,
erythema, and areas of ulceration) are clear signs of installed PD
and the intensity of the symptoms can determine the severity
of the disease (26). In our study, all animals allocated in the
active-PD subgroup of both Acute and Chronic groups presented

Frontiers in Neurology | www.frontiersin.org 5 December 2020 | Volume 11 | Article 598851

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Varotto et al. Anxiety-Like Behavior in Periodontal Disease

TABLE 3 | Percentage of representation of areas along the motor cortex.

Cortical area Group 14 Group 28

ActivePD ShamPD t-test ActivePD ShamPD t-test

Orofacial 20 ±0.89 21 ±0.68 t(1,7) = 0.42, p = 0.68 22 ± 0.66 21 ± 0.44 t(1,4) = 0.52, p = 0.63

Vibrissae 54.0 ±9.90 68.0 ±1.84 t(1,7) = 1.58, p = 0.16 62.0 ± 8.88 65.0 ± 12.70 t(1,4) = 0.19, p = 0.85

Mandible 8.0 ±2.24 3.0 ±1.10 t(1,7) = 1.95, p = 0.09 6.0 ± 1.25 2.0 ± 1.14 t(1,4) = 2.02, p = 0.11

Eye 4.0 ±3.04 2.0 ±1.05 t(1,7) = 0.46, p = 0.66 1.0 ± 0.73 0.0 ± 0.00 t(1,4) = 1.00, p = 0.37

Neck 8.0 ±4.86 5.0 ±1.59 t(1,7) = 0.58, p = 0.58 5.0 ± 1.85 2.0 ± 2.33 t(1,4) = 0.93, p = 0.40

Limb 7.0 ±4.32 6.0 ±3.80 t(1,7) = 0.05, p = 0.95 4.0 ± 1.50 6.0 ± 2.32 t(1,4) = 0.71, p = 0.52

No response 18.0 ±3.88 16.0 ±3.82 t(1,7) = 0.46, p = 0.66 23.0 ± 8.39 24.0 ± 9.54 t(1,4) = 0.09, p = 0.93

moderate to severe PD at the endpoint, showing the feasibility of
this model to investigate both phases of the disease.

A growing problem among patients with PD is the presence of
associated anxiety traits that can lead to treatment interruption,
reduced treatment efficacy and aggravation of the severity of the
disease (7, 37–39). We observed increased anxiety-like behaviors
in active-PD animals of the Acute phase when comparing to
sham-PD animals of the same group and a positive association
between anxiety and mechanical allodynia of the affected
orofacial region. Although mechanical allodynia is commonly
observed in patients with different stages of periodontitis (40, 41),
preclinical models of periodontitis show discordant results (42,
43). These discrepancies may be due to the technique employed
to assess the mechanical allodynia threshold (e.g., sedated vs.
awake animals) and the murine model used (e.g., mouse vs. rat).
It is known that host susceptibility is a crucial factor for the
development of periodontitis (44) resulting in great variability of
clinical features between studies.

The presence of anxiety-like behaviors in models of trigeminal
neuropathic pain (21) and inflammatory pain (20, 45) have
been described in the literature and are thought to be
related to mechanisms of neuroinflammation such as glial
cell activation, increase in pro-inflammatory cytokines and
infiltration of leukocytes (46). Albeit our study did not aim
to evaluate these markers of neuroinflammation, it is plausible
to assume these same factors could be influencing anxiety-
like behaviors in the ligature-induced PD model as well. To
investigate possible superficial cortical plasticity that could
explain the behavioral differences observed in this study, we
applied electrical transdural stimulation on specific areas of
the motor cortex and observed the motor response generated
(35). This technique allows for the functional mapping of
the surface of the neocortex by evoking motor responses on
specific body segments according to the coordinates used (35).
Although we did not find significant results in our study, it is
possible to assume that the use of a more refined technique for
the detection of muscle activity (e.g., electromyography) while
mapping the surface of the orofacial motor cortex could result
in distinct outcomes.

Altogether, our results show that the ligature-induced PD in
the acute phase is a suitable model for the study of anxiety-like
behaviors in periodontitis, thus allowing for the investigation of
the possible impacts of anxiety on the individual response to
treatment and general treatment efficacy.
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