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Abstract

Gamma distributions are widely used in applied fields due to its flexibility of accommodating

right-skewed data. Although inference methods for a single gamma mean have been well

studied, research on the common mean of several gamma populations are sparse. This

paper addresses the problem of confidence interval estimation of the common mean of sev-

eral gamma populations using the concept of generalized inference and the method of vari-

ance estimates recovery (MOVER). Simulation studies demonstrate that several proposed

approaches can provide confidence intervals with satisfying coverage probabilities even at

small sample sizes. The proposed methods are illustrated using two examples.

Introduction

Due to its flexibility of accommodating right-skewed data, the standard two-parameter

Gamma distribution has been widely used in many applied fields such as meteorology, reliabil-

ity, medical science, engineering and quality control [1–4]. Under many circumstances, the

research interest lies in making inference about the mean. There exit abundant research

regarding making inference about gamma mean(s). For example, Fraser et al. [5] investigated

inference methods for gamma mean based on asymptotic approximation, and Krishna-

moorthy and León-Novelo [6] investigated small sample inference for gamma parameters for

one-sample and two-sample problems. Recently, several fiducial methods [7–9] constructed

approximate generalized pivotal quantities for a single gamma mean in different ways. Wang

et al. [10] extended a fiducial approach [7] for a single gamma mean to construct a fiducial

confidence interval for the difference between two independent gamma means.

There also exist some research on testing equality of several gamma means. For example,

Chang et al. [11] proposed a parametric bootstrap method for comparing several gamma

means, and Krishnamoorthy et al. [12] presented likelihood ratio test for comparing several

gamma distributions. When testing equality of several gamma means concludes the null

hypothesis (i.e. all the means are equal) can not be rejected, naturally, making inference about

the common mean is of interest. Despite the fact that inference procedures about the common

gamma means are of practical and theoretical importance, there has not yet been a well-devel-

oped approach for this purpose at small sample sizes except some traditional large sample

methods. Therefore, the goal of this paper is to present accurate small sample inference
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methods for confidence interval estimation for the common gamma mean derived from sev-

eral independent samples.

The rest of this paper is organized as follows. We will first present preliminaries including

notations and existing methods for confidence interval estimation of single gamma mean.

Then we will propose several methods for constructing confidence intervals for common

gamma mean. Simulation results are presented to evaluate the performance of the proposed

methods and examples are analyzed using the proposed methods. Finally, summary and dis-

cussion are given.

Preliminaries

The setting

Consider K independent gamma populations. Let Yi1;Yi2; . . . ;Yini
be a random sample from

the ith gamma population as Yij� gamma(αi, βi) where αi is shape parameter and βi is rate

parameter; i.e. the corresponding probability density function for Yij is

f ðyij; ai; biÞ ¼
yai � 1

ij e� biyijbaii
GðaiÞ

for yij> 0, αi, βi> 0. Let μi denote the population mean for ith sample. Then μi = αi/βi for

i = 1, 2, . . ., K. We assume that μ1 = μ2 = . . . = μK and let μ denote the common mean. The

goal of this paper is to present procedures for confidence interval estimation of μ at small to

medium sample sizes.

Let â i and b̂ i stand for the maximum likelihood estimates for αi and βi, respectively. The

maximum likelihood estimate of μi is m̂i ¼
�Y i ¼ â i=b̂i where the large sample variance for m̂i is

[5]

varðm̂iÞ ¼
m2
i

niai
; ð1Þ

and its estimate is

cvarðm̂iÞ ¼
m̂2
i

niâ i
: ð2Þ

The common gamma mean can be estimated as a pooled estimate of sample means defined

as

m̂ ¼
XK

i¼1

m̂i

dvarðm̂iÞ
=
XK

i¼1

1

cvarðm̂iÞ
ð3Þ

Using standard large sample theory, we have

m̂ � m
ffiffiffiffiffiffiffiffiffiffiffiffiffi
varðm̂Þ

p � Nð0; 1Þ

asymptotically. Hence, a simple large sample solution for confidence interval estimation for
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common μ is

ðm̂ � z1� a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=
XK

i¼1

1=dvarðm̂iÞ

s

; m̂ þ z1� a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=
XK

i¼1

1=cvarðm̂ iÞ

s

Þ: ð4Þ

Of course, we also can obtain a large sample confidence interval using standard maximum

likelihood theory. However, these large sample solutions do not have good performance at

small sample sizes. Hence in this paper, we will present some procedures with satisfactory

performance.

Existing methods for confidence interval estimation for single gamma

mean

In the following, we will review several existing methods for confidence interval estimation for

single gamma mean. These methods are known to have reasonable performance at small to

medium sample sizes, and will be used in the following to present our new procedures for con-

fidence interval estimation for common gamma mean.

Let Y1, Y2, . . ., Yn be a random sample from a gamma population gamma(α, β). The popula-

tion mean μ = α/β. Let �Y and ~Y denote the arithmetic mean and geometric mean, respectively.

The maximum likelihood estimate of μ is m̂ ¼ �Y ¼ â=b̂ where â and b̂ are the maximum like-

lihood estimates for α and β, respectively.

Methods based on generalized inference. The generalized variables and generalized piv-

ots were introduced by Tsui and Weerahandi [13] and Weerahandi [14]. More details can be

found in the book by Weerahandi [15]. The concepts of generalized pivotal quantity and gen-

eralized confidence interval have been successfully applied to a variety of practical problems

where standard exact solutions do not exist and it has been shown that generalized inference

method generally have good performance, even at small sample sizes; see e.g. [16–21].

Recently, Hannig et al. [22] demonstrated generalized confidence intervals coincide with fidu-

cial confidence intervals. In the following, we review three existing methods for constructing

generalized pivotal quantity for single gamma mean.

Krishnamoorthy and Wang’s method: [7, 23] This method is based on the fact that Xj ¼ Yj
1
3

(j = 1, 2, . . ., n) follows N(μ, σ2) approximately for gamma distribution. Let �x and s2i be the

observed sample mean and sample variance based on the transformed data X0i s. The general-

ized pivotal quantities for μ and σ2 can be obtained as [24]:

Rm ¼ �x �
Z
ffiffiffiffi
U
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn � 1Þs2

n

r

;Rs2 ¼
ðn � 1Þs2

U
�
ðn � 1Þs2

w2
n� 1

where Z� N(0, 1), U � w2
n� 1

, and Z and U are independent. Furthermore, the generalized piv-

otal quantities for for α and β can be written as:

Ra ¼
1

9
1þ 0:5

R2
m

Rs2

� �

þ 1þ 0:5
R2
m

Rs2

� �2

� 1

" #
1

2

8
>><

>>:

9
>>=

>>;

;

Rb ¼
1

27ðRaÞ
1

2ðRs2Þ
3

2

:

ð5Þ

Chen and Ye’s method: [8, 25] Note that V1 ¼ 2na logð�Y=~Y Þ � cw2
n

approximately, where
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ν = 2E2(V1)/var(V1), c = E(V1)/ν, E(V1) = 2nα(ψ(nα) − ψ(α) − log(n)) and var(V1) = 4n2

α2(ψ0(α)/n − ψ0(α)) with ψ and ψ0 being the digamma and trigamma functions respectively.

Then ĉ and v̂ can be obtained by substituting α with its point estimate â. An approximate gen-

eralized pivotal quantity (GPQ) for α is:

Ra ¼
V1

2n logð�y=~yÞ

where V1 � ĉw2
v̂ , �y and ~y are observed values of �Y and ~Y . Furthermore, as 2nb�Y � w2

2na, a GPQ
for β can be constructed as:

Rb ¼
V2

2n�y
; ð6Þ

where V2 � w
2
2nRa

.

Wang and Wu’s method [9]: This method is based on Cornish-Fisher approximation. Let

T ¼ logð~Y=�Y Þ and F(.) be the c.d.f. of T. Note that U = F(T)�U(0, 1). Using the Cornish-

Fisher expansion, the Uth percentile of T can be approximated by g1(α) + [g2(α)]1/2 Q(α, U),

where gi(α) is the ith cumulant of T and Q(α, U) is a function of gi(α)’s. Detailed formula can

be found in [9]. Let t denote the observed value of T. Solving t = g1(α) + [g2(α)]1/2Q(α, U) for

α, we obtain the approximate Rα. The GPQ for β can be obtained similarly as in (6):

Rb ¼
V3

2n�y
; ð7Þ

where V3 � w
2
2nRa

. This method improves Chen and Ye’s method and can work well even when

the shape parameter α is small.

The three aforementioned methods for generating Rα and Rβ lead to three generalized piv-

ots of a single gamma mean:

Rm ¼ Ra=Rb: ð8Þ

Via simulation, we can obtain an array of Rμ’s and the estimated confidence interval for μ is

(Rμ(α/2), Rμ(1 − α/2)) where Rμ(α) is the 100αth percentile of Rμ’s.

A parametric bootstrap method [6]. Krishnamoorthy and León-Novelo [6] presented a

method based on parametric bootstrapping for confidence interval estimation using the fol-

lowing pivotal quantity:

Q ¼
�Y � � �Y

�Y �=
ffiffiffiffiffiffiffi
nâ�
p ð9Þ

where â� and �Y � are based on a bootstrap sample from Gammaðâ; b̂Þ distribution. A two-

sided 100(1 − p)% confidence interval (l, u) for μ is:

�Y � Q1� p=2

�Y
ffiffiffiffiffiffi
nâ
p ; �Y � Qp=2

�Y
ffiffiffiffiffiffi
nâ
p

� �

; ð10Þ

where Qp as the 100pth percentile of Q defined in (9).
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The proposed methods for confidence interval estimation of

common gamma mean

The methods based on generalized inference

For the ith (i = 1, 2, . . ., K) sample, we can obtain the generalized pivotal quantities Rmi using

one of the three methods reviewed above (i.e. Krishnamoorthy and Wang’s method [7, 23]

Chen and Ye’s method [8, 25], and Wang and Wu’s method [9]). Replacing μi and αi with Rmi
and Rai in (1), the generalized pivotal quantity for varðm̂ iÞ can be written as

Rvarðm̂ iÞ
¼

R2
mi

niRai
: ð11Þ

The generalized pivotal quantity we propose for the common gamma mean μ is a weighted

average of the generalized pivot Rmi ’s based on K individual samples, i.e.

Rm ¼
PK

i¼1
Rwi

RmiPK
i¼1

Rwi

ð12Þ

where Rwi
¼ 1=Rvarðm̂ iÞ

.

It is easy to see that Rμ satisfies the two conditions to be an approximate bona fide general-

ized pivotal quantity: 1) the distributions of Rμ is independent of any unknown parameters;

and 2) the observed value of Rμ equals to the common gamma μ approximately. This way of

constructing generalized pivots for common mean has been widely used in literature. For

example, Krishnamoorthy and Lu [17] studied inferences on the common mean of several

normal populations based on the generalized variable method; and Tian and Wu [26] studied

common mean of several log-normal populations.

Computing algorithms. Consider a given data set Yij’s (i = 1, 2, . . ., K, j = 1, 2, . . ., ni) where

the ith sample Yi1;Yi2; . . . ;Yini
is from gamma(αi, βi). We assume μi = μ for all i = 1, 2, . . ., K.

The generalize confidence intervals for the common mean μ can be computed by the following

steps:

1. Using one of the three methods presented above, generate Rai and Rbi , then calculate gen-

eralized pivot Rmi for μi following (12) for i = 1, 2, . . ., K.

2. Repeat steps 1, generate Rai and Rbi and calculate Rmi . Using Rai and Rmi , calculate Rvarðm̂ iÞ

following (11) for i = 1, 2, . . ., K.

3. Using Rmi obtained in step 1 and Rvarðm̂ iÞ
in step 2 for i = 1, 2, . . ., K, calculate the general-

ized pivot of the common mean Rμ from (12).

4. Repeat Steps 1-3 a total B (B = 2000) times and obtain an array of Rμ’s.

5. Rank this array of Rμ’s from small to large.

The 100αth percentile of Rμ’s, Rμ(α), is an estimate of the lower bound of the one-sided

100(1 − α)% confidence interval and (Rμ(α/2), Rθ(1 − α/2)) is a two-sided 100(1 − α)% confi-

dence interval.

Remark 2.1: In computing algorithm, we used different sets of random variables for Rmi
and Rvarðm̂ iÞ

. Our simulation shows that the generalized pivotal quantity based on the same set

of random variables for Rmi and Rwi
produces confidence intervals which are too liberal. Similar

conclusions have been stated in [17, 26].
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We refer these three methods based on the generalized pivots of common gamma mean as

GVK, GVC, GVW, corresponding to the methods used for confidence interval estimation of a

single gamma mean, i.e. Krishnamoorthy and Wang’s method [7, 23] Chen and Ye’s method

[8, 25], and Wang and Wu’s method [9].

The MOVER-type methods

The method of variance estimates recovery (MOVER) is a useful technique for obtaining a

closed-form approximate confidence interval for a linear combination of parameters based on

the confidence intervals of the individual parameters [27, 28]. In this section, using the meth-

ods for estimating confidence intervals for a single gamma mean reviewed above, the MOVER

method is applied for confidence interval estimation of the common gamma mean.

Let li and ui be the lower and upper limits of an approximate two-sided 100(1 − p)% confi-

dence interval (li, ui) for the gamma mean based only on ith sample. A MOVER 100(1 − p)%

confidence interval (L, U) of the common gamma mean is given by [27, 28]:

L ¼
XK

i¼1

ŵim̂i �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XK

i¼1

ŵ2

i ðm̂i � liÞ
2

s

U ¼
XK

i¼1

ŵim̂i þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XK

i¼1

ŵ2

i ðm̂i � uiÞ
2

s

;

ð13Þ

where ŵi ¼ ð1=cvarðm̂iÞÞ=
PK

i¼1
ð1=cvarðm̂iÞÞ, cvarðm̂iÞ is defined in (2), and â i and m̂i ¼

�Yi are the

maximum likelihood estimates for αi and μi, respectively.

For calculating confidence intervals (lk, uk) for the single gamma mean μi (i = 1, . . ., K), we

will use the three generalized inference methods (i.e. Krishnamoorthy and Wang’s method [7,

23], Chen and Ye’s method [8, 25], and Wang and Wu’s method [9]) as well as the parametric

bootstrap method by Krishnamoorthy and León-Novelo [6] reviewed above. Each method

provides an approximate confidence interval (li, ui) for the ith single gamma mean μi (i = 1,

2, . . .K).

Substituting (lk, uk) in (13), we obtain confidence interval estimation of common mean μ.

We refer these MOVER-type methods as MOVERK, MOVERC, MOVERW, MOVERboot cor-

responding to the methods used for single gamma mean, i.e. Krishnamoorthy and Wang’s

method [7, 23] Chen and Ye’s method [8, 25], Wang and Wu’s method [9], and the parametric

bootstrap method by Krishnamoorthy and León-Novelo’s method [6], respectively.

Simulation studies

In previous section, we presented several methods for confidence interval estimation of com-

mon gamma mean: three methods based on the generalized pivots (i.e. GVK, GVC, GVW); and

four MOVER-type methods (i.e. MOVERK, MOVERC, MOVERW, MOVERboot).

Simulation studies are carried out to evaluate the performances of proposed methods in

terms of coverage probabilities and average lengths of proposed confidence intervals. The

number of samples K is set as 2 and 5, and a variety of sample sizes from small (5) to large (50)

including balanced and unbalanced settings are used. The parameter settings are as follows: 1)

common mean μ is set as 1 and 5; 2) shape parameter for each sample varies from 0.5 or 1 to 5

or 10, and the differences among K shape parameters varies from small to large. For each

parameter setting, 2,000 random samples are generated. For the confidence interval based on

generalized pivots (i.e. GVK, GVC, GVW), MOVERK, MOVERC, MOVERW), 2000 values of

generalized pivots are obtained for each random sample. For the confidence interval based on
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parametric bootstrapping (MOVERboot), 2000 bootstrap samples are generated for each ran-

dom sample. The performances of each method is assessed by coverage probability and aver-

age lengths of proposed confidence intervals. The simulation results are presented in Tables 1

and 2.

Table 1 presents simulated coverage probabilities (CP) and confidence interval lengths (CI)

for K = 2. Overall speaking, three methods based on the generalized pivots (i.e. GVK, GVC,

GVW) maintains satisfactory coverage probabilities for all settings except that they might be

slightly conservative at small sizes and GVK was slightly liberal when (α1, α2) = (1, 2) at sample

sizes (50, 50) and (α1, α2) = (0.5, 1) at sample sizes (20, 20). Among MOVER-type methods

(i.e. MOVERK, MOVERC, MOVERW, MOVERboot), MOVERC performs the best while all of

them are generally liberal when sample sizes are from (5, 5) to (20, 20). When sample sizes

reach 50, all the proposed methods perform satisfactorily. The GVK method provides shortest

confidence intervals among three generalized pivots based methods, followed by GVW. As

sample sizes reach 20, all three methods (i.e. GVK, GVC, GVW) are generally comparable.

MOVERK and MOVERboot provides shortest confidence intervals among MOVER-type

methods. As sample sizes reach 20, all MOVER-type methods (i.e. MOVERK, MOVERC,

MOVERW, MOVERboot) are comparable in terms of length. When sample sizes reach 50, all

the proposed methods generate confidence intervals with comparable length.

Table 2 presents simulated coverage probabilities (CP) and confidence interval lengths (CI)

for K = 5. The three generalized pivots based methods methods generally maintains satisfac-

tory coverage probabilities for all settings except that they tend to be slightly conservative at

small sizes and GVK is liberal at (α1, . . ., α5) = (0.5, 0.5, 0.75, 0.75, 1) with sizes (50, 50, 50, 50,

50). Among MOVER-type methods (i.e. MOVERK, MOVERC, MOVERW, MOVERboot),

MOVERC performs the best while they are generally liberal when sample sizes are from (5, 5,

5, 5, 5) to (20, 20, 20, 20). When sample sizes reach 50, all methods perform satisfactorily. The

GVK method provides shortest confidence intervals among three generalized pivots based

methods, followed by GVW. As sample sizes reach 20, all three methods (i.e. GVK, GVC, GVW)

are comparable. MOVERK provides shortest confidence intervals among three MOVER-type

methods, followed by MOVERb oot. As sample sizes reach 20, all four methods (i.e. MOVERK,

MOVERC, MOVERW, MOVERboot) are comparable. When sample sizes reach 50, all methods

are generally comparable in terms of length.

In summary, generally we recommend GVK, GVC, GVW methods over MOVER-type

methods due to the fact that they can generate confidence intervals with satisfactory coverage

probabilities even at smaller sizes. The MOVER-type methods are not recommended unless

sample sizes are greater than or equal to 50. The large sample approach in (4) can severely

underestimate the coverage probabilities, hence its results are not presented.

Data examples

In this section, we illustrate the proposed methods using two examples. Both datasets was ana-

lyzed in [11] for testing equality of gamma means, and it was concluded that the null hypothe-

sis (equality of gamma means) can not be rejected. Therefore, in this paper, we use these two

datasets to illustrate our proposed methods for estimating confidence intervals of the common

gamma mean.

Example 1. Wright [29] reported ground water yield from two types of wells in southwest-

ern Virginia. Table 3 presents this dataset which includes ground water yield data from 12

wells from valley underlain by unfractured rocks, and 13 wells by fractured rocks. It has been

argued that gamma distribution is appropriate to fit the data in each sample, and the test for

equality of means [11] concluded that the means of water yields from two types of wells are the
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Table 1. Coverage probabilities (CP) and length of confidence interval (CI) of proposed 95% confidence intervals for the common gamma mean (2000 simulations)

with two independent samples (K = 2).

(α1, α2) Sizes� GVK GVC GVW MOVERK MOVERC MOVERW MOVERboot

CP CI CP CI CP CI CP CI CP CI CP CI CP CI

μ = 1

(0.5,1) I 0.947 3.798 0.977 31.948 0.962 9.138 0.910 2.927 0.950 28.028 0.927 8.921 0.903 2.670

II 0.952 2.131 0.976 10.748 0.966 4.693 0.917 2.411 0.952 35.248 0.941 9.745 0.917 2.443

III 0.955 1.458 0.969 1.896 0.964 1.722 0.916 1.260 0.940 1.628 0.936 1.496 0.927 1.337

IV 0.947 0.827 0.961 0.933 0.959 0.909 0.921 0.756 0.941 0.847 0.936 0.828 0.935 0.813

V 0.941 0.465 0.954 0.505 0.951 0.499 0.922 0.446 0.942 0.482 0.939 0.479 0.943 0.477

(1,2) I 0.965 2.274 0.974 4.504 0.966 2.656 0.927 1.804 0.942 3.353 0.930 2.126 0.917 1.441

II 0.957 1.319 0.969 2.027 0.960 1.483 0.931 1.464 0.948 2.957 0.936 1.810 0.922 1.202

III 0.958 0.971 0.966 1.050 0.960 0.992 0.926 0.860 0.933 0.922 0.931 0.879 0.924 0.839

IV 0.954 0.584 0.960 0.605 0.959 0.593 0.934 0.545 0.945 0.562 0.941 0.554 0.941 0.549

V 0.945 0.333 0.948 0.341 0.948 0.338 0.933 0.323 0.940 0.330 0.939 0.329 0.938 0.328

(1,10) I 0.959 1.035 0.964 1.532 0.960 1.108 0.933 0.825 0.946 1.326 0.932 0.927 0.911 0.725

II 0.967 0.579 0.971 0.798 0.969 0.629 0.948 0.643 0.954 1.187 0.946 0.771 0.934 0.551

III 0.957 0.478 0.962 0.494 0.961 0.481 0.941 0.434 0.945 0.445 0.941 0.436 0.940 0.427

IV 0.956 0.293 0.959 0.296 0.959 0.294 0.947 0.281 0.946 0.283 0.947 0.282 0.947 0.281

V 0.948 0.172 0.951 0.172 0.950 0.172 0.946 0.169 0.947 0.170 0.946 0.170 0.946 0.170

(2,10) I 0.960 0.891 0.963 1.023 0.953 0.862 0.931 0.727 0.933 0.812 0.927 0.709 0.917 0.647

II 0.954 0.526 0.957 0.576 0.953 0.525 0.933 0.562 0.940 0.653 0.934 0.560 0.921 0.491

III 0.964 0.446 0.964 0.453 0.961 0.444 0.943 0.408 0.939 0.411 0.943 0.405 0.935 0.400

IV 0.949 0.279 0.949 0.280 0.949 0.278 0.940 0.267 0.938 0.268 0.939 0.267 0.935 0.266

V 0.952 0.166 0.953 0.167 0.953 0.166 0.950 0.164 0.947 0.164 0.950 0.164 0.949 0.164

(5,10) I 0.964 0.732 0.969 0.762 0.961 0.690 0.932 0.612 0.931 0.626 0.925 0.586 0.920 0.561

II 0.960 0.478 0.963 0.489 0.960 0.467 0.944 0.497 0.946 0.510 0.936 0.480 0.935 0.456

III 0.956 0.390 0.956 0.392 0.957 0.387 0.934 0.358 0.936 0.358 0.934 0.355 0.936 0.352

IV 0.945 0.246 0.949 0.246 0.945 0.245 0.929 0.235 0.931 0.235 0.927 0.235 0.932 0.234

V 0.957 0.148 0.955 0.148 0.957 0.148 0.949 0.145 0.949 0.145 0.949 0.145 0.948 0.145

μ = 5

(0.5,1) I 0.956 18.934 0.977 152.736 0.965 46.391 0.923 14.473 0.953 163.612 0.936 46.134 0.907 13.224

II 0.958 10.803 0.977 49.275 0.969 22.734 0.924 12.269 0.952 184.086 0.936 46.080 0.924 12.116

III 0.956 7.174 0.974 9.363 0.966 8.501 0.917 6.177 0.941 8.038 0.931 7.393 0.927 6.588

IV 0.932 4.122 0.950 4.651 0.948 4.523 0.906 3.782 0.928 4.226 0.925 4.133 0.923 4.059

V 0.944 2.304 0.963 2.498 0.961 2.473 0.928 2.210 0.950 2.385 0.948 2.369 0.946 2.363

(1,2) I 0.957 11.242 0.975 21.977 0.961 13.098 0.921 8.943 0.942 16.556 0.925 10.592 0.912 7.177

II 0.961 6.637 0.976 10.351 0.966 7.517 0.938 7.429 0.954 15.540 0.944 9.356 0.924 6.099

III 0.965 4.859 0.975 5.258 0.967 4.971 0.934 4.306 0.943 4.618 0.936 4.407 0.930 4.198

IV 0.946 2.896 0.955 2.999 0.949 2.940 0.928 2.702 0.934 2.787 0.936 2.747 0.934 2.724

V 0.952 1.673 0.953 1.710 0.956 1.699 0.945 1.624 0.950 1.660 0.950 1.651 0.948 1.650

(1,10) I 0.963 5.098 0.969 7.328 0.967 5.373 0.935 4.086 0.947 6.156 0.933 4.451 0.919 3.588

II 0.969 2.857 0.976 3.868 0.969 3.095 0.955 3.201 0.963 5.952 0.952 3.868 0.939 2.746

III 0.958 2.398 0.960 2.482 0.956 2.411 0.938 2.170 0.940 2.229 0.940 2.183 0.933 2.138

IV 0.952 1.455 0.954 1.470 0.951 1.458 0.940 1.393 0.945 1.405 0.948 1.397 0.946 1.393

V 0.947 0.866 0.949 0.870 0.948 0.869 0.943 0.854 0.946 0.858 0.943 0.857 0.943 0.857
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same. The estimated parameters are: α1 = 0.4342, b̂1 ¼ 2:2824, α2 = 1.1854, b̂2 ¼ 3:7707. The

estimated 95% confidence intervals for the common gamma mean by all the proposed meth-

ods are presented in Table 4. Our simulation study demonstrate that MOVER-type methods

could be liberal at sample sizes (10, 10). Give the sample sizes as 12 and 13 in this application,

the confidence intervals by GVK, GVC, GVW methods are recommended, and among them

the GVK method has the shortest length.

Example 2. Table 5 presents a dataset of chloride concentration in spring water samples

from two types of rocks in Sierra Nevada, California and Nevada [30]. It has been argued that

gamma distribution is appropriate to fit the data in each sample, and testing equality of means

[11] concluded that the means of chloride concentration from two types of rocks are the same.

The estimated parameters are: α1 = 0.7594, b̂1 ¼ 0:3616, α2 = 1.1359, b̂2 ¼ 1:6092. The esti-

mated 95% confidence intervals for the common gamma mean by all the proposed methods

are presented in Table 6. Given sample sizes 18 and 17 and parameter estimates, the confi-

dence interval estimated by GVK is most recommenced in practice.

Summary and discussion

Gamma distribution plays an important role in practice. When the result of testing equality of

several gamma means is not significant, it is customary that we need to make inference about

the common gamma mean. While the standard large sample methods exist, small sample

inference for the common gamma mean has not been explored. In this article, we focus on

accurate confidence interval estimation for the common gamma mean based on several inde-

pendent gamma samples using the concepts of generalized pivots and the method of MOVER.

Via a comprehensive simulation study, we discovered that the proposed methods based on

generalized pivots can generally provide satisfactory confidence intervals with consistent per-

formance despite parameter settings and sample sizes. The MOVER-type methods can be lib-

eral for certain scenarios, especially when sample sizes are small.

The proposed methods are easy to implement. The R program is available at li.yan@roswell-

park.org.

Due to the popularity of gamma distribution in applied fields, we expect the proposed

methods have wide applicability in practice where right-skewed data are often observed.

Table 1. (Continued)

(α1, α2) Sizes� GVK GVC GVW MOVERK MOVERC MOVERW MOVERboot

CP CI CP CI CP CI CP CI CP CI CP CI CP CI

(2,10) I 0.960 4.540 0.965 5.190 0.956 4.367 0.926 3.701 0.931 4.105 0.923 3.602 0.917 3.287

II 0.954 2.639 0.957 2.890 0.953 2.635 0.935 2.822 0.937 3.278 0.934 2.815 0.925 2.471

III 0.961 2.215 0.963 2.246 0.959 2.199 0.945 2.025 0.948 2.043 0.946 2.012 0.943 1.986

IV 0.952 1.396 0.955 1.403 0.954 1.394 0.946 1.339 0.944 1.343 0.946 1.338 0.946 1.334

V 0.946 0.829 0.949 0.831 0.949 0.829 0.945 0.815 0.945 0.817 0.945 0.817 0.946 0.816

(5,10) I 0.951 3.645 0.960 3.794 0.953 3.439 0.911 3.054 0.919 3.123 0.909 2.923 0.910 2.798

II 0.962 2.383 0.966 2.432 0.961 2.319 0.942 2.473 0.944 2.536 0.934 2.385 0.936 2.267

III 0.963 1.962 0.963 1.971 0.960 1.944 0.943 1.801 0.943 1.804 0.942 1.787 0.942 1.772

IV 0.951 1.245 0.952 1.247 0.953 1.240 0.944 1.190 0.943 1.190 0.944 1.187 0.943 1.185

V 0.942 0.737 0.942 0.738 0.945 0.736 0.942 0.723 0.941 0.724 0.941 0.723 0.941 0.723

� I:(5,5), II:(5,10), III:(10,10), IV:(20,20), V: (50,50)

https://doi.org/10.1371/journal.pone.0269971.t001
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Table 2. Coverage probabilities (CP) and length of confidence interval (CI) of proposed 95% confidence intervals for the common gamma mean (2000 simulations)

with two independent samples (K = 5).

(α1, α2) Sizes� GVK GVC GVW MOVERK MOVERC MOVERW MOVERboot

CP CI CP CI CP CI CP CI CP CI CP CI CP CI

μ = 1

(0.5,0.5,0.75,0.75,1) VI 0.962 2.618 0.995 89.847 0.979 8.961 0.879 1.590 0.959 19.057 0.926 5.422 0.830 1.471

VII 0.955 0.978 0.980 1.316 0.966 1.165 0.857 0.741 0.922 0.959 0.901 0.877 0.869 0.785

VIII 0.931 0.561 0.961 0.639 0.956 0.620 0.874 0.475 0.913 0.533 0.908 0.520 0.898 0.510

IX 0.959 0.687 0.984 2.241 0.975 1.184 0.927 1.196 0.966 15.958 0.949 4.277 0.913 1.213

X 0.923 0.309 0.955 0.338 0.951 0.335 0.901 0.287 0.930 0.311 0.927 0.309 0.927 0.308

(0.5,1,2,5,10) VI 0.970 0.903 0.987 3.417 0.976 1.300 0.901 0.609 0.944 2.858 0.922 1.146 0.863 0.551

VII 0.961 0.396 0.969 0.425 0.964 0.407 0.906 0.322 0.924 0.346 0.916 0.335 0.899 0.322

VIII 0.950 0.235 0.952 0.240 0.949 0.236 0.922 0.213 0.925 0.217 0.926 0.215 0.919 0.214

IX 0.966 0.210 0.978 0.427 0.970 0.276 0.946 0.420 0.969 4.520 0.958 1.434 0.919 0.412

X 0.956 0.135 0.960 0.137 0.957 0.136 0.947 0.130 0.950 0.132 0.948 0.132 0.947 0.131

(0.5,2,2,5,5) VI 0.966 0.977 0.983 3.781 0.972 1.435 0.895 0.670 0.936 5.867 0.911 1.594 0.864 0.609

VII 0.962 0.443 0.973 0.474 0.965 0.453 0.905 0.363 0.923 0.389 0.916 0.375 0.900 0.361

VIII 0.945 0.268 0.951 0.274 0.950 0.270 0.916 0.241 0.923 0.246 0.922 0.244 0.917 0.243

IX 0.957 0.276 0.976 0.602 0.965 0.368 0.944 0.504 0.966 5.257 0.954 1.571 0.922 0.495

X 0.955 0.153 0.959 0.155 0.958 0.154 0.943 0.147 0.943 0.149 0.942 0.148 0.944 0.148

(1,2,2,5,5) VI 0.971 0.916 0.983 1.551 0.972 0.954 0.904 0.629 0.924 0.887 0.901 0.654 0.864 0.537

VII 0.960 0.426 0.966 0.442 0.958 0.425 0.915 0.354 0.918 0.363 0.911 0.354 0.901 0.346

VIII 0.955 0.260 0.962 0.264 0.958 0.260 0.932 0.236 0.933 0.239 0.929 0.237 0.929 0.236

IX 0.964 0.252 0.972 0.299 0.965 0.263 0.945 0.444 0.954 0.796 0.949 0.522 0.920 0.377

X 0.945 0.151 0.948 0.152 0.945 0.151 0.939 0.145 0.941 0.146 0.938 0.146 0.940 0.146

(2,2,5,5,10) VI 0.968 0.654 0.979 0.820 0.970 0.633 0.898 0.465 0.908 0.513 0.892 0.452 0.864 0.413

VII 0.961 0.325 0.961 0.330 0.959 0.322 0.914 0.276 0.916 0.278 0.910 0.274 0.902 0.271

VIII 0.966 0.202 0.967 0.204 0.964 0.202 0.941 0.186 0.940 0.187 0.941 0.186 0.936 0.186

IX 0.961 0.180 0.967 0.188 0.959 0.180 0.936 0.302 0.948 0.345 0.932 0.300 0.915 0.267

X 0.964 0.118 0.958 0.119 0.961 0.118 0.954 0.114 0.953 0.115 0.953 0.114 0.953 0.114

μ = 5

(0.5,0.5,0.75,0.75,1) VI 0.968 12.835 0.994 396.747 0.982 43.412 0.882 7.805 0.964 126.406 0.924 32.435 0.835 7.311

VII 0.953 4.907 0.979 6.617 0.973 5.857 0.860 3.728 0.924 4.794 0.903 4.393 0.867 3.940

VIII 0.947 2.813 0.975 3.203 0.970 3.107 0.881 2.384 0.920 2.676 0.910 2.615 0.905 2.563

IX 0.957 3.430 0.985 10.460 0.976 5.677 0.918 5.834 0.962 63.516 0.947 20.451 0.906 5.913

X 0.928 1.552 0.961 1.695 0.960 1.679 0.899 1.437 0.930 1.557 0.931 1.546 0.928 1.542

(0.5,1,2,5,10) VI 0.972 4.566 0.987 19.559 0.979 7.006 0.897 3.095 0.946 18.131 0.917 6.738 0.858 2.842

VII 0.965 1.971 0.973 2.117 0.967 2.025 0.915 1.611 0.934 1.730 0.926 1.670 0.907 1.609

VIII 0.949 1.177 0.954 1.202 0.953 1.188 0.923 1.067 0.927 1.089 0.926 1.080 0.928 1.074

IX 0.957 1.047 0.976 2.291 0.968 1.384 0.939 2.091 0.959 24.026 0.949 7.508 0.919 2.071

X 0.950 0.675 0.953 0.681 0.950 0.679 0.939 0.650 0.945 0.657 0.944 0.656 0.944 0.656

(0.5,2,2,5,5) VI 0.966 4.907 0.984 16.560 0.974 6.850 0.894 3.356 0.936 19.666 0.912 6.848 0.860 3.047

VII 0.960 2.229 0.973 2.381 0.968 2.276 0.897 1.822 0.918 1.953 0.906 1.882 0.892 1.812

VIII 0.948 1.337 0.952 1.364 0.950 1.345 0.911 1.200 0.919 1.225 0.912 1.213 0.911 1.208

IX 0.959 1.391 0.973 3.026 0.968 1.882 0.934 2.512 0.959 25.382 0.947 8.083 0.913 2.437

X 0.952 0.766 0.952 0.775 0.949 0.772 0.939 0.735 0.943 0.744 0.942 0.742 0.943 0.741

(1,2,2,5,5) VI 0.966 4.606 0.979 7.967 0.966 4.825 0.901 3.162 0.923 4.510 0.897 3.319 0.858 2.697

VII 0.968 2.151 0.971 2.234 0.965 2.148 0.916 1.791 0.920 1.837 0.914 1.788 0.901 1.746

VIII 0.969 1.304 0.972 1.322 0.967 1.305 0.941 1.186 0.941 1.197 0.940 1.187 0.935 1.183

IX 0.956 1.267 0.972 1.499 0.961 1.321 0.933 2.208 0.948 4.063 0.936 2.631 0.913 1.882

X 0.958 0.751 0.955 0.757 0.952 0.753 0.946 0.722 0.947 0.727 0.945 0.725 0.946 0.725
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Table 2. (Continued)

(α1, α2) Sizes� GVK GVC GVW MOVERK MOVERC MOVERW MOVERboot

CP CI CP CI CP CI CP CI CP CI CP CI CP CI

(2,2,5,5,10) VI 0.965 3.276 0.970 4.063 0.960 3.143 0.901 2.312 0.912 2.527 0.891 2.243 0.870 2.063

VII 0.964 1.626 0.964 1.648 0.960 1.610 0.923 1.379 0.922 1.389 0.919 1.368 0.916 1.351

VIII 0.949 1.007 0.952 1.014 0.947 1.004 0.928 0.927 0.927 0.930 0.927 0.925 0.925 0.923

IX 0.958 0.896 0.964 0.937 0.956 0.899 0.939 1.514 0.947 1.740 0.938 1.506 0.922 1.337

X 0.951 0.591 0.953 0.593 0.950 0.591 0.941 0.572 0.942 0.573 0.942 0.572 0.941 0.573

� Sizes are VI:(5,5,5,5,5), VII:(10,10,10,10,10), VIII:(20,20,20,20,20), IX: (5,10,10,20,50), X: (50,50,50,50,50)

https://doi.org/10.1371/journal.pone.0269971.t002

Table 3. Virginia ground water well yields data (in gal/min/ft) [29].

Without fractures with fractures

0.001, 0.003, 0.007, 0.020 0.020, 0.031, 0.085, 0.013

0.030, 0.040, 0.041, 0.077 0.160, 0.160, 0.180, 0.300

0.100, 0.454, 0.490, 1.020 0.400, 0.440, 0.510, 0.720, 0.950

https://doi.org/10.1371/journal.pone.0269971.t003

Table 4. Estimated confidence interval for Virginia ground water well yields data (in gal/min/ft).

method lower upper LCI

GVK 0.140 0.491 0.351

GVC 0.159 0.576 0.417

GVW 0.153 0.574 0.421

MOVERK 0.169 0.459 0.289

MOVERC 0.178 0.548 0.370

MOVERW 0.175 0.530 0.355

MOVERboot 0.175 0.490 0.314

https://doi.org/10.1371/journal.pone.0269971.t004

Table 5. Chloride concentration (in mg/litre) in water data. [30].

Granodiorite Quartz Monzonite

6.0, 0.5, 0.4, 0.7, 0.8, 6.0, 5.0, 0.6, 1.2 1.0, 0.2, 1.2, 1.0, 0.3, 0.1, 0.1, 0.4, 3.2

1.0, 0.2, 1.2, 1.0, 0.3, 0.1, 0.1, 0.4, 3.2 0.3, 0.4, 1.8, 0.9, 0.1, 0.2, 0.3, 0.5

https://doi.org/10.1371/journal.pone.0269971.t005

Table 6. Estimated confidence intervals and lengths for the common mean for Chloride concentration (in mg/

litre) in water.

method lower upper length

GVK 0.524 1.366 0.842

GVC 0.555 1.482 0.928

GVW 0.547 1.455 0.908

MOVERK 0.543 1.251 0.707

MOVERC 0.569 1.317 0.749

MOVERW 0.571 1.317 0.746

MOVERboot 0.567 1.310 0.743

https://doi.org/10.1371/journal.pone.0269971.t006
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