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Abstract

Estimates of age-specific mortality are regularly used in ecology, evolution, and

conservation research. However, estimating mortality of the dispersing sex, in

species where one sex undergoes natal dispersal, is difficult. This is because it is

often unclear whether members of the dispersing sex that disappear from moni-

tored areas have died or dispersed. Here, we develop an extension of a multi-

event model that imputes dispersal state (i.e., died or dispersed) for uncertain

records of the dispersing sex as a latent state and estimates age-specific mortal-

ity and dispersal parameters in a Bayesian hierarchical framework. To check the

performance of our model, we first conduct a simulation study. We then apply

our model to a long-term data set of African lions. Using these data, we further

study how well our model estimates mortality of the dispersing sex by incre-

mentally reducing the level of uncertainty in the records of male lions. We

achieve this by taking advantage of an expert’s indication on the likely fate of

each missing male (i.e., likely died or dispersed). We find that our model pro-

duces accurate mortality estimates for simulated data of varying sample sizes

and proportions of uncertain male records. From the empirical study, we

learned that our model provides similar mortality estimates for different levels

of uncertainty in records. However, a sensitivity of the mortality estimates to

varying uncertainty is, as can be expected, detectable. We conclude that our

model provides a solution to the challenge of estimating mortality of the

dispersing sex in species with data deficiency due to natal dispersal. Given the

utility of sex-specific mortality estimates in biological and conservation

research, and the virtual ubiquity of sex-biased dispersal, our model will be use-

ful to a wide variety of applications.

Introduction

Mortality estimates of both sexes for wild animal popula-

tions are fundamental for testing hypotheses derived from

ecological and evolutionary theory, and for predicting

population size and structure for population management

purposes. However, estimating mortality of at least one of

the sexes is commonly hindered by incomplete data on
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dispersing individuals. For example, in many large mam-

mal species, males leave their natal place or social group

around the age of maturity, while females are philopatric.

If individuals of the dispersing sex, in this case males,

leave the areas monitored by field studies that collect

resighting data on marked individuals, these dispersing

individuals impede the quality of gathered data in the fol-

lowing way.

Dispersing individuals are usually unavailable for col-

lecting age-at-death data because following dispersing

individuals using telemetry or GPS technology is costly

and labor-intensive. Furthermore, for many species deaths

are rarely observed in the field. Instead, deaths are

inferred from permanent disappearances of individuals

from the study area. However, missing members of the

dispersing sex, which were old enough for dispersal, may

have died or dispersed. This uncertain fate of disappeared

members of the dispersing sex makes the estimation of

the mortality difficult using existing methods. The estima-

tion of mortality for the philopatric sex is in comparison

relatively straightforward because missing members of the

philopatric sex are likely dead, even if their bodies are not

found, as these individuals do not disperse.

Models to infer mortality using capture–mark–recap-
ture/resighting (CMRR) data derived from the Cormack–
Jolly–Seber framework (CJS; after Cormack 1964; Jolly

1965; Seber 1965) can accommodate both uncensored

and right-censored records (i.e., individuals known to be

alive after the last observation). These approaches exploit

the fact that each type of record contributes different

information (White and Burnham 1999). Extensions to

the initial models have been developed that accommodate

species-specific life histories and data issues arising from

the movement of the individuals in relation to the spatial

and temporal distribution of the marking and resighting

effort. Accordingly, these models, known as multistate

models (Arnason 1973; Schwarz et al. 1993), incorporate

incomplete and heterogeneous resighting probabilities,

multiple states, and multiple locations (e.g., Lebreton and

Pradel 2002; Mackenzie et al. 2009; Cubaynes et al. 2010).

Pradel (2005) extended the multistate framework to

account for unobservable states, particularly in the con-

text of movement between sites. This extension, known as

multievent models, incorporates the estimation of uncer-

tain states into the modeling of survival while accounting

for dispersal rates and site fidelity (Avril et al. 2012;

Lagrange et al. 2014). Alternatively, Ergon and Gardner

(2014) extended the CJS model into a robust-design spa-

tial capture–recapture (RD-SCR) model to jointly model

survival and dispersal where the activity centers are trea-

ted as a latent state. Similarly, Schaub and Royle (2014)

have recently developed a spatially explicit Cormack–
Jolly–Seber approach that jointly models mortality and

dispersal using movement data for species in which dis-

persal can be described as a random walk.

These approaches provide a fundamental framework to

estimate survival under state uncertainty, particularly in

the context of dispersal. Further complications arise when

information on sex or ages is missing. In order to

address issues with missing records in CMRR data, Baye-

sian approaches have been developed that estimate sur-

vival probabilities and transition probabilities between

states and locations while augmenting data (Dupuis 1995,

2002; King and Brooks 2002). Some of these approaches

estimate latent (unknown) states jointly with all other

model parameters in a hierarchical framework using

Markov chain Monte Carlo (MCMC) algorithms (Clark

et al. 2005; Colchero and Clark 2012; Colchero et al.

2012). As latent states can be both finite sets of discrete

states (e.g., locations or stages) or continuous variables

(e.g., date of birth or death), this framework is suitable

for developing a survival model that treats dispersal as a

latent state, and can therefore accommodate uncertain

records due to natal dispersal. This is particularly impor-

tant for data sets where individuals of one or both sexes

disperse but information on their movements is missing.

In such cases, there is no information of the fate of

potential dispersing individuals at the last time they are

detected. At this time, their dispersal state (i.e., either dis-

persed or died) is unknown, and thus, the estimation of

survival can be biased if this latent state is not explicitly

modeled.

Here, we present a Bayesian hierarchical model that

builds upon the multievent framework (Pradel 2005) and

that estimates age-specific mortality and dispersal for spe-

cies where one sex is philopatric and one sex undergoes

natal dispersal. The model fits a parametric age-specific

mortality model as a function of age and sex jointly with

the estimation of the distribution of ages at dispersal,

treating potential dispersal as a latent state. Using simu-

lated data, we first validated the model. We then applied

the model to estimate age-specific mortality of both sexes

for Serengeti lions (Panthera leo) in Tanzania. As this

particular data set contains the expert opinion from the

head of the study (C. Packer, unpublished data) on

whether a missing male is likely to have dispersed or

died, we used this information to gain further insights

into the workings of our method. In particular, using the

expert’s opinion, we varied whether missing males

entered the model as potential or known dispersers, and

compared the mortality estimates among the different

models in order to evaluate the influence of the imputa-

tion of dispersal as a latent state on our mortality esti-

mates. For simplicity, we will refer to the philopatric sex

as being female, and to the dispersing sex as being male.

However, the model is flexible as to which sex is the
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dispersing sex, while it can be extended for the case

where both sexes disperse.

Methods

We focus on species in which individuals disperse out of

the study area only once at around the age of maturity

(“natal dispersal”) and where information on individual

dispersal events is unavailable. In addition, our model is

developed for data sets where movements within the

study area are missing. To isolate the effect of uncertainty

in male records on mortality estimates from other effects,

we focus on data that meet the following assumptions.

We assume that individuals are resighted with certainty if

they are alive and in the study area. For estimating the

age-specific probabilities of dispersal for the dispersing

sex, we further assume that mortality in- and outside the

study area is equal and that individuals born outside the

study area disperse into the study area with equal proba-

bilities as individuals born in the study area disperse out

of it. We also assume that ages of individuals whose birth

was not observed (left-truncated records) can be esti-

mated with sufficient certainty by a trained observer to

allow us to not include time of birth as a latent state in

the model and to model ages at death as a continuous

variable, although this can be included following Colchero

and Clark (2012); Colchero et al. (2012). However, as the

data available to us for the empirical application con-

tained individuals that died before sexing was possible,

we did construct the model to accommodate this type of

record, treating the sex of unsexed individuals as another

latent state. Finally, we further make one assumption that

we know is not met for data from wild animal popula-

tions, and that is that mortality only depends on age and

sex and not on any other covariates. However, this

assumption allows us to develop a model to estimate

baseline mortality for pooled data, which can later on be

easily extended to incorporate other covariates.

Life history data

Data structure

The life history data used to estimate age- and sex-specific

mortality included records for native-borns and immi-

grants. Native-borns were born in the study population,

defined as all individually recognizable and constantly

monitored individuals. Immigrants entered the study

population some time after their birth due to migration

(Fig. 1). Similarly, individuals that were located in the

study area at the time the study began had a first detec-

tion age xFi [ 0. The recorded types of departure from

the population included death, censoring due to being

alive at the end of the study, or uncertain fate (death or

censoring through dispersal). Uncertain fates through dis-

persal were only caused by dispersals from the study pop-

ulation to an external population, and not by dispersals

within the study population. Here, we refer to this out-

migration from the study population when we use the

term “dispersal.”

Serengeti population

The study population occupied a 2000 km2 region of Ser-

engeti National Park, Tanzania, that lies at the heart of

the Serengeti–Mara ecosystem. The study site is character-

ized by seasonal rainfall and a southeast to northwest gra-

dient in vegetation from short to tall grassland to open

woodlands (Packer 2005; Mosser et al. 2009). We ana-

lyzed demographic data collected between 1966 and 2013.

Observations were opportunistic between 1966 and 1984,

and most animals were sighted 1–3 times per month.

Study prides have been monitored with radio telemetry

since 1984, allowing each animal to be observed 2–6 times

per month. All individuals are identified from natural

markings (Packer et al. 1991), and birth dates of cubs

born in the study area are deduced from lactation stains

on the mothers. A large number of nomadic males enter

the area, and a small proportion become resident in one

or more of the resident prides. Our analyses exclude all

nomadic males that never became residents in the study

Figure 1. Example of types of records in the lion data set. Circles

represent times of entry (tFi ), where the entry type for filled circles

corresponds to known times of birth and open circles are entries after

birth (i.e., immigration or birth before the study started). Squares are

departure times (tLi ) where filled squares are known times of death

and open squares are dispersal. Filled triangles indicate individuals

known to be alive at the end of the study and vertical bars indicate

that the type of departure from the study population is uncertain (i.e.,

either death or dispersal).
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area (N = 548, � 25% of all observations on males).

These left-truncated and right-censored records contain

little survival information. As a consequence, a model that

included these records did not converge. Individuals with

unknown dates of birth were assigned an estimated age

by a trained observer, using age indicators (e.g., relative

body size, nose coloration, and eruption and wear of

teeth) (Smuts et al. 1978; Whitman et al. 2004). The data

set contained a large number of individuals of unknown

sex. As the vast majority of these unsexed individuals died

within the first weeks after birth, we excluded all individ-

uals with last detection ages younger than 0.25 years of

age. The final data set contained observations on 1341

females, 1263 native-born males, 316 immigrants, and

269 unsexed native-born individuals. The proportion of

females among all native-born individuals (excluding

immigrants), assuming a sex ratio of 1 to 1 among indi-

viduals that died before their sex could be determined,

was 0.51.

Mortality analysis

Model variables and functions

We developed a model that estimates both age-specific

mortality and dispersal where the dispersing state is

unknown. Thus, at the time of last detection the dispers-

ing state, di, for an individual i that belongs to the dis-

persing sex is treated as a latent state that needs to be

estimated. Accordingly, the model requires defining ran-

dom variables and probability functions for the age at

death, X, and for the age at natal dispersal, Y, as well as

for the binary latent state, D, with support given by

di ¼ 1 if an individual is imputed to have dispersed and

di ¼ 0 otherwise. Furthermore, we have extended the

model to account for unknown sex, S (see Table 1 for a

summary of all random variables, parameters, and indica-

tors).

The age-specific mortality model requires defining the

mortality function or hazard rate as

lðxjhÞ ¼ lim
Dx!0

Prðx�X\x þ Dx j x�X; hÞ
Dx

; x� 0 (1)

where h is a vector of mortality parameters to be esti-

mated. The estimated mortality can be used to calculate

the probability of survival from birth to age x, or survival

function,

SðxjhÞ ¼ PrðX� xÞ ¼ exp �
Z x

0

lðzjhÞdz
� �

; (2a)

the probability that death occurs before age x, or the

cumulative density function (CDF),

FðxjhÞ ¼ PrðX\xÞ ¼ 1� SðxjhÞ; (2b)

and the probability density function (PDF) for age at

death

f ðxjhÞ ¼ d

dx
FðxjhÞ ¼ SðxjhÞlðxjhÞ: (2c)

To capture the bathtub-shaped mortality rates typical

of large mammals, we used the Siler model (Siler 1979)

in the form

lðxjhÞ ¼ ea0�a1x þ c þ eb0þb1x; (3)

where h> ¼ ½a0; a1; c; b0; b1�, with a0; b0 2 R and

a1; c; b1 [ 0. The Siler model is a competing risk model

constituted by three additive mortality hazards. The

parameters capture different aspects of the shape of the

age trajectory with the exponential of a0 being the initial

level of mortality rates and a1 governing the exponential

decrease in mortality over infant and juvenile ages. The c

parameter scales mortality rates up or down and is usu-

ally interpreted as reflecting age-independent causes of

Table 1. Description of random variables, observed variables, and

indicators

Modeled random variables

X Random variable for age at death, where x

is any age element

Y Random variable for age at natal dispersal

with elements y

D Binary random variable for disperser or nondisperser

S Binary random variable for sex

Observed variables and indicators

tF Vector of times of first detection

tL Vector of times of last detection

b Vector of times of birth

xF Vector of ages at first detection (xFi ¼ tFi � bi )

xL Vector of ages at last detection (xLi ¼ tLi � bi )

m Indicator vector for immigrants (mi ¼ 1 if immigrant)

Updated indicators

d Indicator vector for dispersers (di ¼ 1 if disperser

and di ¼ 0 otherwise)

s Indicator vector for sex (si ¼ 1 if female and

si ¼ 0 otherwise)

Parameters

h Vector of mortality parameters

c Vector of natal dispersal parameters

Functions

Mortality

l(x|h) Mortality (Siler model)

S(x|h) Survival

F(x|h) CDF for age at death (F(x) = 1�S(x))

f(x|h) PDF for age at death

Dispersal

g(y|c) PDF for age at natal dispersal (gamma distribution)

G(y|c) CDF for age at natal dispersal

ª 2016 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. 4913

J. A. Barthold et al. Estimating Mortality for the Dispersing Sex



mortality. This parameter is also dominant in capturing

mortality in early adult ages when infant mortality has

declined and senescence mortality not yet risen. The

exponential of the b0 parameter represents the initial

mortality of the age-dependent increase of mortality and

b1 determines the rate of this increase (Siler 1979).

To model the ages at dispersal, we defined the random

variable Y for age at dispersal, where the age at natal dis-

persal was Y �GYðyÞ for ages y > 0, with GY ðyÞ being the

Gamma distribution function with parameter vector

c> ¼ ½c1; c2�. This distribution yields the probability den-

sity function (PDF) of age at natal dispersal given by

gYðyjcÞ ¼ cc21
Cðc2Þ

ðy � aÞc2�1e�c1 ðy�aÞ if y� a;

�
(4)

where a is the minimum age at natal dispersal and

c1; c2 [ 0.

At the age of last detection, xL, individuals belonging

to the dispersing sex can have dispersed, with a probabil-

ity conditioned on X and Y given by

PrfD ¼ 1jxLg ¼ PrfX[ xL ^ Y ¼ xLg: (5a)

It is the joint probability that these individuals have not

died and have dispersed shortly after the last detection

age. The probability that these individuals have died and

have not dispersed, but would have dispersed at later

ages, is accordingly

PrfD ¼ 0jxLg ¼ PrfX ¼ xL ^ Y [ xLg: (5b)

As we specify above, the dispersal state is treated as a

latent state and is therefore imputed. Below we explain

how the likelihoods are specified and how the latent states

are imputed. A summary of all the functions, parameters,

indicators, and variables is provided in Table 1. R code to

simulate data and fit the model can be downloaded from

the link provided in the Supporting Information.

Likelihood and posterior

To construct the mortality likelihood, we assigned a dif-

ferent probability to each type of record in Figure 1. The

likelihood for the nondispersing individuals (i.e., mem-

bers of the nondispersing sex or members of the dispers-

ing sex that disappeared at ages younger than the

minimum age at dispersal a) is given by

pðxF ; xL j hÞ ¼ PrðX ¼ xL j X[ xF; hÞ if uncensored
PrðX[ xL j X[ xF ; hÞ if censored,

�

(6a)

where xL corresponds to the age at last detection and xF is

the age at first detection (i.e., xF ¼ 0 for individuals born

in the study area and xF [ 0 for immigrants or indivi-

duals that were located in the study area when the study

began). As we mentioned above, we defined dispersal state

for all members of the dispersing sex with last seen ages

older than the minimum age at dispersal a as a random

variable D. It took the value di ¼ 1 if an individual i, born

at bi and last detected at tLi , dispersed in its last detection

age, xLi ¼ tLi � bi, and 0 if otherwise. For some individu-

als, di is known either because the individuals were known

to be alive and in the study area at the end of the study

(i.e., right-censored observations), or because their disap-

pearance was known to be a death or a dispersal. For all

other individuals, di was imputed as a latent state.

Based on equations (5), the joint mortality and disper-

sal likelihood for members of the dispersing sex with

xLi [ a is given by

pðxF ; xL j di;h; cÞ

¼

PrðX ¼ xL;Y[ xL j X[ xF;h; cÞ if uncens. & di ¼ 0
PrðX[ xL;Y[ xL j X[ xF; h; cÞ if cens. & di ¼ 0
PrðX[ xL;Y ¼ xL j X[ xF;h; cÞ if di ¼ 1
PrðxF\X ¼ xL;Y ¼ xF j h; cÞ if mi ¼ 1;

8>>>><
>>>>:

(6b)

where mi is an indicator for individuals that joined the

study population as immigrants, and thus, these indivi-

duals contribute important information on ages at death

and dispersal.

Furthermore, we also defined a binary variable S for

the sex of the individual. With this, we could construct

the full Bayesian model as

pðdu; su; h; c j dk; sk; xF; xLÞ / pðdk; sk; xF; xL j du; su; h; cÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
likelihood

� pðdÞ pðsÞ|fflfflfflfflffl{zfflfflfflfflffl}
priors for states

� pðhjhpÞ pðcjcpÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
priors for parameters

(7)

where d was the vector of dispersal states and s was the

indicator vector for sex (si ¼ 1 if female and si ¼ 0 if

male), and hp and cp are vectors of prior hyperparameters

for the mortality and dispersal parameters. Each of these

vectors had two subsets represented by the subscripts u

for unknown and k for known.

MCMC and conditional posteriors

We used a Markov chain Monte Carlo (MCMC) algo-

rithm to fit the model in equation (7). For all implemen-

tations, we ran four parallel MCMC sequences with

different randomly drawn starting values and set the
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number of iterations to 15,000 steps with a burn-in of

5000 initial steps and a thinning factor of 20. We used a

hierarchical framework that only needed the conditionals

for posterior simulation by Metropolis sampling (Metro-

polis et al. 1953; Gelfand and Smith 1990; Clark 2007).

This means that for this particular case, the algorithm

divided the posterior for the joint distribution of

unknowns into four sections: (a) estimation of mortality

parameters, (b) estimation of dispersal parameters, (c)

estimation of unknown dispersal state, and (d) estimation

of unknown sexes. Here, we present each section, specify-

ing the conditional posterior and the acceptance probabil-

ity for the Metropolis Sampler algorithm.

Section a: Posterior for mortality parameters

The conditional posterior to estimate the mortality

parameters h required only the ages at first and last detec-

tion xFi and xLi and the dispersal states di. The posterior

for a given individual i was

pðh j xLi ; xFi ; diÞ /

f ðxLi j hÞ
SðxFi j hÞ pðhjhpÞ if di ¼ 0

SðxLi j hÞ
SðxFi j hÞ pðhjhpÞ if di ¼ 1 or

censored

8>>><
>>>:

(8)

where hp was a vector of prior hyperparameters. If the

individual was a native-born, then xFi ¼ 0 and the

denominator in both expressions was equal to 1. At every

iteration and for a given parameter h 2 h with condi-

tional posterior p(h|⋯), the algorithm proposes a new

parameter value for each element of h0 and accepts it with

acceptance probability

pðh; h0Þ ¼ min 1;

Qn
i¼1

pðh0 j xLi ; xFi ; diÞ
Qn
i¼1

pðh j xLi ; xFi ; diÞ

8>><
>>:

9>>=
>>;: (9)

Section b: Posterior for dispersal parameters

The conditional posterior to estimate the parameters c for

the distribution of ages at natal dispersal for a given indi-

vidual i was

where cp was a vector of prior hyperparameters for c, xi

was an indicator that assigns 1 if an individual was a

potential disperser (i.e., if it belonged to the dispersing

sex and disappeared at an age older than the minimum

age at dispersal a), and mi was an indicator for immi-

grants. We set the minimum age at dispersal to a = 1.75

years for the simulated data and a = 1.5 for the Serengeti

data. The age a corresponded to the earliest age at which

immigrants could be detected and potential dispersers

could be last seen. For a parameter c 2 c with condi-

tional posterior density p(c|⋯), the acceptance probability

for a proposed parameter of c0 was

pðc; c0Þ ¼ min 1;

Qn
i¼1

pðc0 j � � �Þ
Qn
i¼1

pðc j � � �Þ

8>><
>>:

9>>=
>>;: (11)

Section c: Posterior for dispersal states

Dispersal state was evaluated for individuals that were

potential dispersers (i.e., xi ¼ 1). The joint probabilities

for dispersal state were

pðdi j xLi ;xi;miÞ /

f ðxLi Þð1� GðxLi ÞÞ pðdijhp; cpÞ if xi ¼ 1;mi ¼ 0; di ¼ 0

SðxLi ÞgðxLi Þ pðdijhp; cpÞ if xi ¼ 1;mi ¼ 0; di ¼ 1

0 otherwise:

8>>>>>><
>>>>>>:

(12)

pðc j xFi ; xLi ; di;xi;miÞ /

gðxLi � a j cÞ pðc j cpÞ if xi ¼ 1; mi ¼ 0 & di ¼ 1

½1� GðxLi � a j cÞ� pðc j cpÞ if xi ¼ 1; mi ¼ 0 & di ¼ 0

gðxFi � a j cÞ
SðxFi j hÞ pðc j cpÞ if mi ¼ 1

0 otherwise;

8>>>><
>>>>:

(10)
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The first terms on the right-hand side of equation (12)

correspond to the likelihood function as defined in equa-

tions (6), while the second terms are the priors for dis-

persal state. For this section, the acceptance probability

for the sampling given the last detection ages, the disper-

sal states, the potential disperser states, and the immigra-

tion states was

pðdi; d0iÞ ¼ min 1;

Qn
i¼1

pðd0i j xLi ;xi;miÞ
Qn
i¼1

pðdi j xLi ;xi;miÞ

8>><
>>:

9>>=
>>;: (13)

Section d: Posterior for unknown sexes

Some individuals disappeared before the minimum age at

dispersal without their sex being determined. The condi-

tional posterior for the latent state of sex was

pðsi j xLi ; hÞ / pðxLi ; h j siÞ pðsiÞ; (14)

where the second term on the right-hand side is a prior

for sex based on the sex ratio at birth, or if the analysis

was conditioned on survival to age x, based on the sex

ratio at age x.

The indicator for potential dispersers xi (see Section c)

was updated in each iteration. Individuals of undeter-

mined sex and last detection ages older than the mini-

mum age at dispersal were assigned 1 if imputed to be

male and 0 if imputed to be female. The acceptance prob-

ability given the last detection ages and the mortality

parameters was

pðsi; s0iÞ ¼ min 1;

Qn
i¼1

pðs0i j xLi ; hÞ
Qn
i¼1

pðsi j xLi ; hÞ

8>><
>>:

9>>=
>>;: (15)

Mortality and dispersal priors

We set the Siler parameters for the prior for both sexes

to a0p ¼ �3 (r = 0.5), a1p ¼ 0:2 (r = 0.25), cp ¼ 0

(r = 0.25), b0p ¼ �4 (r = 0.5), and b1p ¼ 0:01

(r = 0.25). For dispersal, the Gamma parameters (shape

and scale) for the prior were set to cp ¼ 8; 2f g with

rðcpÞ ¼ 2; 1f g. Priors were normally distributed and

truncated at 0, apart from the level parameters of the

Siler model (a0 and b0), which were not truncated.

Both the mortality and dispersal priors were fairly

uninformative. The priors for the probability of being

female was 0.5 for the simulated data and 0.51 for to

the Serengeti data (see also subsection “Serengeti

population”).

Model application and posterior analysis

We fitted the model to the Serengeti data with sex as a

covariate, which was imputed for individuals with

unknown sex. We included the covariate by making the

mortality parameters contained in h functions of the

covariate, namely

hi ¼ hi1 si þ hi2ð1� siÞ; (16)

where si ¼ 1 if female and 0 otherwise.

In order to gain deeper insights into the performance of

our model, we further exploited a unique source of informa-

tion that is contained in this data set. A Serengeti lion expert

used the circumstances accompanying the disappearances of

males to deduce whether the individuals may have dispersed

(C. Packer, unpublished data). For example, as young males

often leave their natal prides with brothers, a simultaneous

disappearance of brothers hints that this is likely to be a dis-

persal event. We fitted the model with three different set-

tings. First, all males with uncertain fates and last detection

ages older than minimum age at dispersal were assigned the

state of “potential dispersers” and entered in the model as

described in “Section c” above (Model A). Second, all males

that were indicated by the expert to potentially have dis-

persed were entered as “known dispersers” (see equation 6b)

(Model B). And third, all males that were indicated by the

expert to potentially have dispersed were entered as “poten-

tial dispersers” while other uncertain male records were

treated as having died at the last detection age (Model C).

To avoid problems arising from the large number of

unsexed individuals that died within the first weeks after

birth, we fitted the model from the start age of 0.25 years.

We predicted mortality rates for each sex using the parame-

ter estimates of every step of the MCMC after burn-in and

thinning and used these predictions to calculate mean and

credible intervals of mortality rates. To compare the three

models to each other, we computed the life expectancy at

the model start age and the Kullback–Leibler (KL) diver-

gences of the mortality parameter posterior densities (Kull-

back and Leibler 1951; McCulloch 1989; Burnham and

Anderson 2001) (see Methods S1 for details on the calcula-

tion and the interpretation of KL values).

Simulated data

To validate the performance of our model, we used

known mortality parameters to simulate data of the

described structure and checked whether our model accu-

rately retrieved these parameters. To simulate the data,

we first randomly assigned a sex for an initial number of

individuals by drawing from a binomial distribution,

assuming an equal probability of being born male or

female. We then randomly drew ages at death (xi) for
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each individual i by inverse sampling from a Siler CDF

(see equations 2b and 3) with parameters

hf ¼ f�1:4; 0:65; 0:07;�3:8; 0:2g for females and

hm ¼ f�1:2; 0:7; 0:16;�3:5; 0:23g for males. The sub-

scripts f and m denote females and males, respectively.

We then randomly drew ages at dispersal for all males by

inverse sampling from a gamma CDF with parameters

c = {10,3} and adding the minimum age of dispersal

a = 1.75. We assigned every individual a last detection

age xLi depending on its sex and dispersal status. For

females and for those males whose ages at death were

simulated to be younger than their ages at dispersal (i.e.,

they died before they could disperse), the last detection

ages were the ages at death. For the other males, who

were simulated to have died after dispersal, the last detec-

tion ages were set to be the ages at dispersal. Finally, to

add immigrants to the data, we simulated the same num-

ber of males being born in the external population. For

these males, as before, we randomly drew ages at deaths

and ages at dispersal, and if they were simulated to have

dispersed before death, we added them to the data as

immigrants with their ages at death recorded as last

detection ages and their ages at dispersal recorded as first

detection ages xFi .

We simulated data sets of two different initial numbers

of native-borns (small sample size N = 500 and large

sample size N = 2000). Within each sample size, we also

produced further data sets where the sexes of all individu-

als were known, and data sets where we randomly

assigned, with a probability of 0.3, the state of “unknown

sex” to all individuals that died at <1 year of age. Finally,

we simulated data that varied in the proportion of

observed or “known” deaths among individuals that were

no longer resighted. We used three settings: 1, 5, and

10% known deaths. In total, we thus simulated 12 data

sets. All simulations and analyses were conducted using

the statistical computing language R (R Core Team 2012).

Results

Simulation study

We used a simulation study to validate our model. For all

12 simulations, the mortality rates used to simulate the

data lay within the 95% credible intervals of the estimated

mortality for both sexes (Fig. 2). Of all the introduced

variations in data quality (sample size, unsexed individu-

als, proportion “known” deaths), the only one with a

marked effect on the performance of the model was vary-

ing the sample size. As could be expected, smaller sample

sizes resulted in wider credible intervals particularly for

males and for older ages of females. Due to the wider

confidence bands for smaller sample sizes, the respective

estimated mortality rates could appear to be less variable

over the life span than the mortality rates used to simu-

late the data. This manifested as a less pronounced U-

shape of the estimated mortality rates when compared to

the “real” mortality rates (e.g., second panel in second

row of Fig. 2). The proportion of unsexed individuals

dying at <1 year of age, and the proportion of known

deaths among disappearances did not discernibly affect

the retrieval of the mortality parameters.

Application

The empirical models for Serengeti lions converged for

all estimated parameters (Fig. 3; see also Figs. S1–S3 for

traces). To supplement the visual inspection of the

chains, we further confirmed convergence for the c

parameters using the potential scale reduction (Gelman

et al. 2013). We obtained values very close to 1 (between

0.999 and 1.002) for five of the six estimated c parame-

ters (Model A, B, C and both sexes). Only one c param-

eter for females had a value of 1.05, which is still within

the limits of having reached convergence. Overall mor-

tality of both sexes was U-shaped with high initial cub

mortality, low mortality of prime-aged adults, and an

age-dependent increase in mortality at older ages

(Fig. 4). Mortality of males was higher than mortality of

females across all ages (Fig. 4), except for very young

ages, up until 1 year, during which confidence bands of

male and female mortality overlapped. However, this

may be due to the large proportion of unsexed individu-

als at these ages (see data description) and the imputa-

tion of sex as a latent state for these individuals, which

introduced uncertainty. Due to the higher male mortality

rates across most ages, female life expectancy (4.7 years

at model start age) exceeded that of males by approxi-

mately 2 years.

Now we turn to the comparison between the models

with varying settings for potential dispersers. Model A

(Fig. 4A) treated the data as if no further information

was available on dispersal status of males with uncertain

fates (i.e., the default setting of the model). Model B took

advantage of expert knowledge on lion behavior and trea-

ted all males that a lion expert believed were dispersers,

as known dispersers (Fig. 4B). Finally, Model C treated

all expert-indicated potential dispersers as potential dis-

persers and thus considered all other uncertain male

records to represent deaths (Fig. 4C). The number of

potential dispersers whose dispersal state was imputed as

a latent state was therefore smaller in Model C when

compared to Model A.

We compare these models by examining the estimated

mortality rates (Fig. 4), the posterior density distributions

(Fig. 3), and the KL divergences (Fig. 5). As females were
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treated the same way in all three models, the posterior

distributions of parameters for females were congruent

among the three models (Fig. 3). Consequently, the KL

divergences were close to, or equal to, 0.5 (Fig. 5), and

female mortality rates were almost identical across all

three models (Fig. 4).

For males, the three models gave slightly varying

results. The different settings regarding potential dis-

persers mostly affected the estimation of the Siler parame-

ters that describe initial mortality (a0), the age-dependent

decrease in mortality at young ages (a1), and the age-

independent mortality (c) (Fig. 5). The initial mortality

was higher in Model B, and lower in Model C, when

compared to the default model A (Fig. 3, Table S1). The

age-dependent decrease in mortality was steeper in Model

B compared to Model A but similar between Model A

and C. The age-independent mortality was higher in both

Model B and C when compared to the default Model A.

The differences among the three models can be more

fully understood by comparing the male mortality rates

predicted from the three models (Fig. 4). Due to the

steep decline in age-dependent mortality at younger

ages when all expert-indicated dispersers were treated as

dispersers (Model B), mortality rates during the juvenile

ages up to approximately three years of age were lower

in Model B when compared to both models that

imputed dispersal state for potential dispersers (Model

A and C). However, for the prime-adult ages, Model B

gave the highest mortality estimates, followed by Model

C, and then Model A, which gave the lowest estimates.

Mortality rates at older ages were highest in Model A

and B. Despite these differences in the shape of the

mortality rates curves, the life expectancies at 0.25 years

of age were predicted to be identical by Model A and

B (2.7 years), and only slightly different by Model C

(2.4 years).
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population. The analysis was conditioned on survival of the first 3 months of life.
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Discussion

Life history data of wild animals are often incomplete

because animals, even though alive and well, may tem-

porarily or permanently be absent when researchers try to

observe them at a given location. This has far reaching

consequences for the estimation of biological properties

from these data. Accordingly, various statistical

approaches have been developed that account for tempo-

ral and spatial heterogeneity in recapture probabilities.

For example, multistate CMRR methods have been

applied to estimate survival rates while accounting for

migration between locations within study sites (Arnason

1973; Schwarz et al. 1993; Lebreton and Pradel 2002; Pra-

del 2005; Mackenzie et al. 2009; Lagrange et al. 2014).

And spatially explicit CMRR methods have been devel-

oped to estimate survival probabilities and population size

(Borchers and Efford 2008; Efford and Mowat 2014;

Ergon and Gardner 2014). Furthermore, a recently devel-

oped spatially explicit Cormack–Jolly–Seber approach

jointly models dispersal and survival hierarchically for

species in which dispersal movements can be assumed to

follow a random walk (Schaub and Royle 2014).

However, these models require some information on

movement within the study area to estimate mortality

parameters and latent states. Our model is an alternative

to these models for data sets where no information on

movement within the study is available and thus dispersal

state is entirely unknown. Instead, potentially dispersing

individuals are resighted with certainty as long as they are

alive and in the study area, and they are not resighted

after they dispersed. To meet these challenges, our model

does not model spatially heterogeneous detection proba-

bilities and dispersal distances but rather imputes the dis-

persal state of the uncertain male records (i.e., died or

dispersed) as a latent state variable in a Bayesian hierar-

chical framework (Clark et al. 2005; Colchero and Clark

2012; Colchero et al. 2012). We therefore show that for

species with sex-specific natal dispersal, mortality and dis-

persal can be jointly modeled without using movement

data. Of course, movement data could potentially be used

to inform the dispersal process. However, we decided to

develop a model that does not rely on spatial data so that

the model can easily be applied to data sets that differ in

the structure of available spatial data.

To gauge the possibility of estimating sex- and age-spe-

cific mortality in species with sex-biased natal dispersal,

we focused on data with incomplete records for sex and

age at death. We assumed that this uncertainty could

arise from one of two mechanisms. Firstly, native-born

males that disperse from the study area can cause uncer-

tainty in male records of age at death, and secondly, indi-

viduals dying as juveniles before their sex could be

determined resulted in uncertain sex records. Implicitly,

the model therefore assumes that all birth dates are

known and that all other types of records can be treated

as complete records. Consequently, the model treated the

last detection ages of potential dispersers that were

imputed to be nondispersers and of immigrants as certain

ages at death. The accuracy of the model therefore hinges

on the assumption that potential dispersers disperse only

once during their life. During our study, it became appar-

ent that while this assumption holds for some lion popu-

lations (A. Loveridge, unpublished data), it does not hold

for the Serengeti population.

Relaxing the assumption and accounting for higher-

order dispersal necessitates a customized extension of the

mortality model we present here. The effectiveness of fit-

ting this more complex model depends on the availability

of information on both known deaths and dispersal

events among immigrants. In the case of the Serengeti

population, we took advantage of the expert’s indication

on likely dispersal state of disappearing immigrants and

extended the default model (Model A) to treat all immi-

grants that were indicated to be likely dispersers as cen-

sored at last seen ages. The difference between the male

mortality estimates from the default model and the

extended model provides an indication of the amount by

which male mortality is overestimated if secondary dis-

persal is not accounted for (Fig. 6). To improve mortality

estimates, in future extensions of the model secondary
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dispersal can be imputed as a further latent state, simi-

larly to what we have showcased here for natal dispersal.

Another consequence of the treatment of immigrants’

last detection ages as ages at death is that the ratio of

immigrants to dispersers is likely to influence the estima-

tion of male mortality parameters. Problems may arise if

the number of individuals that disperse out of the study

area is much higher than the number of individuals that

immigrate into it (see Fig. S4 for a simulation). This may

be the case for field sites that are established in protected

areas and act as a source population for surrounding

habitats of lower quality. Mortality in these habitats, and

mortality during the dispersal process itself, may also be

higher than mortality within the study area. Our model

cannot account for this heterogeneity because the data

only contain information collected within the study area.

Finally, the comparison of the different models for the

lion data allows us to draw some conclusions about the

sensitivity of mortality estimates to varying levels of

uncertainty in male records. If all expert-indicated dis-

persers were in fact dispersers (Model B), then by com-

paring the mortality rates estimated by this model to the

one with the default treatment of uncertain records

(Model A), we learn that the default model may have the

tendency to overestimate mortality during juvenile ages

(lower a1 in Model A than B). The default model may

furthermore slightly underestimate mortality during

prime-adult ages. As the model that treats all expert-indi-

cated dispersers as potential dispersers and treats all other

uncertain records as deaths (Model C) shares properties

of both Models A and B (similar c to Model B, similar a0
and a1 to Model A), and may come closest to reality, it

seems like a promising avenue for future development to

directly include expert knowledge in the Bayesian frame-

work via priors. However, this information is an idiosyn-

crasy of the data set that we used here. Making the model

dependent on this information would therefore preclude

the application of the model to estimate mortality for

other populations and species.

In conclusion, we have discussed here how the model

hinges on various assumptions. If these are met, then the

model performs well at estimating mortality of the dis-

persing sex, as we have shown in the simulation study.

The assumptions appear to restrict the utility of the

model because many ecological data sets may not comply

with them. However, we have explained how the different

assumption can be relaxed by extending the basic, here-

presented model. The hierarchical framework and the

modeling of the joint probabilities of ages at death and

dispersal for potential dispersers provide flexibility that

can be exploited to adapt the model to the specific data

structure of each data set. Extensions can include other

covariates, information on interval censoring, and imper-

fect detection probabilities. For example, an extension to

account for secondary dispersal, dispersal of both sexes,

and unknown times of birth is currently developed for a

comparative study of six primate populations (F. Col-

chero, unpublished data). Overall, we conclude that our

model provides a good solution to the challenge of esti-

mating mortality of the dispersing sex in species with data

deficiency for the dispersing sex due to natal dispersal.
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Additional Supporting Information may be found online

in the supporting information tab for this article:

Figure S1–S3. Traces of mortality and dispersal parameter

estimation for Models A to C.

Figure S4. Predicted mortality functions for males (blue

polygons) and females (pink polygons) compared to the

mortality functions used to simulate the data (solid lines),
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if the probability of immigration into the study area of

males born outside of it was lowered from 1 to 0.5.

Table S1. Estimated coefficients for Models A to C.

Code S1. R code to simulate data, to run the model on

simulated data, and to plot the output can be

downloaded from github.com/bartholdja/mortality-esti-

mation-method.

Methods S1. Calculation and calibration of Kullback

–Leibler divergence.
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