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Dear Editor,

Up to now, hematopoietic stem cells (HSCs) that
contribute to all mature blood cell lineages in adults still
cannot be efficiently regenerated in vitro, at least in part
due to the insufficient understanding of their physiolo-
gical developmental trajectories and the underlying
precise regulatory mechanisms. In mouse embryos, the
first HSCs are believed to be derived from a specialized
arterial endothelial population named hemogenic endo-
thelial cells (HECs) in the mid-gestational aorta-gonad-
mesonephros region, and then via the intermediates of
two types of pre-HSCs (CD45~ T1 pre-HSCs and CD45"
T2 pre-HSCs). The transient and dynamic process is
termed endothelial-to-HSC transition. After that, newly
emerged HSCs colonize the fetal liver (FL) for pro-
liferation and then migrate to the bone marrow niche for
lifelong hematopoiesis' .

Taking advantage of multidimensional single-cell tech-
nologies, the single functional HSC-primed HECs and
pre-HSCs have been precisely captured, and the mole-
cular regulatory network of the entire course of HSC
development has been systemically revealed at the tran-
scriptional level®*, However, the role of epigenetic
machinery orchestrating HSC fate commitment remains
uncovered yet. Several lines of evidences have indicated
that DNA methylation modification is essential for reg-
ulating the expression of master hematopoietic genes and
has a crucial role in definitive hematopoiesis, for example,
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the demethylation of the promoters of several key tran-
scription factors (TFs) including Runx1 and Spil induced
by long non-coding RNA H19 initiates the hemogenic
program of the embryonic endothelial cells to generate
HSCs>®. Nevertheless, the global DNA methylation
dynamics of HSC development have not been revealed at
the genome-scale.

To obtain a comprehensive DNA methylation land-
scape of HSC development, we isolated six functionally
enriched continuous populations along the path of HSC
development as we and others previously defined,
namely arterial endothelial cells (AECs), HECs, T1 pre-
HSCs, T2 pre-HSCs, FL HSCs, and adult HSCs>*, and
preformed 30-cell pool whole-genome bisulfite sequen-
cing (WGBS) (Supplementary Tables S1, S2). The
methylation characteristics formed distinct clusters
associated with different developmental stages (Supple-
mentary Fig. Sla). Although an overall high level and a
similar distribution pattern of CpG methylation (mCGQG)
in the genomic regions were observed across all cell
types (Supplementary Fig. S1b, c), the specific changing
dynamics did exist during HSC development. The aver-
age level of methylation was slight increased from AECs
to HECs, and sharply decreased in T1 pre-HSCs, then
gradually increased from T1 pre-HSCs to adult HSCs
(Fig. 1a), which was not compatible with the dynamic
expression patterns of Dnmt and Tet family genes,
suggesting the involvement of complicated regulatory
mechanisms in regulating the dynamics changes of
methylation levels across different HSC development
stages (Supplementary Fig. S1d). With the projection of
the corresponding single-cell transcriptome data, the
DNA methylation level and the transcriptional activity
showed an obvious reverse trend from HEC onward
(Fig. 1a), further suggesting a role of DNA methylation in
orchestrating gene expression during HSC development.
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Fig. 1 Dynamic DNA methylation landscape during HSC development. a Dynamic changes of DNA methylation level (mean) and RUVg
normalized gene expression during HSC development. b The number of differential DNA methylation region (tiles 1k, cover base 5 bp, P value less
than 0.01, the absolute value of differential methylation levels bigger than 25) was calculated between each two consecutive stages. ¢ Histograms of
the numbers of tiles with gain and lost DNA methylation between each two consecutive stages in the annotated genomic regions. d Heatmap of
differential DNA methylation region between each two consecutive stages and Gene ontology (GO) analysis of DMRs by using GREAT and top five
GO term are displayed. e Heatmap and hierarchical clustering of genes (row scale) from the highlighted GO term in d and three dynamic gene
expression patterns and the corresponding methylation level displayed on the right side and highlighted with shadow. f Motif analysis of each gene-
set (annotated from DMRs between each two consecutive stage) and normalized enrichment score bigger than 3.5 is showed. g Representative TF
regulatory network was calculated based on iCisTarget. h Dynamic mCH level and mitochondrial genes expression level during HSC development.

i GO analysis of mCH DMRs from HEC to T1 pre-HSC and top nine GO terms are shown.

.

To gain further insight into the mechanism of the DNA
methylation dynamics, we identified totally 13,527 differ-
entially methylated regions (DMRs) when compared
between each two consecutive stages during HSC devel-
opment (Supplementary Fig. S2a). The number of DMRs
was the least in the course from T1 pre-HSCs to T2 pre-
HSCs, indicating the developmental similarity of these two
populations (Fig. 1b and Supplementary Fig. S2a). Notably,
the numbers of loss-of-methylation regions were largely
similar along the whole HSC developmental path except
for that from T1 pre-HSCs to T2 pre-HSCs, while the high
number of gain-of-methylation regions was associated
with the two courses of colonization of HSCs, namely from
T2 pre-HSCs to FL HSCs and the subsequent from FL to
bone marrow HSCs (Fig. 1b). Interestingly, when analyzed
the genomic distribution of these DMRs, we found the
majority of them were enriched in intronic regions (such
as short interspersed elements (SINEs) and introns) rather
than other genomic regions during HSC development
(Fig. 1c and Supplementary Fig. S2b), indicating that the
dynamic methylation changes of these intronic regions
might be involved in regulating gene expression by directly
altering chromatin structures as previously reported””,

Next, the DMRs between each two consecutive stages were
annotated to their nearby genes and the gene ontology (GO)
analysis was performed by using the “Genomic Regions
Enrichment of Annotations Tool” (GREAT). When com-
pared with AECs, the loss-of-methylation DMRs in HECs
was associated with the genes involved in specific terms of
hematopoietic processes, such as “regulation of leukocyte
differentiation” and “positive regulation of hemopoiesis”,
suggesting that endowment of the hematopoietic fate in this
stage was at least partially due to the reduced methylation on
the locus of the hematopoietic genes. Interestingly, when
compared with HECs, the loss-of-methylation DMRs in T1
pre-HSCs was further enriched in terms correlated to “reg-
ulation of hemopoiesis”, while the gain-of-methylation DMRs
was significantly enriched in the terms associated with a
variety of endothelium development processes. This finding
indicated that the methylation changes on the locus nearby
the endothelial and hematopoietic genes were clearly asso-
ciated with the endothelial-to-hematopoietic fate switch that

occurred during HEC to T1 pre-HSC transition (Fig. 1d and
Supplementary Fig. S2c).

As one of the prominent roles of DNA methylation is to
regulate gene expression, we further used our transcrip-
tional profiling datasets®* to focus on the dynamic
expression of the DMR-associated genes involved in specific
endothelial or hematopoietic related GO terms highlighted
in Fig. 1d and witnessed three different gene expression
patterns along the whole course of HSC ontogeny.
Expectedly, the expression level of the endothelial-featured
genes showing gain-of-methylation in T1 pre-HSCs com-
pared with HECs was gradually downregulated during HSC
development, among which including arterial endothelial
genes Heyl and Notchl in addition to pan-endothelial
markers Kdr and Pecam1 (Fig. 1e). On the other hand, the
hematopoietic-featured genes with loss-of-methylation
during endothelial-to-pre-HSC transition exhibited a con-
sistent upregulation from AECs to pre-HSCs, which inclu-
ded the key TF Runx1 (Fig. le). These results suggest that
dynamic DNA methylation plays a role in negatively reg-
ulating the expression of a set of genes marking the stepwise
processes of endothelial-to-pre-HSC transition.

Of note, the dynamic expression patterns of the genes did
not persistently reversely correspond to their DNA
methylation changes, such as that the expression of the
endothelial-featured genes was dramatically decreased from
T2 pre-HSCs to adult HSCs, whereas the corresponding
DNA methylation remained largely unchanged (Fig. le,
Pattern I). Moreover, two distinct expression patterns of the
hematopoietic-featured genes were observed regarding their
expression from T2 pre-HSCs onward, although their cor-
responding DNA methylation changes were similar. A
subset of these genes (Pattern II) maintained high expres-
sion, including Cd27, Cd24a, and Meisl, whereas another
subset (Pattern III) continuously downregulated expression
thereafter, including Cd44, Runx1, and Gfilb (Fig. 1le). The
data suggest that distinct mechanisms might be involved in
regulating the expression of these genes in different stages
of HSC development.

Next, we mapped all DMRs to the canonical TF binding
motifs and found that some of these TF motifs were
significantly enriched in different populations (Fig. 1f).
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For example, when compared AECs with HECs, the Ets;
Runx, Ezh2, and Ctcf recognized motifs were hypo-
methylated in AECs (Fig. 1f). The methylation changes of
Ctcf recognized motifs suggest that CTCF-mediated
chromatin remodeling might play a role in AEC to HEC
fate switch®. In comparison, TF binding motifs for the
Flil; Vdr and Tfap2e were hypomethylated in HECs. A
series of downstream target genes of Flil; Vdr and Tfap2e
were extracted, and several of them showed dynamic
expression changes (Fig. 1g and Supplementary Fig. S2d).
The finding suggests that the hypomethylation of these
TF-recognized motifs were likely to be involved in reg-
ulating the expression of some of the presumed target
genes of the TFs, and the role of which in hemogenic fate
decision needs further experimental investigations.

Recently, several studies have revealed that the abun-
dant non-CpG methylation (mCH) around the gene body
was associated with transcriptional repression during fetal
development'. Interestingly, the global mCH level was
indeed significantly increased during HSC development
(Fig. 1h), especially from HECs to T1 pre-HSCs. Further
calculation and annotation of the mCH DMRs, we sur-
prisingly found most of them were enriched in mito-
chondrial genomic regions and tended to upregulate the
expression of mitochondrial genes involved in the reg-
ulation of energy metabolism (Fig. 1i and Supplementary
Fig. S2e), which implies the unexpected role of mCH in
regulating HSC development.

In summary, our study constructed a robust and biolo-
gically meaningful DNA methylation landscape of HSC
development for the first time, and the specific DNA
methylation patterns and their potential functions were
predicted. However, due to the rare population of HSC-
competent cells and their transient nature, the physiolo-
gical function and precise regulatory mechanism of DNA
methylation in HSC development needs further experi-
mental verification by using more effective epigenetic
intervention techniques in the future study. The compre-
hensive DNA methylation landscape should be a valuable
resource for further exploring epigenetic mechanisms
underlying HSC development and shedding new light on
the strategies for directing HSC regeneration in the future.
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