# scientific reports



## **OPEN** Formation of chlorate and perchlorate during electrochemical oxidation by Magnéli phase Ti<sub>4</sub>O<sub>7</sub> anode: inhibitory effects of coexisting constituents

Lu Wang<sup>1,2</sup>, Yaye Wang<sup>3</sup>, Yufei Sui<sup>3</sup>, Junhe Lu<sup>2</sup>, Baowei Hu<sup>1</sup> & Qingguo Huang<sup>3</sup>

Formation of chlorate (ClO<sub>3</sub><sup>-</sup>) and perchlorate (ClO<sub>4</sub><sup>-</sup>) as by-products in electrooxidation process has raised concern. In the present study, the formation of  $ClO_3^-$  and  $ClO_4^-$  in the presence of 1.0 mM Cl<sup>-</sup> on boron doped diamond (BDD) and Magneli phase titanium suboxide (Ti<sub>4</sub>O<sub>7</sub>) anodes were evaluated. The Cl<sup>-</sup> was transformed to ClO<sub>3</sub><sup>-</sup> (temporal maximum 276.2  $\mu$ M) in the first 0.5 h on BDD anodes with a constant current density of 10 mA cm<sup>2</sup>, while approximately 1000  $\mu$ M ClO<sub>4</sub><sup>-</sup> was formed after 4.0 h. The formation of ClO<sub>3</sub><sup>-</sup> on the Ti<sub>4</sub>O<sub>7</sub> anode was slower, reaching a temporary maximum of approximately 350.6  $\mu$ M in 4.0 h, and the formation of ClO<sub>4</sub><sup>-</sup> was also slower on the Ti<sub>4</sub>O<sub>7</sub> anode, taking 8.0 h to reach 780.0 μM. Compared with the BDD anode, the rate of ClO<sub>3</sub><sup>-</sup> and ClO<sub>4</sub><sup>-</sup> formation on the  $Ti_4O_7$  anode were always slower, regardless of the supporting electrolytes used in the experiments, including Na<sub>2</sub>SO<sub>4</sub>, NaNO<sub>3</sub>, Na<sub>2</sub>B<sub>4</sub>O<sub>7</sub>, and Na<sub>2</sub>HPO<sub>4</sub>. It is interesting that the formation of ClO<sub>4</sub><sup>-</sup> during electrooxidation was largely mitigated or even eliminated, when methanol, KI, and H<sub>2</sub>O<sub>2</sub> were included in the reaction solutions. The mechanism of the inhibition on Cl<sup>-</sup> transformation by electrooxidation was explored.

Electrooxidation (EO) process is a promising technology in wastewater treatment<sup>1-4</sup>. EO process has been demonstrated to be a viable means to decompose a broad spectrum of recalcitrant organic pollutants that are not removable by conventional treatment processes, including pharmaceuticals, endocrine disruptors, phenolic compounds, and particularly per- and polyfluoroalkyl substances (PFASs)<sup>5-9</sup>. EO is a chemical destructive technology that promotes organic pollutants degradation by direct electron transfer from organic contaminants to the anode and attack by hydroxyl free radicals and other reactive oxygen species that are also generated on the anode surfaces during the EO process<sup>10</sup>.

Sufficiently stable and effective anode materials for EO water treatment have been developed in the last decades, including mixed oxides, such as iridium and/or ruthenium oxides<sup>11-13</sup>, titanium dioxide<sup>14</sup>, and doped diamond electrodes (BDD)<sup>15-17</sup>. This is one of the important reasons why the EO process has approached to technical maturity only recently<sup>18</sup>. Magnéli phase titanium sub-oxides, such as Ti<sub>4</sub>O<sub>7</sub>, have recently been explored as promising electrode materials for EO applications because of their high conductivity and chemical inertness.  $Ti_4O_7$  anodes have been shown to oxidize recalcitrant contaminants by a combination of direct electron transfer (DET) and indirect reactions with HO<sup>•</sup> produced at the anode surface from water oxidation<sup>10</sup>. Our recent studies have demonstrated the degradation and mineralization of Perfluorooctanesulfonate (PFOS, the one most commonly used per-fluoroalkyl acids) on the Magneli phase  $Ti_4O_7$  anode<sup>19,20</sup>.

One factor limiting the application of EO in water/wastewater treatment is that its strongly oxidizing conditions also result in the formation of toxic by-products in the presence of  $Cl^-$ , such as chlorate ( $ClO_3^-$ ) and perchlorate ( $ClO_4^{-}$ ). In particular,  $ClO_4^{-}$  is difficult to remove from water and its consumption has been linked to health

<sup>1</sup>School of Life Science, Shaoxing University, Shaoxing 312000, China. <sup>2</sup>Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095, China. <sup>3</sup>Department of Crop and Soil Sciences, University of Georgia, Griffin, GA 30223, USA. <sup>™</sup>email: qhuang@uga.edu

risks associated with disruption of the endocrine and reproductive systems<sup>21</sup>. These risks have caused the U.S. Environmental Protection Agency (EPA) to regulate perchlorate under the Safe Drinking Water Act, although an established federal limit has not yet been set<sup>22</sup>. The formation of  $ClO_4^-$  was reported during EO using several anode materials (e.g., BDD and  $Ti_4O_7$ )<sup>23</sup>. The presence of Cl<sup>-</sup> lead to the formation of free chlorine (HOCl) that is further converted to  $ClO_4^-$  and  $ClO_4^-$  in EO systems using both BDD and  $Ti_4O_7$  anodes. This transformation process appeared much faster on BDD than  $Ti_4O_7$  anode<sup>24</sup>. It is desirable to develop electrooxidation systems that minimize the formation of chlorine-related toxic by-products for water/wastewater treatment applications.

The purpose of this study was to systematically investigate the formation of  $ClO_3^-$  and  $ClO_4^-$  in solutions containing  $Cl^-$  during electrooxidation on Magneli phase  $Ti_4O_7$  anode and compares it to those on BDD anode. The experiments were performed in different supporting electrolytes at different electrochemical conditions. The effects of a few co-existing constituents were assessed to investigate the inhibition of  $ClO_3^-$  and  $ClO_4^-$  formation on the  $Ti_4O_7$  anode. The findings provide a basis for devising strategies to reduce the formation of  $ClO_3^-$  and  $ClO_4^-$  formation  $ClO_4^-$  in EO on  $Ti_4O_7$  anode.

### Materials and methods

**Reagents and materials.** All chemicals used in the experiments were of reagent grade or higher.  $ClO_3^-$  was purchased from Sigma-Aldrich (St. Louis, MO).  $ClO_4^-$ , NaCl, and HPLC grade methanol (MeOH) were obtained from Fisher Chemical. Na<sub>2</sub>SO<sub>4</sub>, NaNO<sub>3</sub>, Na<sub>2</sub>B<sub>4</sub>O<sub>7</sub> Na<sub>2</sub>HPO<sub>4</sub>, NaH<sub>2</sub>PO<sub>4</sub>, H<sub>3</sub>PO<sub>4</sub>, H<sub>2</sub>O<sub>2</sub>, and KI were supplied by J.T. Baker. All stock solutions were prepared in ultrapure water (18.2 M $\Omega$  cm<sup>-1</sup>) produced by a Barnstead Nano pure water purification system.

**Experimental procedures.** EO experiment was carried out in an undivided rectangular cell ( $10 \text{ cm} \times 5 \text{ cm} \times 2.5 \text{ cm}$ ) made of acrylic materials. A ceramic plate Ti<sub>4</sub>O<sub>7</sub> ( $10 \text{ cm} \times 5 \text{ cm}$ ) or a Si/BDD plate of the same size (both sides coated, NeoCoat, Switzerland) was used as the anode, and two 304 stainless steel plates of the same size as the anode, placed on both sides of the anode in parallel with an interval of about 2.5 cm, were used as the cathodes. The Ti<sub>4</sub>O<sub>7</sub> electrodes were fabricated according to the method used in our previous study<sup>20,24</sup>, and information on their preparation and characterization is described in detail in Supporting Information (Text S1). During each experiment, the electrolytic cell contained a 200 mL solution containing Cl<sup>-</sup> (1.0 mM) and Na<sub>2</sub>SO<sub>4</sub> (100 mM) or other salts (NaNO<sub>3</sub>, Na<sub>2</sub>B<sub>4</sub>O<sub>7</sub>, Na<sub>2</sub>HPO<sub>4</sub>, NaH<sub>2</sub>PO<sub>4</sub>, H<sub>3</sub>PO<sub>4</sub>) as supporting electrolytes stirred at 700 rpm unless otherwise specified. Some EO experiments were performed to explore the impact of pH with Na<sub>2</sub>HPO<sub>4</sub> electrolyte as a buffer for pH 10–11, NaH<sub>2</sub>PO<sub>4</sub> + Na<sub>2</sub>HPO<sub>4</sub> for pH 6–7, and H<sub>3</sub>PO<sub>4</sub> for pH 2–3. In some EO experiments, MeOH (10–1000 mM), KI (20–100 mM) or H<sub>2</sub>O<sub>2</sub> (100–1000 mM) were spiked to the electrolyte solution to explore their impact on the formation of chlorate and perchlorate. All EO experiments were conducted at room temperature.

A constant electric current was supplied at the of 10 mA cm<sup>-2</sup> density using a controllable DC power source (Electro Industries Inc., Monticello, MN), unless otherwise specified. The submerged surface area on both sides of the anode (total geometric surface area was 78 cm<sup>2</sup>) was used for calculating the electric current density. A CHI 660E electrochemical workstation (CH Instruments, Inc., Austin, TX) was used to measure the anodic potential using an Ag/AgCl reference electrode placed close to the anode, with the potential drop in solution (iRs) compensated. Triplicate samples (1.0 mL each) were withdrawn at pre-selected time points, with the power source paused and the solution continuously stirred to ensure homogeneity. The samples were stored at 4 °C until further analysis. The data were plotted with error bars representing the maximum and minimum of duplicated test results. The temperature of solution was monitored and no significant change was found during electrolysis process.

**Analysis methods.** Free chlorine,  $ClO_3^-$ , and  $ClO_4^-$  were quantified in selected samples. The Concentration of HClO was measured by spectrophotometer at 510 nm (Beckman Coulter DU 800, Brea, CA). A 2.5-mL aliquot sample was immediately mixed with 0.25-mL DPD solution (8.0 mM). DPD is oxidized by HOCl to show a red color.  $ClO_3^-$  and  $ClO_4^-$  were analyzed using a Waters (Milford, MA) ultra-high performance liquid chromatography with an electrospray ionization (ESI) source (UPLC-MS/MS). Detailed UPLC-MS/MS analytical parameters can be found in Text S2. Quantification of the  $ClO_3^-$  and  $ClO_4^-$  was based on multipoint standard calibration.

#### Results and discussion

**Formation of ClO<sub>3</sub><sup>-</sup> and ClO<sub>4</sub><sup>-</sup> in EO systems.** Cl<sup>-</sup> can be oxidized in EO systems to form reactive chlorine species that lead to ClO<sub>3</sub><sup>-</sup> and ClO<sub>4</sub><sup>-</sup>. It was shown that the presence of 1.0-mM Cl<sup>-</sup> resulted in increased HOCl, ClO<sub>3</sub><sup>-</sup>, and ClO<sub>4</sub><sup>-</sup> on BDD and Ti<sub>4</sub>O<sub>7</sub> anodes (Fig. 1). Almost no appreciable HOCl was detected during the 4.0 h electrooxidation process on the BDD anode, while the concentration of HOCl increased continuously in the system with Ti<sub>4</sub>O<sub>7</sub> anode and reached 103.2  $\mu$ M at 8.0 h. In both systems, ClO<sub>3</sub><sup>-</sup> concentration increased and then plateaued, while the concentration of ClO<sub>4</sub><sup>-</sup> increased continuously. The transformation of Cl<sup>-</sup> was faster on BDD anode in general. The data (Fig. 1) indicate that the concentration of ClO<sub>3</sub><sup>-</sup> reached 276.2  $\mu$ M in the first 0.5 h and then decreased on BDD anode, while almost all Cl (about 1000  $\mu$ M) was transformed to ClO<sub>4</sub><sup>-</sup> within 4 h. The formation of ClO<sub>3</sub><sup>-</sup> on Ti<sub>4</sub>O<sub>7</sub> electrode was slower, reaching a plateau of ~ 350.6  $\mu$ M in 4.0 h and then decreasing slowly. The formation of ClO<sub>4</sub><sup>-</sup> also appeared to be more slowly on Ti<sub>4</sub>O<sub>7</sub> electrode, taking about 8.0 h to reach 780.0  $\mu$ M.

 $Cl^-$  can be transformed in electrooxidation by direct electron transfer (DET) to  $ClO_3^-$  and  $ClO_4^-$  through a pathway of multiple steps (R1–R3). Direct oxidation of  $Cl^-$  on BDD electrode generated Cl and hypochlorite. However, unlike BDD electrode, the oxidation of  $Cl^-$  due to DET on Ti<sub>4</sub>O<sub>7</sub> anode was not as effective, thus



**Figure 1.** Comparison of chlorine species during the electrochemical oxidation of Cl<sup>-</sup> on different anodes. Dashed lines show simulated results. Conditions:  $[Cl^-]_0 = 1.0 \text{ mM}$ ,  $[Na_2SO_4] = 100 \text{ mM}$ , current density = 10 mA cm<sup>-2</sup>.

resulting in slower formation of  $ClO_3^-$  and  $ClO_4^-$  than on BDD anode<sup>24</sup>. Note that indirect routes (R4–R5) can lead to  $Cl^-$  generation on both  $Ti_4O_7$  and BDD anode, which can further go through the reactions in R2 and R3 to form HOCl and chlorinated by-products. The conversion of  $Cl^-$  to HOCl and the chlorinated byproducts via both DET and indirect routes involves the hydroxyl radicals (HO<sup>-</sup>) that are formed by water oxidation on anode.

$$\equiv S + Cl^{-} \rightarrow \equiv S(Cl_{ads}) + e^{-}$$
(R1)

$$\text{Cl}^{-} + \text{HO}^{-} \xrightarrow{-\text{H}^{+}} \text{OCl}^{-}$$
 (R2)

$$OCl^{-} \xrightarrow{-e,+HO,-H^{+}} ClO_{2}^{-} \xrightarrow{-e,+HO,-H^{+}} ClO_{3}^{-} \xrightarrow{-e,+HO,-H^{+}} ClO_{4}^{-}$$
(R3)

$$HO' + Cl^{-} \leftrightarrow ClHO'^{-} \quad k = 4.3 \times 10^{9} \,\mathrm{M^{-1} \, s^{-1}} \tag{R4}$$

$$ClHO^{-} + H^{+} \rightarrow Cl^{-} + H_{2}O \quad k = 2.1 \times 10^{10} \,\mathrm{M^{-1} \, s^{-1}}$$
 (R5)

The rate of Cl<sup>-</sup> conversion to chlorate and perchlorate in EO systems has been simulated using a model of two sequential steps by assuming each step as pseudo-first-order kinetics  $(R6-R7)^{23,25}$ . The rate constants  $k_1$  and  $k_2$  in such sequential equations were obtained by fitting the data as shown in Fig. 1 a and b using the software *Kintecus* v6.80<sup>26</sup>. The values of  $k_1$  and  $k_2$  were fitted to be  $5.40 \times 10^{-4}$  and  $7.16 \times 10^{-4}$  s<sup>-1</sup>, respectively, on the BDD anode, while for Ti<sub>4</sub>O<sub>7</sub> anode the values were  $8.59 \times 10^{-5}$  and  $1.34 \times 10^{-4}$  s<sup>-1</sup>, respectively. This indicates that Cl<sup>-</sup> is oxidized to ClO<sub>3</sub><sup>-</sup> and ClO<sub>4</sub><sup>-</sup> more easily on BDD, evidenced by the larger  $k_1$  and  $k_2$  on the BDD anode than on Ti<sub>4</sub>O<sub>7</sub> anode. Retarded formation of ClO<sub>3</sub><sup>-</sup> and ClO<sub>4</sub><sup>-</sup> makes it advantageous to apply Ti<sub>4</sub>O<sub>7</sub> anodes in water/ wastewater treatment.

$$\operatorname{Cl}^{-} \stackrel{\mathrm{HO}^{-}}{\to} \operatorname{ClO}_{3}^{-} \quad k_{1} = -\frac{dc_{Cl^{-}}}{dt}$$
(R6)

$$\operatorname{ClO}_{3}^{-} \xrightarrow{\mathrm{HO}^{-}} \operatorname{ClO}_{4}^{-} \quad k_{2} = -\frac{dc_{\operatorname{ClO}_{3}^{-}}}{dt}$$
(R7)

**Effects of electrolytes on the formation of ClO<sub>3</sub><sup>-</sup> and ClO<sub>4</sub><sup>-</sup>.** A set of experiments were performed to evaluate the ClO<sub>3</sub><sup>-</sup> and ClO<sub>4</sub><sup>-</sup> formation by EO with BDD and Ti<sub>4</sub>O<sub>7</sub> anode in solutions containing different supporting electrolytes, including 100-mM Na<sub>2</sub>SO<sub>4</sub>, NaNO<sub>3</sub>, Na<sub>2</sub>B<sub>4</sub>O<sub>7</sub>, and Na<sub>2</sub>HPO<sub>4</sub>. The concentrations of ClO<sub>3</sub><sup>-</sup> and ClO<sub>4</sub><sup>-</sup> measured in different electrolyte solutions are summarized in Fig. 2. As shown in Fig. 2a and b, ClO<sub>4</sub><sup>-</sup> concentration reached 990  $\mu$ M after 4.0 h with BDD anode and Na<sub>2</sub>SO<sub>4</sub> as supporting electrolyte, which accounts for about 99% of the total Cl<sup>-</sup> initially included in the solution. Almost no ClO<sub>3</sub><sup>-</sup> was detected. At the same current density, the formation of ClO<sub>4</sub><sup>-</sup> was slower with NaNO<sub>3</sub>, Na<sub>2</sub>B<sub>4</sub>O<sub>7</sub>, and Na<sub>2</sub>HPO<sub>4</sub> as supporting electrolytes on the BDD electrode. It is known that sulfate radical (SO<sub>4</sub><sup>-</sup>) can be formed by one-electron oxidation of sulfate ion at the anode, which can participate in the oxidation of organics<sup>15</sup> and chloride<sup>27</sup>. Occurrence of peroxodiphosphate was observed during the electrolysis of solutions containing phosphate with BDD



**Figure 2.** Comparison of  $\text{ClO}_3^-$  and  $\text{ClO}_4^-$  formation by the electrochemical oxidation with  $\text{Cl}^-$  in different electrolyte solutions.  $[\text{Cl}^-]_0 = 1.0 \text{ mM}$ , electrolyte concentration = 100 mM, current density = 10 mA cm<sup>-2</sup>, reaction time = 4.0 h.

anodes<sup>28</sup>. Hence, there could be competitive oxidation reactions from phosphate, although peroxodisulphate was also formed in sulfate containing solution<sup>29</sup>. The use of NaNO<sub>3</sub> as an electrolyte can promote the formation of ammonium and other reduced nitrogen species by electrochemical reduction<sup>30</sup>. Ammonium can react with free chlorine, favoring the formation of chloramines and reducing the potential formation of chlorate and perchlorate<sup>31–33</sup>.

Overall, the transformation was more rapid on BDD anode in all the supporting electrolyte solutions. As shown in Fig. 2, the total  $ClO_3^-$  and  $ClO_4^-$  concentration was lower when  $Ti_4O_7$  was used as the anode. For example, the  $ClO_4^-$  concentrations were 572.62 and 527.92  $\mu$ M, respectively, after 4.0 h on the BDD anode with NaNO<sub>3</sub> and Na<sub>2</sub>B<sub>4</sub>O<sub>7</sub> as supporting electrolytes, while on  $Ti_4O_7$  anode, they were 92.37 and 212.84  $\mu$ M, respectively. In particular, the  $ClO_4^-$  concentration in BDD system was 572.6  $\mu$ M after 4.0 h with NaNO<sub>3</sub> as the supporting electrolyte, while it was only 92.4  $\mu$ M at the same condition on the  $Ti_4O_7$  anode.

**Inhibitory effect of co-existing constituents.** Experiments were performed to examine EO in the presence of  $Cl^-$  as well as a few co-existing constituents, including MeOH,  $H_2O_2$  and KI, so as to investigate the effect of the coexisting constituents on the formation of  $ClO_3^-$  and  $ClO_4^-$  with  $Ti_4O_7$  anode.

MeOH. Ion exchange resin (IXR) exchange/adsorption has been shown effective to remove PFAS from water. Regeneration of PFAS-laden IXR generates a low-volume, high-concentration liquid waste known as still bottoms that contains high concentrations of PFASs, salts, and residual organic content, including MeOH that is often used as organic co-solvent for IXR regeneration. Our recent studies showed that the MeOH content in still bottoms may play a role in chloride oxidation<sup>20</sup>. In this section, we designed experiments to further explore the effects of MeOH during the transformation of Cl<sup>-</sup> by EO. As such, the EO experiment was performed in 100-mM Na<sub>2</sub>HPO<sub>4</sub> solutions containing 1.0 mM Cl<sup>-</sup> and varying quantities of MeOH. The addition of MeOH appeared to impact the conductivity of the reaction solution slightly. The conductivity dropped from 10.51 mS cm<sup>-1</sup> to 9.79 mS cm<sup>-1</sup>, but the anodic potential increased at the same current density (10 mA cm<sup>2</sup>) (Fig. S1a), from 2.93 V in the absence of MeOH increasing to 3.22 V with 100 mM MeOH. The presence of MeOH decreased the conductivity of the solution, and thus anodic potential increased at the same current density. The formation of ClO<sub>3</sub> and  $ClO_4^-$  during EO treatment at 10 mA cm<sup>-2</sup> is displayed in Fig. 3. In the absence of MeOH,  $ClO_3^-$  reached 117.8  $\mu M$  in about 1.0 h and then decreased. The value decreased to 17.3 and 0.0  $\mu M$  containing 10 mM and 100 mM MeOH, respectively. Such a time course profile indicates the further reaction of  $ClO_3^-$ . The formation of  $ClO_4^-$  increased monotonically, reaching 329.0  $\mu$ M in 8.0 h in the absence of MeOH. When 10 mM and 100 mM MeOH were spiked, almost no  $ClO_4^-$  were formed for the first 2.0 h, after which  $ClO_4^-$  started to increase, reaching 300.0  $\mu$ M and 251.8  $\mu$ M in 8.0 h, respectively. The formation of ClO<sub>4</sub><sup>-</sup> was completely inhibited when 1000 mM MeOH was added, indicating that MeOH inhibited the formation of ClO<sub>3</sub><sup>-</sup> and ClO<sub>4</sub><sup>-</sup>. Delayed formation of ClO<sub>4</sub><sup>-</sup> in the presence of lower MeOH dosage (10 and 100 mM) may be caused by MeOH depletion over time. Formation of ClO<sub>3</sub><sup>-</sup> and ClO<sub>4</sub><sup>-</sup> was neither observed in acid or neutral conditions when 1000-mM MeOH was spiked, by respectively using 50-mM NaH<sub>2</sub>PO<sub>4</sub> + 50-mM Na<sub>2</sub>HPO<sub>4</sub> (pH 6-7) or 100-mM H<sub>3</sub>PO<sub>4</sub> (pH 2-3) as electrolytes instead of Na<sub>2</sub>HPO<sub>4</sub> (pH 10-11).

A prior study proved that  $\text{Cl}^-$  was not oxidized to Cl via DET on the  $\text{Ti}_4\text{O}_7$  anode, while Cl was formed mainly through the indirect pathways (R4–R5)<sup>24</sup>. Cl reacts with another Cl<sup>-</sup> to form Cl<sub>2</sub><sup>--</sup>. Cl and Cl<sub>2</sub><sup>--</sup> also combine with each other to form free chlorine (Cl<sub>2</sub>, HClO)<sup>21,34,35</sup>. These reactive chlorine species may accumulate and diffuse away from the anode surface, and finally convert into  $\text{ClO}_3^-$  and  $\text{ClO}_4^-$ . MeOH can transform HO into perhydroxyl radicals (with a second-order rate constant is  $2.1 \times 10^9$  M<sup>-1</sup> s<sup>-1</sup>). Meanwhile, the reaction rate

![](_page_4_Figure_1.jpeg)

**Figure 3.** Concentration of  $ClO_3^-$  and  $ClO_4^-$  during the electrochemical oxidation of  $Cl^-$  in the presence of MeOH on  $Ti_4O_7$  anodes. Conditions:  $[Cl^-]_0 = 1.0 \text{ mM}$ ,  $[Na_2HPO_4] = 100 \text{ mM}$ , current density = 10 mA cm<sup>-2</sup>.

![](_page_4_Figure_3.jpeg)

**Figure 4.** Comparison of fitted  $k_1$  (R6) and  $k_2$  (R7) during the electrochemical oxidation with the addition of MeOH, H<sub>2</sub>O<sub>2</sub>, and KI.

constant between MeOH and Cl is  $5.7 \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$ . MeOH could consume Cl in the bulk solution and HO (if present). The formation of  $\text{ClO}_3^-$  and  $\text{ClO}_4^-$  was thus reduced with low concentrations of MeOH, while a high concentration of MeOH can rapidly transform Cl, inhibiting the generation of  $\text{ClO}_3^-$  and  $\text{ClO}_4^-$ .

 $H_2O_2$ . Yang et al. found that the formation of  $ClO_4^-$  during EO with BDD anode can be largely inhibited by adding  $H_2O_2^{23}$ . Therefore,  $H_2O_2$ , a commonly used quenchers were also investigated in this study. The time-course data of  $ClO_3^-$  and  $ClO_4^-$  formation in the presence of  $H_2O_2$  are shown in Fig. S2. Using Kintecus v6.80, the data in Fig. S2 were fit to obtain  $k_1$  and  $k_2$  represented in equation R6–R7, and they were  $9.78 \times 10^{-5}$  and  $7.09 \times 10^{-4} \text{ s}^{-1}$ , respectively, in the absence of co-existing constituents (Fig. 4). The values of  $k_1$  and  $k_2$  decreased to  $1.16 \times 10^{-6}$  and  $1.87 \times 10^{-4} \text{ s}^{-1}$  when 1000-mM  $H_2O_2$  were spiked, respectively. The data shown in Fig. S2 and Fig. 4 also showed that addition of  $H_2O_2$  at 1000 mM also significantly limited  $ClO_3^-$  and  $ClO_4^-$  formation during the EO.

 $H_2O_2$  is known to be both an oxidant ( $H_2O_2/H_2O$ ,  $E^0 = 1.76$  V) and a reductant ( $O_2/H_2O_2$ ,  $E^0 = 0.68$  V) depending on the composition of the reaction media. Thus, Earlier studies have demonstrated that HOCl can be reduced back to Cl<sup>-</sup> by  $H_2O_2^{36,37}$  (R8–R9). In addition to free chlorine,  $H_2O_2$  can also react with the chlorine radical species directly (R10-R11). Thus, it is presumed that the reduction of HOCl and chlorine radical species by  $H_2O_2$  outweighed the oxidation of Cl<sup>-</sup> by  $H_2O_2$  in the EO system, and thus decreased ClO<sub>3</sub><sup>-</sup> and ClO<sub>4</sub><sup>-</sup> formation. Moreover,  $H_2O_2$  may react with ClO<sub>3</sub><sup>-</sup> to form chlorine dioxide (R12)<sup>38,39</sup>, thus further reducing the formation of ClO<sub>3</sub><sup>-</sup>.

$$HOCl + H_2O_2 \rightarrow H^+ + Cl^- + H_2O + O_2 \quad k = 1.1 \times 10^4 \,\mathrm{M^{-1} s^{-1}}$$
 (R8)

![](_page_5_Figure_1.jpeg)

**Figure 5.** Formation of  $ClO_3^-$  and  $ClO_4^-$  during the electrochemical oxidation of  $Cl^-$  in the presence of KI on  $Ti_4O_7$  anodes. Conditions:  $[Cl^-]_0 = 1.0 \text{ mM}$ ,  $[Na_2HPO_4] = 100 \text{ mM}$ , current density = 10 mA cm<sup>-2</sup>.

 $Cl_2 + H_2O_2 \rightarrow O_2 + 2HCl \quad k = 1.3 \times 10^4 \,\mathrm{M^{-1} s^{-1}}$  (R9)

$$Cl' + H_2O_2 \rightarrow HO'_2 + Cl^- + H^+ \quad k = 2.0 \times 10^9 \text{ M}^{-1} \text{s}^{-1}$$
 (R10)

$$Cl_2 + H_2O_2 \to HO_2 + 2Cl^- + H^+ \quad k = 1.4 \times 10^5 \,\mathrm{M}^{-1} \mathrm{s}^{-1}$$
 (R11)

$$2H^{+} + 2ClO_{3}^{-} + H_{2}O_{2} \rightarrow 2ClO_{2} + 2H_{2}O + O_{2}$$
 (R12)

*KI*. Cl<sup>-</sup> (Cl<sup>-</sup>/Cl<sup>-</sup>, 2.41 V) and Br<sup>-</sup>(Br/Br<sup>-</sup>, 1.62 V) can be oxidized by HO<sup>-</sup> to form carcinogenic chlorate and bromate<sup>40</sup>, while I<sup>-</sup>, having a lower reduction potential of 1.33 V<sup>25,41</sup>, may be more readily oxidized than Cl<sup>-</sup> and Br<sup>-</sup> in theory<sup>42</sup>. It was also found in our previous studies that NaI may be used as a Cl<sup>-</sup> free salt to regenerate PFAS-laden ion exchange resin without compromised capability in PFAS recovery<sup>20</sup>. To evaluate the impact of I<sup>-</sup> on the formation of ClO<sub>3</sub><sup>-</sup> and ClO<sub>4</sub><sup>-</sup> during EO process, an EO experiment was performed in the presence of I<sup>-</sup>. It should be noted that the anodic potential was relatively constant at the same current density (10 mA cm<sup>2</sup>) with I<sup>-</sup> at different levels (Fig. S1b). The presence of I<sup>-</sup> inhibited the formation of ClO<sub>3</sub><sup>-</sup> and ClO<sub>4</sub><sup>-</sup> significantly as shown in Fig. 5. Almost no ClO<sub>3</sub><sup>-</sup> was formed during the first 4.0 h and then increased to 25.5 µM after 8.0 h in the presence of 20-mM KI. Similarly, the formation of ClO<sub>4</sub><sup>-</sup> increased slowly during the first 4.0 h and reached 287.2 µM at 8.0 h. Furthermore, near-complete inhibition of ClO<sub>3</sub><sup>-</sup> and ClO<sub>4</sub><sup>-</sup> formation was achieved when 100 mM KI was spiked, with the values of  $k_1$  and  $k_2$  decreased to 0 and  $4.76 \times 10^{-6}$  s<sup>-1</sup>, respectively (Fig. 4). This suggests that I<sup>-</sup> outcompetes Cl<sup>-</sup> for reaction with HO<sup>-</sup>, leading to a slower generation of HOCl on Ti<sub>4</sub>O<sub>7</sub>, and thus inhibiting the formation of ClO<sub>3</sub><sup>-</sup> and ClO<sub>4</sub><sup>-</sup>. I<sup>-</sup> can be oxidized by common oxidants leading to reactive iodine species (e.g., hypoiodous acid (HOI), iodine (I<sub>2</sub>), and iodide radical (I<sup>-</sup>), and then to iodate (IO<sub>3</sub><sup>-</sup>), which is not considered carcinogenic because it is rapidly reduced to I<sup>-</sup> after being ingested<sup>43,44</sup>.

#### Conclusions

In conclusion, oxidation of Cl<sup>-</sup> lead to the formation of ClO<sub>3</sub><sup>-</sup> and ClO<sub>4</sub><sup>-</sup> on both BDD and Magnéli phase Ti<sub>4</sub>O<sub>7</sub> anode during EO. This transformation process was much faster on BDD than Ti<sub>4</sub>O<sub>7</sub> anode in different supporting electrolytes, including Na<sub>2</sub>SO<sub>4</sub>, NaNO<sub>3</sub>, Na<sub>2</sub>B<sub>4</sub>O<sub>7</sub>, and Na<sub>2</sub>HPO<sub>4</sub>. The formation of ClO<sub>3</sub><sup>-</sup> and ClO<sub>4</sub><sup>-</sup> was easier with Na<sub>2</sub>SO<sub>4</sub> as supporting electrolyte in both systems. Around 99% and 58% of the total Cl<sup>-</sup> was transformed to ClO<sub>4</sub><sup>-</sup> after 4.0 h of EO with the BDD and Ti<sub>4</sub>O<sub>7</sub> anode, respectively. When NaNO<sub>3</sub> was used as electrolytes, ClO<sub>3</sub><sup>-</sup> and ClO<sub>4</sub><sup>-</sup> formation was decreased to some extent, with only 9% of the total Cl<sup>-</sup> transformed to ClO<sub>4</sub><sup>-</sup> on Ti<sub>4</sub>O<sub>7</sub> anode. Addition of MeOH, H<sub>2</sub>O<sub>2</sub>, and KI can effectively inhibit the formation of ClO<sub>3</sub><sup>-</sup> and ClO<sub>4</sub><sup>-</sup> during EO by Ti<sub>4</sub>O<sub>7</sub> anode. Near complete inhibition of their formation was achieved with 1000-mM MeOH and 100-mM KI present. MeOH, H<sub>2</sub>O<sub>2</sub>, and KI appear to be ideal quenchers to mitigate ClO<sub>3</sub><sup>-</sup> and ClO<sub>4</sub><sup>-</sup> formation, because they are effective, accessible and inexpensive. In particular, KI is more stable and easier to be stored and transported than MeOH and H<sub>2</sub>O<sub>2</sub>. I<sup>-</sup> is oxidized to iodate ultimately in the EO system, while iodate is a relatively stable and benign chemical. In practice, the EO treatment can be designed to fully convert I<sup>-</sup>, or else a polishing step, such as IXR, has to be followed to remove remaining I<sup>-</sup>. The findings provide a basis for devising strategies to reduce the formation of ClO<sub>3</sub><sup>-</sup> and ClO<sub>4</sub><sup>-</sup> in the EO process.

#### Data availability

The SEM collected during the current study is available in the NoMad repository, 8uLLHSolQ06aHg2roegwpg.

Received: 8 May 2022; Accepted: 26 August 2022 Published online: 23 September 2022

#### References

- 1. Barazesh, J. M., Prasse, C. & Sedlak, D. L. Electrochemical transformation of trace organic contaminants in the presence of halide and carbonate ions. Environ. Sci. Technol. 50, 10143-10152 (2016).
- Jasper, J. T., Shafaat, O. S. & Hoffmann, M. R. Electrochemical transformation of trace organic contaminants in latrine wastewater. Environ. Sci. Technol. 50, 10198-10208 (2016).
- Sires, I. & Brillas, E. Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies: A review. Environ Int 40, 212-229 (2012).
- 4. Chaplin, B. P. Critical review of electrochemical advanced oxidation processes for water treatment applications. Environ Sci Process Impacts 16, 1182-1203 (2014).
- 5. Feng, L., van Hullebusch, E. D., Rodrigo, M. A., Esposito, G. & Oturan, M. A. Removal of residual anti-inflammatory and analgesic pharmaceuticals from aqueous systems by electrochemical advanced oxidation processes. A review. Chem. Eng. J. 228, 944-964 (2013).
- 6. Soriano, A., Gorri, D., Biegler, L. T. & Urtiaga, A. An optimization model for the treatment of perfluorocarboxylic acids considering membrane preconcentration and BDD electrooxidation. Water Res. 164, 114954 (2019).
- Rahman, M. F., Peldszus, S. & Anderson, W. B. Behaviour and fate of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in drinking water treatment: a review. Water Res. 50, 318-340 (2014).
- Murugananthan, M., Yoshihara, S., Rakuma, T. & Shirakashi, T. Mineralization of bisphenol A (BPA) by anodic oxidation with boron-doped diamond (BDD) electrode. J. Hazard Mater. 154, 213-220 (2008).
- 9. Zhu, X. et al. Electrochemical oxidation characteristics of p-substituted phenols using a boron-doped diamond electrode. Environ. Sci. Technol. 18, 6541-6546 (2007).
- 10. Lin, H. et al. Development of macroporous Magnéli phase Ti<sub>4</sub>O<sub>7</sub> ceramic materials: As an efficient anode for mineralization of poly- and perfluoroalkyl substances. *Chem. Eng. J.* **354**, 1058–1067 (2018). 11. Li, M., Feng, C., Hu, W., Zhang, Z. & Sugiura, N. Electrochemical degradation of phenol using electrodes of Ti/RuO<sub>2</sub>-Pt and Ti/
- IrO2-Pt. J. Hazard Mater. 162, 455-462 (2009).
- 12. Radjenovic, J., Escher, B. I. & Rabaey, K. Electrochemical degradation of the beta-blocker metoprolol by Ti/Ru<sub>0.7</sub> Ir<sub>0.3</sub>O<sub>2</sub> and Ti/ SnO<sub>2</sub>-Sb electrodes. Water Res. 45, 3205-3214 (2011).
- 13. FaridaYunus, R., Zheng, Y. M., Nadeeshani Nanayakkara, K. G. & Chen, J. P. Electrochemical removal of rhodamine 6G by using RuO2 coated Ti DSA. Ind. Eng. Chem. Res. 48, 7466-7473 (2009)
- 14. Yang, Y. et al. Cobalt-doped black TiO2 nanotube array as a stable anode for oxygen evolution and electrochemical wastewater treatment. ACS Catal 8, 4278-4287 (2018).
- Farhat, A., Keller, J., Tait, S. & Radjenovic, J. Removal of persistent organic contaminants by electrochemically activated sulfate. 15. Environ. Sci. Technol. 49, 14326-14333 (2015).
- 16. Schmalz, V., Dittmar, T., Haaken, D. & Worch, E. Electrochemical disinfection of biologically treated wastewater from small treatment systems by using boron-doped diamond (BDD) electrodes-contribution for direct reuse of domestic wastewater. Water Res. 43, 5260-5266 (2009).
- Soriano, A., Gorri, D. & Urtiaga, A. Efficient treatment of perfluorohexanoic acid by nanofiltration followed by electrochemical degradation of the NF concentrate. Water Res 112, 147-156 (2017).
- 18. Kraft, A. Electrochemical water disinfection: a short review. Platinum Met. Rev. 52, 177-185 (2008).
- Shi, H. et al. Degradation of perfluorooctanesulfonate by reactive electrochemical membrane composed of magneli phase titanium 19. suboxide. Environ. Sci. Technol. 53, 14528-14537 (2019).
- 20 Wang, L. et al. Treatment of perfluoroalkyl acids in concentrated wastes from regeneration of spent ion exchange resin by electrochemical oxidation using Magnéli phase Ti<sub>4</sub>O<sub>7</sub> anode. Chem. Eng. J. Adv. 5, 100078 (2021).
- 21. Bergmann, M. E. H., Koparal, A. S. & Iourtchouk, T. Electrochemical advanced oxidation processes, formation of halogenate and perhalogenate species: A critical review. Crit. Rev. Environ. Sci. Technol. 44, 348-390 (2014).
- 22. Jawando, W., Gayen, P. & Chaplin, B. P. The effects of surface oxidation and fluorination of boron-doped diamond anodes on perchlorate formation and organic compound oxidation. Electrochim Acta 174, 1067-1078 (2015).
- Yang, S., Fernando, S., Holsen, T. M. & Yang, Y. Inhibition of perchlorate formation during the electrochemical oxidation of per-23. fluoroalkyl acid in groundwater. Environ. Sci. Technol. Lett. 6, 775-780 (2019).
- Wang, L., Lu, J., Li, L., Wang, Y. & Huang, Q. Effects of chloride on electrochemical degradation of perfluorooctanesulfonate by 24. Magnéli phase Ti<sub>4</sub>O<sub>7</sub> and boron doped diamond anodes. Water Res 170, 115254 (2020).
- 25. Lin, Z. et al. Perchlorate formation during the electro-peroxone treatment of chloride-containing water: Effects of operational parameters and control strategies. Water Res. 88, 691-702 (2016).
- 26. Janni I.C. Kintecus V6.80. (2019).
- 27. Bagastyo, A. Y., Batstone, D. J., Rabaey, K. & Radjenovic, J. Electrochemical oxidation of electrodialysed reverse osmosis concentrate on Ti/Pt-IrO2, Ti/SnO2-Sb and boron-doped diamond electrodes. Water Res. 47, 242-250 (2013).
- 28. Cañizares, P., Sáez, C., Sánchez-Carretero, A. & Rodrigo, M. A. Synthesis of novel oxidants by electrochemical technology. J. Appl. Electrochem, 39, 2143-2149 (2009).
- 29. Moraleda, I. et al. Can the substrate of the diamond anodes influence on the performance of the electrosynthesis of oxidants?. J. Electroanal. Chem. 850, 113416 (2019).
- 30. Lacasa, E., Cañizares, P., Llanos, J. & Rodrigo, M. A. Removal of nitrates by electrolysis in non-chloride media: Effect of the anode material. Sep. Purif. Technol. 80, 592-599 (2011).
- 31. Lacasa, E., Llanos, J., Cañizares, P. & Rodrigo, M. A. Electrochemical denitrificacion with chlorides using DSA and BDD anodes. Chem. Eng. J. 184, 66-71 (2012).
- 32. Herraiz-Carbone, M. et al. Improving the biodegradability of hospital urines polluted with chloramphenicol by the application of electrochemical oxidation. Sci. Total. Environ. 725, 138430 (2020).
- 33. Cotillas, S. et al. The role of the anode material in selective penicillin G oxidation in urine. Chem ElectroChem 6, 1376-1384 (2019).
- 34. Jung, Y. J., Baek, K. W., Oh, B. S. & Kang, J. W. An investigation of the formation of chlorate and perchlorate during electrolysis using Pt/Ti electrodes: The effects of pH and reactive oxygen species and the results of kinetic studies. Water Res. 44, 5345-5355 (2010).
- 35. Hou, S. et al. Chlorate formation mechanism in the presence of sulfate radical, chloride, bromide and natural organic matter. Environ. Sci. Technol. 52, 6317-6325 (2018).
- 36. Sun, P., Lee, W. N., Zhang, R. & Huang, C. H. Degradation of DEET and caffeine under UV/chlorine and simulated sunlight/ chlorine conditions. Environ. Sci. Technol. 50, 13265-13273 (2016).

- 37. Zhang, R., Sun, P., Boyer, T. H., Zhao, L. & Huang, C. H. Degradation of pharmaceuticals and metabolite in synthetic human urine by UV, UV/H<sub>2</sub>O<sub>2</sub>, and UV/PDS. *Environ. Sci. Technol.* **49**, 3056–3066 (2015).
- Cotillas, S., Llanos, J., Rodrigo, M. A. & Cañizares, P. Use of carbon felt cathodes for the electrochemical reclamation of urban treated wastewaters. Appl. Catal. B 162, 252–259 (2015).
- Crump, B., Ernst, W. R. & Neumann, H. M. Influence of H<sub>2</sub>O<sub>2</sub> on a chloride-dependent reaction path to chlorine dioxide. *AlChE J.* 44, 2494–2500 (1998).
- Huie, R. E., Clifton, C. L. & Neta, P. Electron transfer reaction rates and equilibria of the carbonate and sulfate radical anions. *Int. J. Radiat. Appl. Instrum. C Radiat. Phys. Chem.* 38, 477–481 (1991).
- 41. Yeo, J. & Choi, W. Iodide-mediated photooxidation of arsenite under 254 nm irradiation. *Environ. Sci. Technol.* **43**, 3784–3788 (2009).
- 42. Ross, I. et al. A review of emerging technologies for remediation of PFASs. Remediat. J. 28, 101-126 (2018).
- von Gunten, U. Ozonation of drinking water: Part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine. Water Res 37, 1469–1487 (2003).
- 44. Bürgi H., Schaffner T., Seiler J.P. The toxicology of iodate: A literature survey in view of its use in iodized salt. *Thyroid*, 909–918 (2001).

#### Acknowledgements

This research was supported in part by U.S. Department of Defense SERDP ER-2717 and ER18-1320.

#### **Author contributions**

L.W. wrote the mani manuscript. Q.H. revised and edited. All authors reviewed the manuscript.

### **Competing interests**

The authors declare no competing interests.

### Additional information

**Supplementary Information** The online version contains supplementary material available at https://doi.org/10.1038/s41598-022-19310-5.

Correspondence and requests for materials should be addressed to Q.H.

Reprints and permissions information is available at www.nature.com/reprints.

**Publisher's note** Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

**Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022