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ABSTRACT 

The successful employment of messenger RNA ( mRNA ) as vaccine therapy for the prevention of COVID-19 infection has 
spotlighted the attention of scientific community onto the potential clinical application of these molecules as innovative 
and alternative therapeutic approaches in different fields of medicine. As therapy, mRNAs may be advantageous due to 
their unique biological properties of targeting almost any genetic component within the cell, many of which may be 
unreachable using other pharmacological/therapeutic approaches, and encoding any proteins and peptides without the 
need for their transport into the nuclei of the target cells. Additionally, these molecules may be rapidly 
designed/produced and clinically tested. Once the chemistry of the RNA and its delivery system are optimized, the cost 
of developing novel variants of these medications for new selected clinical disorders is significantly reduced. However, 
although potentially useful as new therapeutic weapons against several kidney diseases, the complex architecture of 
kidney and the inability of nanoparticles that accommodate oligonucleotides to cross the integral glomerular filtration 

barrier have largely decreased their potential employment in nephrology. However, in the next few years, the technical 
improvements in mRNA that increase translational efficiency, modulate innate and adaptive immunogenicity, and 
increase their delivery at the site of action will overcome these limitations. Therefore, this review has the scope of 
summarizing the key strengths of these RNA-based therapies and illustrating potential future directions and challenges 
of this promising technology for widespread therapeutic use in nephrology. 
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production in post-mitotic cells ) [ 1 ]. Therapeutic applications of 
mRNAs include: synthesis of a single protein for replacing the 
function in the case of monogenic disease; mRNA coding for 
transcription or growth factor used to modulate cell behavior; 
and mRNA-encoded factors involved in immune response. 

The advantages of mRNAs include the low risk of adverse 
effects and toxicities because of their transient nature, and ab- 
sence of insertional mutagenesis because they do not integrate 
into the genome [ 1 , 2 ]. 

mRNA is easily synthesized through the in vitro transcription 
( IVT ) process and is more effective, rapid in design and produc- 
tion, flexible, and cost-effective than conventional therapeutics 
[ 3 ]. In fact, once the chemistry of the RNA and its delivery sys- 
tem are optimized, the cost of developing novel variants of these 
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NTRODUCTION 

ver the past decade, messenger RNA ( mRNA ) has been rec-
gnized as a potential therapeutic tool against several in- 
ractable or genetic diseases ( comprising genetic/hereditary kid- 
ey diseases ) and, thanks to the rapid development of innova-
ive technological skills for its large-scale production, it has been
uccessfully employed as vaccine therapy against severe acute 
espiratory syndrome coronavirus 2 ( SARS-CoV-2 ) . 

mRNAs as therapy could target almost any genetic compo- 
ent within the cell, many of which are unreachable using other
echnologies ( including both small molecules and antibodies ) ,
nd encode proteins/peptides in the cytoplasm of the target cells
ithout being transported into the nuclei ( thus allowing protein 
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edications for new selected clinical disorders is significantly 
educed. 

Nevertheless, several challenges have significantly ham- 
ered the employment of mRNA as a therapy in medicine [ 4 ].
irst, mRNA is vulnerable to ubiquitous RNases which are highly 
bundant in the extracellular space and tissues; secondly, due 
o its negative charge, it cannot be easily transported across the 
ell membrane [ 5 ]; and finally, mRNA is able to stimulate the in-
ate immune system [ 6 –9 ] by activating Toll-like receptors and 
attern recognition receptors. 
Thanks to the recent advances in bioinformatics and nan- 

technology these hurdles have been, at least partially, over- 
ome leading to an increase in the potential applications of 
RNA therapeutics. 

AIN STRATEGIES TO MANUFACTURE, AND 

EDUCE IMMUNOGENICITY, IMPROVE 

NTRACELLULAR STABILITY AND FACILITATE 

ELIVERY OF m RNA 

ynthesis and optimization of mRNA 

fter IVT mRNA synthesis, using linearizing plasmid DNA or a 
CR product as template and T3, T7 or SP6 RNA polymerase, a 
apping step is required to avoid degradation of mRNA by RNase 
nd/or activation of the immune system by the 5 ′ -ppp group 
 10 , 11 ]. 

The capping of mRNA can be performed through a co- 
ranscriptional or a post-transcriptional method [ 12 , 13 ]. The 
atter uses capping enzymes from vaccinia virus that add a 7- 
ethylguanosine cap at the 5 ′ end of the RNA using GTP and 
-adenosyl methionine as donors ( Cap 0 structure ) . Further- 
ore, 2 ′ ribose position of the first cap-proximal nucleotide is 
 

′ O-methylated to form a Cap 1 structure ( m7 GpppN 2 ′ Om 

N ) , and,
n ∼50% of transcripts, the second cap-proximal nucleotide is 
 

′ O-methylated to form a Cap 2 structure ( m7 GpppN 2 ′ Om 

N 2 ′ Om 

) ,
hich reduces mRNA immunogenicity [ 14 , 15 ]. 
Unfortunately, because of the presence of a 3 ′ -OH on both 

he 7-methylguanosine and guanosine moieties, up to half of 
he mRNAs contain caps incorporated in the reverse orientation,
hich cannot be recognized by the ribosome and hinder over- 
ll mRNA translation activity [ 15 –19 ]. This problem was over- 
ome by the introduction in the transcription reaction of anti- 
everse cap analogs bearing modified m 

7 G at the 2 ′ or 3 ′ position 
 2 ′ -O-methyl, 3 ′ -O-methyl, 3 ′ -H ) ensuring correct orientation and 
igher translation efficiency [ 20 , 21 ]. 
The mature mRNA also includes a 3 ′ poly ( A ) tail that can be 

dded post-transcriptionally using the poly-A-polymerase en- 
yme or incorporated in the DNA template [ 1 , 22 , 23 ]. Optimiza-
ion of the poly ( A ) tail length ( 100–300 nucleotides ) has proven 
ritical in balancing the translation efficacy of mRNAs [ 24 –26 ]. 

Furthermore, other modifications that can enhance transla- 
ional efficiency and reduce immunogenicity include changes 
n the open reading frame by replacing rare codons with more 
requently occurring variants ( codon optimization ) [ 27 ], elimi- 
ation of structural motifs able to activate innate immune re- 
ponse and the introduction of chemical alterations that render 
he mRNA more similar to an endogenous molecule [ 28 –30 ]. 

urification of mRNA 

fter synthesis, IVT mRNA is mixed with unwanted side prod- 
cts such as DNA templates, short mRNA, uncapped mRNA,
ouble-stranded RNA ( dsRNA ) and mRNA fragments. All these 
ontaminant impurities must be removed in order to avoid in- 
erference with mRNA translation, activation of innate immu- 
ity or overestimation of the total functional mRNA cargo [ 25 ,
1 , 32 ]. 

Purification of IVT mRNA can be carried out by different pro- 
edures, including acidic phenol-chloroform extraction, precip- 
tation with LiCl, elution based on silica matrices or chromato- 
raphic methods [ 33 ]. All these procedures eliminate proteins,
ucleotides and other components of the IVT reaction but can- 
ot remove dsRNA impurities. 
The established way to eliminate dsRNA contaminants from 

ong IVT mRNAs is by using ion pair reversed-phase high- 
erformance liquid chromatography ( HPLC ) [ 31 , 34 ]. However,
his method has some disadvantages: it is not scalable, the toxic 
ffects of acetonitrile and the high cost [ 31 , 35 ]. 

Based on the selective binding of dsRNA to cellulose in 
thanol-containing buffer, Baiersdörfer et al . [ 35 ] have developed 
 feasible cellulose-based chromatography method for the elimi- 
ation of dsRNA contaminants with a quality comparable to that 
f the corresponding HPLC-purified mRNA. 
Another possible approach is to use the dsRNA-specific nu- 

lease RNase III [ 36 ]. A potential drawback is that this enzyme
ay cleave the double-stranded secondary structure formed by 
ingle-stranded RNA. 

Finally, short RNAs can be removed by polyacrylamide gel 
lectrophoresis ( PAGE ) followed by excision and elution of the 
and of interest from the gel, and long RNAs can be separated 
y denaturing agarose gel electrophoresis [ 37 , 38 ]. 

elivery methods for mRNA 

argeted delivery of IVT mRNA is a great challenge for the in
ivo application of mRNA-based therapeutics. The large molecu- 
ar weight ( approximately 1–15 kb ) [ 27 ] and high negative charge 
f this nucleic acid impair its permeation across cellular mem- 
ranes [ 39 ]. Moreover, it is highly susceptible to degradation by 
ucleases and its median intracellular half-life is only approxi- 
ately 7 h [ 40 ]. Therefore, different strategies have been devel- 
ped to protect mRNA from degradation and optimize its deliv- 
ry at the tissue target [ 27 ]. 

In general, IVT mRNA delivery can be obtained by three 
trategies: physical methods, viral-based approaches and non- 
iral vectors. 

Physical methods such as electroporation ( which uses high 
oltage electric pulse to increase cell permeability ) transiently 
isrupt the barrier function of the cell membrane with frequent 
amage to the cells, and are therefore not suitable for in vivo
pplications [ 41 , 42 ]. 

The recombinant viruses use the naturally occurring biolog- 
cal modes of uptake but are associated with several limitations 
uch as potential reverse genome insertional risks, difficulties 
n controlling the gene expression and vector-size limitations,
s well as strong immunologic side effects [ 43 , 44 ]. 

The nonviral vectors that use rationally designed and eas- 
ly developed chemical nanocarriers have huge potential for the 
elivery of nucleic acids [ 42 ]. 
One of the most well-developed methods for mRNA deliv- 

ry is co-formulation into lipid nanoparticles ( LNPs ) [ 45 ], typi- 
ally composed of four components: ( i ) neutrally charged phos- 
holipids ( structural lipids ) ; ( ii ) cholesterol as a stabilizing agent 
or the lipid bilayer; ( iii ) pH-sensitive ionizable cationic lipids 
eeded for the loading of negatively charged nucleic acids into 
NPs; and ( iv ) stealth lipids ( mainly polyethylene glycol ( PEG ) 
olymer–conjugated lipids ) to reduce immunogenicity [ 46 –48 ]. 
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Figure 1: A schematic representation of the steps of mRNA therapy in kidney diseases. After IVT, mRNA is purified and administered via several possible routes 

( direct anterograde infusion into the renal artery; retrograde injection into the ureter or bladder; direct injection into the interstitial parenchyma; electroporation; 
hydrodynamic injection ) to reach the kidney. Once in the organ, mRNA is translated by ribosomes in cytoplasmatic, transmembrane or secreted proteins. The potential 
applications of this therapy are: protein replacement, vaccination, cancer treatment, gene therapy and cell therapy. 
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More recently, the use of lipid polymer hybrid nanoparticles,
hich integrate the properties of lipids with polymeric nanoma- 
erials, has shown higher efficiency of mRNA delivery [ 49 ]. 

A critical hinderance for the correct delivery of LNPs is their
apid uptake by antigen-presenting cells and macrophages. The 
sual approach to prolong the circulation of mRNA-loaded LNPs 
s the addition of PEG units on the surface of LNPs which cause
ormation of a hydration layer that prevents clearance by the
ononuclear phagocyte system [ 50 ]. Moreover, the addition of
 ligand to cell-membrane to imitate “self” materials can avoid 
he uptake by phagocytes [ 51 , 52 ]. 

More recently, other new procedures, developed for delivery 
f nanoparticle-based drugs, include the mononuclear phago- 
yte system blockade by low-toxicity “blocking” agents [ 53 ],
acrophage depletion by means of the administration of clo- 
ronate/gadolinium chloride [ 54 ] and pre-induced depletion of 
rythrocytes by administration of a low dose of allogeneic anti-
rythrocyte antibodies [ 55 , 56 ]. It is plausible that these methods
ould be used in future also to prolong the circulation time of
RNA and to optimize delivery to target tissue. 
To efficiently reach their target to deliver the cargo, LNPs can

e also conjugated with specific ligands to the surface that help
he identification and the uptake by the intended cells. These
igands can be peptides, antibodies, nucleic acid aptamers, car- 
ohydrates or small molecules [ 22 ]. 

Other systems developed as alternatives to LNPs are biolog- 
cal delivery vehicles such as cells or extracellular vesicles. The
ain advantages of this methodology comprise biocompatibil- 

ty, wide range of customization, extended longevity in circula- 
ion and reduced toxicity [ 57 –60 ]. 
However, current challenges in their clinical use include the
haracterization, the isolation method and their purification [ 61 ,
2 ]. 

ELIVERY METHODS FOR m RNA THERAPY 

N KIDNEY DISEASES 

RNA delivery in the kidney is difficult due to its architecture
nd the large number of different cell types within the organ [ 22 ].
oreover, the glomeruli that eliminate proteins above 50 kDa
nd the slit diaphragm with a diameter of 10 nm prevent entry
f most molecular therapies from the blood into the kidney [ 63 ].
Some methods previously developed for gene therapy in kid-

ey diseases can be used for mRNA delivery into the kidney:
irect anterograde infusion into the renal artery targeting the
lomeruli and tubular epithelium; retrograde injection into the
reter or bladder, and directly into the interstitial parenchyma
 64 ]. 

In particular, recently, renal artery injection of transform-
ng growth factor ( TGF ) - β/Smad-small interfering RNA ( siRNA )
as been used for the treatment of glomerulonephritis and re-
al vein injection of FAS-siRNA for improving survival after is-
hemia/reperfusion injury in mouse models [ 65 , 66 ]. 

Other ways to directly deliver drug to kidney include physi-
al methods such as electroporation [ 67 ], pressure stimulation,
ydrodynamic injection, magnetically guided oligonucleotide- 
oaded nanoparticles [ 68 ], light-triggered lipid-based nanoparti-
les and aptamers, which have been applied to cancer therapy
 69 , 70 ] ( Fig. 1 ) . 
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Electroporation has been used for delivery of siRNA target- 
ng TGF- β1 to the kidney to reduce the progression of matrix ex- 
ansion in an animal model of glomerulonephritis [ 67 ]. However,
embrane destruction associated with this method may lead to 

he loss of cytoplasmic content with significant cytotoxicity [ 71 ].
Pressure stimulation such as pushing or suction after nor- 

al intravenous injection has been previously tested to intro- 
uce plasmid DNA ( pDNA ) or siRNA into the kidney with good 
fficiency and no renal dysfunction [ 72 , 73 ]. 

The addition of hydrodynamic injection to pressure stimu- 
ation has recently been developed to administer mRNA-loaded 
olyplex nanomicelles via renal pelvis injection into the kidney 
 74 , 75 ]. The administration of mRNA-loaded nanomicelles by 
his route in kidneys of ICR mice induced protein expression in 
 greater number of tubular epithelium cells for some days com- 
ared with naked pDNA and naked mRNA, although introduced 
n the same way [ 75 ]. The renal function after administration 
emained similar to those of the sham-operated controls, with- 
ut marked changes in histological sections, demonstrating the 
afety of the methodology. 

In order to efficiently reach their target tissue, the nanopar- 
icles containing the IVT mRNA can be conjugated with spe- 
ific ligands ( peptides, antibodies, nucleic acid aptamers or small 
olecules ) to the surface that help the identification and the up- 

ake by the intended cells [ 22 ]. Nevertheless, none of them has 
et been used for mRNA delivery, but we expect that they could 
e employed in the future. 

For example, the cyclo- ( Arg-Gly-Asp-D-Phe-Cys ) peptide has 
een used as a specific ligand of αv β3 integrin receptor on the 
odocyte surface [ 76 ]. Likewise, megalin in the proximal tubular 
ells has been used as a target for specific peptides [ 77 ]. 

Antibodies can be attached to the delivery vehicle by means 
f Fc-binding peptides in combination with a surface linker [ 78 ].
n addition, the LNPs can be noncovalently coated with targeting 
ntibodies via a recombinant lipoprotein ( named ASSET ) that is 
ncorporated into siRNA-loaded LNP and interacts with the anti- 
ody Fc domain [ 79 ]. Several studies have also developed the use 
f antibody fragments instead of whole immunoglobulins in or- 
er to reduce immunogenicity, increase loading capacities and,
hereby, improve the efficacy [ 80 ]. This methodology has been 
sed for anti-cancer and siRNA therapies [ 81 ]. 
Aptamers are short single-stranded oligonucleotides that 

an bind specific proteins to modulate their functions. For ex- 
mple, Emapticap pegol ( NOX-E36 ) is an RNA aptamer that binds 
nd inhibits the C-C motif ligand 2, currently in phase II trials 
or type 2 diabetes mellitus and albuminuria [ 82 ]. Aptamers are 
haracterized by high affinity for their target molecules, being 
onimmunogenic and, due to their small size, being able to bind 
o sites inaccessible to larger antibodies, and rapid synthesis and 
ower manufacturing costs [ 83 ]. 

HE APPLICATION OF m RNA-BASED 

HERAPIES IN KIDNEY DISEASES: SOME 

NITIAL EXAMPLES 

o mRNA therapies for the kidney have yet been introduced in 
he clinic, and preclinical studies are very limited. However, the 
mployment of these RNA-based therapies on systemic diseases 
ith secondary kidney involvement ( including primary oxaluria 
nd Fabry disease ) appears more promising. 

Recently, Zhu et al . [ 84 ] carried out a preclinical study in-
olving Fabry disease, a lysosomal storage disorder caused by 
he deficiency of alpha-galactosidase, which leads to cellular 
ccumulation of glycosphingolipid [particularly globotriaosylce- 
amide ( Gb3 ) and the deacylated Gb3 analog globotriaosylsph- 
ngosine ( lyso-Gb3 ) ], and progressive damage in tissues such as 
idney, heart and skin [ 85 ]. The mRNA encoding human alpha 
alactosidase A ( h- α-Gal A ) , synthesized in vitro and packaged 
nto LNP, was administered intravenously in α-Gal A–deficient 
abry mouse model at three different dosages, 0.5, 0.1 and 
.05 mg/kg. A single dose resulted in an increment in protein 
ctivity and glycosphingolipid reduction in tissues and plasma 
or up to 6 weeks. Likewise, repeated administration of 0.2 mg/kg 
r 0.5 mg/kg h- α-Gal A mRNA every week or 0.5 mg/kg h- α-Gal
 mRNA every month for 3 months restored α-Gal A activity 
n tissues and reduced lyso-Gb3 and Gb3 in a dose-dependent 
anner. 
The same procedure in non-human primates ( 0.5 mg/kg in- 

ravenously every week for four doses ) confirmed the results ob- 
ained in mice, with the absence of an immune response to the 
rotein encoded by the mRNA [ 84 ]. 
Another lysosomal storage disease with mRNA therapy pre- 

linical study is cystinosis, caused by mutations in the cystinosin 
 CTNS ) gene and consequent intra-lysosomal cystine accumula- 
ion. It initially affects the kidneys with defective proximal tubu- 
ar reabsorption ( renal Fanconi syndrome ) and glomerular dam- 
ge leading to kidney failure [ 86 , 87 ]. 

Direct injection of CTNS mRNA ( 500 ng/mL ) in a zebrafish 
odel for cystinosis ( ctns -/- ) improved proximal tubular up- 

ake of low molecular weight dextran ( a marker for proximal 
eabsorption ) and reduced overall proteinuria [ 88 ]. 

Kidney injury is also one of the symptoms of methyl- 
alonic acidemia/aciduria ( MMA ) , an autosomal recessive dis- 
ase due to partial or complete deficiency of methylmalonyl- 
oA mutase ( MUT ) , a vitamin B12-dependent mitochondrial en- 
yme that catalyzes the isomerization of methylmalonyl-CoA 

o succinyl-CoA, the final step in the oxidation of odd-chain 
atty acids, the amino acids valine, isoleucine, methionine and 
hreonine, and cholesterol, providing metabolites for the tricar- 
oxylic acid cycle. Other symptoms include growth retardation,
cute metabolic decompensation with acidosis, vomiting, dehy- 
ration, hepatomegaly and psychomotor retardation with cog- 
itive dysfunction. The intravenous administration of a single 
ose of human MUT ( hMUT ) mRNA ( 0.5 mg/kg ) packaged into LNP 
n MMA mouse models resulted in 75%–85% reduction in plasma 
ethylmalonic acid and was associated with increased hMUT 
rotein expression and activity in the liver and substantially im- 
roved the biochemical abnormalities characteristic of the dis- 
rder [ 89 ]. 
The RNA technology can also be used for CKD-related co- 

orbidities such as hypertension. In a recent phase I study,
ilebesiran, an RNA interference therapeutic agent designed to 
chieve specific reduction in hepatic angiotensinogen mRNA 

evels, when administered to patients with hypertension in- 
uced dose-related decrease in both serum angiotensinogen lev- 
ls and blood pressure after single subcutaneous doses. This ef- 
ect was sustained for up to 24 weeks [ 90 ]. The great advantage
f this agent is the specific hepatic target which limits the conse- 
uences of off-target renal renin–angiotensin–aldosterone sys- 
em inhibition [ 90 ]. 

Another interesting application of mRNA as therapy is 
RNA-based vaccines against infectious diseases and several 

ypes of cancer [ 91 ]. Two mRNA vaccines have been developed 
o treat renal cell carcinoma ( RCC ) . The first is an in vitro
ranscribed naked mRNA, generated using plasmids coding 
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or human epidermal growth factor receptor 2 ( Her-2/neu ) ,
arcinoembryonic ( CEA ) , tumor-associated antigens mucin 1 
 MUC1 ) , telomerase, survivin and melanoma-associated antigen 
 ( MAGE-A1 ) . The trial involved 30 metastatic RCC ( mRCC ) pa-
ients divided into two cohorts. The vaccine was administered 
n Days 0, 14, 28 and 42 ( 20 μg/antigen ) in the first 14 patients
 Cohort A ) and at Days 0–3, 7–10, 28 and 42 ( 50 μg/antigen ) in
he consecutive 16 patients ( Cohort B ) [ 92 , 93 ]. In both cohorts,
fter this induction period, vaccinations were repeated monthly 
ntil tumor progression. The treatment was safe and well 
olerated with no relevant side effects, and the median survival
as longer than predicted according to the Memorial Sloan 
ettering Cancer Center ( MSKCC ) risk score. Interestingly, the 
ong-term survival update ( after 10 years ) showed a clear corre-
ation with CD4 + and CD8 + T cell responses to tumor-associated 
ntigens encoded by the naked mRNA vaccine [ 93 ]. 

More recently, in kidney renal clear cell carcinoma ( KIRC ) ,
he identification of four genes [ neutrophil cytosol factor 4 ( NCF4 ) ,
ormin-like protein 1 ( FMNL1 ) , DNA topoisomerase II alpha ( TOP2A )
nd docking protein 3 ( DOK3 ) ] significantly up-regulated, posi- 
ively associated with antigen-presenting cell infiltration and as- 
ociated with decreased survival probability, suggested their use 
s potential effective neoantigens for KIRC mRNA vaccine devel- 
pment [ 94 ]. 

AGS-003 is an autologous dendritic cell vaccine prepared 
x vivo from mature monocyte-derived dendritic cells ( DCs ) 
o-electroporated with the patient’s amplified tumor RNA and 
ynthetic CD40L RNA [ 95 , 96 ]. When administered by intrader-
al injection, these RNA-loaded mature DCs are capable of 
resenting relevant patient-specific tumor antigens via major 
istocompatibility complex Class I presentation to T cells in 
he draining lymph node. Intradermal injections of AGS-003 in 
ombination with sunitinib ( the first-line treatment of mRCC ) 
n an unselected, intermediate and poor-risk mRCC patient 
opulation was associated with a doubling of expected survival,
ncouraging long-term and 5-year overall survival, and an 
xcellent safety profile [ 97 ]. These results have encouraged the
urrent phase III ( NCT01582672 ) trial. 

However, more studies should be performed to assess the 
afety of this therapeutic approach. In fact, in the last few
onths, de novo vasculitis, cases of minimal change disease,
cute interstitial nephritis and occasional recurrence of primary 
isease have been described after mRNA-based vaccines [ 98 , 99 ].
oreover, it is important to note that there are some limita-

ions to its use. For example, the approved COVID-19 vaccines
an be stored for several months depending on the formula-
ion, but only at extremely low temperatures below freezing,
hich can lead to logistical barriers to distribution in certain
reas. Furthermore, the need for multiple doses of the mRNA
accines may pose a challenge for people to complete the series
f their immunizations. There is also ongoing research looking 
nto the duration of mRNA vaccines, as their development is still
n early stages compared with other vaccines and more research
s needed before they can widely be used for additional viral dis-
ases. 

Finally, at the moment, there is no specific guidance from
he Food and Drug Administration ( FDA ) or European Medicines 
gency ( EMA ) for mRNA products. However, there are numer- 
us clinical trials, in particular for mRNA-based vaccines, under 
MA and FDA oversight demonstrating that products are safe 
nd acceptable for testing in humans [ 91 ]. Additionally, since
RNA can be considered a gene therapy product, the recom-
endations defined for DNA vaccines and gene therapy vectors 
an be applied, at least partially, to mRNA. However, it is likely
hat specific guidelines will be developed in the future to regu-
ate the manufacture, quality control testing and administration
f mRNA as therapy. 

ONCLUSIONS 

lthough the use of mRNA therapy is a new, valid and poten-
ial therapeutic weapon against a series of pathologies and can
epresent a valid alternative to classical therapy, many doubts
till exist about its use for the treatment of renal pathologies.
nstead, its application for treating systemic diseases appears
uch more promising. 
It is necessary to intensify research in this field and to start

tudies and clinical trials in order to assess the real potential of
RNA therapy in nephrology. 
However, we expect that in the future, this technology could

epresent a therapy for many rare and neglected genetic kidney
iseases. However, some hurdles should be overcome to permit
he dissemination of its employment in several clinical settings.
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