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Abstract: The behavior of a metal-organic framework (MOF) compound synthesized in hydrothermal
reaction conditions and rich in N, P, and Fe nutrients was explored in the field. The attenuated
total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy and laser induced breakdown
spectroscopy (LIBS) characterization results showed that the chemical structures changed during the
degradation process in crop field soil. The scanning electron microscope images showed that the
micro-rod of the MOF peeled off and degraded in layers. During the growth period of wheat, the MOF
degraded by 50.9%, with the degradation rate being closely related to soil temperature. It was also
found that the degradation rate increased with soil temperature. Moreover, the nutrient concentration
of the soil indicated that the MOF had stable nutrients release efficiencies and could provide a
continuous supply of nutrients throughout the wheat growth period, which showed a great alternative
for MOF as a fertilizer both benefiting agricultural production and environmental protection.

Keywords: degradation; metal-organic frameworks; controlled-release fertilizer; field wheat soil

1. Introduction

Fertilizers play an important role in agricultural production. According to statistical data by
the Food and Agriculture Organization (FAO) of the United Nations, fertilizer accounts for a 40–60%
increase in grain yields [1]. At present, the world’s population is approximately 7 billion, and it is
expected to reach 9.5 billion by 2050 [2]. At that time, the demand for food will be twice what it is
today. It can be foreseen that chemical fertilizers will become more prominent in the coming decades,
and the amount of input will also increase substantially [3].

Nitrogen and phosphorus are essential nutrients for plant growth and development. Globally,
nitrogen fertilizers have played an irreplaceable role in improving crop yields and farmers’ economic
returns [4]. Since the first green revolution, the application of nitrogen fertilizers has greatly increased
the grain yield per hectare. Between 1960 and 1995, the world’s grain production increased by 100%,
while the amount of nitrogen fertilizer increased by a factor of 6.9 [5,6]. However, excessive utilization
of nitrogen fertilizers has caused a series of problems, such as a waste of resources and several
environmental issues. When nitrogen fertilizers are applied to soil, three flow paths are possible:
absorption by plants, accumulation in the soil, and loss through leaching and volatilization [7]. Studies
have shown that nitrogen leaching and volatilization are closely related to the eutrophication of water
bodies and greenhouse gas emissions [8,9]. Relevant research results show that direct and indirect
losses caused by the loss of nitrogen to the environment are as high as 100 million euros per year [10].
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Phosphorus plays an important role in agricultural production. However, the utilization rate of
a phosphate fertilizer is usually only 10–25% [11], resulting in a surplus of phosphorus nutrients in
farmland. This continuous accumulation of soil phosphorus increases risks, such as possible water
ecosystem imbalances and various types of water pollution problems, for the environment. It is
generally believed that the main source of phosphorus in farmlands is the loss of surface runoff.
However, owing to the strong ability of the soil to fix phosphorus, it is unlikely that there will be
phosphorus leaching [12]. However, excessive phosphorus accumulation in the soil increases the
probability of leaching [13]. Therefore, the phosphorus level in soil is an important factor affecting the
loss of phosphorus from farmlands.

Methods to increase the absorption and utilization of nitrogen and phosphorus in crops, thereby
reducing losses and environmental pollution, have always been a focus of research in this field. Some
traditional methods include suitable fertilizer application rates, fertilizer and water control techniques,
fractional fertilization, and balanced fertilization. There are also new methods involving real-time
monitoring of field nitrogen fertilizers and precise management techniques for farmland nutrients.
These methods can theoretically improve the utilization of fertilizers and reduce environmental risks.
However, traditional methods not only increase the labor cost, but also make promotion difficult.
Further, the new methods are still in the developmental stages and have many limitations. The
application of new fertilizers, especially controlled-release fertilizers, as one of the important ways to
increase the utilization rate of fertilizers, has received extensive attention in recent decades.

Metal-organic frameworks (MOFs) area type of material with adjustable pore sizes formed
by the self-assembly of organic ligands coordinated into metal ions or clusters. MOFs have been
used in many fields, such as gas storage [14–16], catalysis [17] and as drug carriers [18–20], and its
application as fertilizers has been reported. The impact of synthesized oxalate-phosphate-amine
metal-organic-frameworks (OPA-MOFs) on the growth, nutrient uptake and grain yield of wheat
were investigated. The results showed that the OPA-MOF has a potential as enhanced efficiency
N fertilizer [21,22]. Additionally, iron-metal-organic-frameworks-ethylenediaminetetra-acetic acid
(Fe-MOF-EDTA) was used as Fe-sources in Phaseolus vulgaris, in comparison with other Fe-sources,
the Fe-MOF-EDTA caused a 9.6% enhancement in plant weight and improvement of chlorophyll
content, protein and enzymes activities [23]. These previous studies have verified the potential of MOF
as fertilizers. Therefore, we attempted to synthesize a novel MOF and explore its potential as fertilizer.
For application as fertilizers, MOFs should contain the elements needed by crops as nutrients, such
as nitrogen, phosphorus, and possibly essential metal micro-nutrients, such as iron, zinc, etc. For
the inorganic portion of MOFs, iron-phosphates have shown great potential, and have been applied
in many fields [24–26], with zinc added as a trace element; for the organic ligands, oxalate shows
strong coordination ability, especially with transition metals [27]. Oxalate is a dicarboxylic acid and
plays an important role in soil. Studies have shown that oxalate can increase the P bio-availability in
soil [28]. Oxalotrophic bacteria, a group of bacteria existing in almost all types of soils, use oxalate as a
carbon source to satisfy their energy metabolism requirements, resulting in the formation of carbonates,
which is a metabolic process known as the oxalate-carbonate pathway [29,30]. Structure-directing
agents (SDAs) are used to obtain more stable target products, larger possible pore sizes, and increased
surface areas inside the pores. Amines, especially di-amines, such as diaminopropane, and piperazines,
have become useful as SDAs [31–33]. In general, SDAs remain largely unchanged and are present as
guests in the framework’s pores. In some cases, SDAs fully or partially decompose into a more stable
secondary structure [34].

In this study, a novel MOF compound was synthesized under mild hydrothermal conditions with
urea as an SDA, an iron-phosphate backbone as the inorganic portion, and oxalic acid as the organic
ligand. The degradation and nutrient release processes of the MOF were investigated by some novel
instrumental techniques; and the potential of the MOF was then assessed as controlled-release fertilizers.
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2. Materials and Methods

2.1. Synthesis of MOF

A novel MOF was synthesized under mild hydrothermal conditions. The raw materials included
ferric chloride (FeCl3·6H2O), phosphoric acid (H3PO4), oxalic acid (H2C2O4·2H2O), urea (CO(NH2)2),
and de-ionized water (H2O). The substrate molar ratios are as follows: ferric chloride:phosphoric
acid:oxalic acid:urea:de-ionized water = 1:6:1:2.5:100. The mixture was transferred into a Teflon
container (KCF-2, Beijing Century Senlang experimental apparatus Co., Ltd., Beijing, China), and
maintained at 100 ◦C for 24 h. Three replicates of the solution were prepared. All reagents were
purchased from Nangjing Ronghua Scientific Equipment Co., Ltd. (Nangjing, China), and all reagents
used in the syntheses were of analytical grade. The obtained solids were washed three times with
de-ionized water and dried at 60 ◦C, then sieved to 3 mm. According to the determination, the MOF
nutrient contents are as follows: N (5.16%), P (14.68%), and Fe (18.56%).

2.2. Powder X-ray Diffraction (PXRD) Characterization of MOF

PXRD data were collected in the 3–70◦ range by the ARL X’TRA diffractometer (Thermo Electron
Corporation, Ecublens, Switzerland) using CuKα radiation source at 0.02◦ step size and 5◦/min scanning
rate, and the powder XRD data of MOF was compared to the International Centre for Diffraction Data
(ICDD) for phase identification.

2.3. Experiment Design

Our field trials were conducted at the Tangquan Experimental Base of the Nanjing Institute of Soil
Science, Chinese Academy of Sciences (32◦04′15” N, 118◦28′21” E) in Jiangsu province, China. The
basic physicochemical properties of soil are shown in Table 1.

Table 1. Experiment soil nutrients.

Parameters pH Organic Matter
(g/kg)

Total-N
(g/kg)

NH4
+-N

(mg/kg)
NO3−-N
(mg/kg)

Available P
(mg/kg)

Available K
(mg/kg)

Available Fe
(mg/kg)

Value 6.72 18.23 1.48 25.36 32.26 22.25 182.5 6.48

A 2.5 g sample of MOF was wrapped in nylon gauze with an aperture of 74 microns, and record it
as a material sample. A total of 16 samples were designed and prepared using this method and were
buried 15 cm from the soil horizon when sowing wheat. Two adjacent samples were placed 15cm apart
from each other. Samples of the materials and the soil near to the nylon gauze were taken on the first,
second, fourth and sixth months. Four MOF samples and four soil samples were taken each time. The
background soil was assumed as the control. The MOF material samples were cleaned and dried at
60 ◦C for structure characterization, and weighed it for calculation of degradation rate, while the soil
samples were dried naturally for nutrient determination.

2.4. Attenuated Total Reflection-Fourier Transform Infrared (ATR-FTIR) Spectroscopy Characterization

Attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) (4300 Handheld
FTIR, Agilent Technologies, Palo Alto, CA, USA) was used to record the spectrum of the MOF samples.
Scans were performed in the range of 4000–650 cm−1, the resolution was 4 cm−1, and the background
and each sample were scanned eight times in succession.

2.5. Laser Induced Breakdown Spectroscopy (LIBS) Characterization

A MobiLIBS system (IVEA, France) was used for laser-induced breakdown spectroscopy (LIBS)
to determine the atomic composition and content of the material samples. The system consisted of a
fourth-harmonic Nd:YAG laser (Quantel, Paris, France) driving 5-ns pulses. The frequency, delivery
energy, and wavelength of the pulsed laser were 20 Hz, 16 mJ, and 266 nm (Nd-YAG), respectively.
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In this system, in the spectral range of 200–1000 nm, an intensified charge-coupled device camera
(iStar, Andor Technology, Ltd., Belfast, Northern Ireland) was used to collect the diffracted light. We
set 2 × 2 matrices for each shot.

2.6. Scanning Electron Microscopy (SEM) Characterization

The micro-structure of MOF material was observed more intuitively using scanning electron
microscopy (SEM, MERLIN Compact, Carl Zeiss AG, Oberkochen, Germany) on 10 kV accelerating
voltage (AV), to characterize its morphology and surface topography.

2.7. Powder X-ray Diffraction (PXRD) Characterization of MOF Samples

PXRD data of MOF samples at different degradation stages were collected in the 3–70◦ range by
the ARL X’TRA diffractometer (Thermo Electron Corporation, Ecublens, Switzerland) using CuKα

radiation source at a 0.02◦ step size and a 5◦/min scanning rate.

2.8. Determination of Soil Nutrient

In order to explore the nutrient release status of the MOF material, the soil samples nutrients were
determined. The content of NO3

−-N and NH4
+-N were determined by using SmartChem200 discrete

auto analyzer (AMS Alliance, Frepillon, France). The available P and available Fe were determined by
iCAP-7000 ICP-OES spectrometer (Thermo Fisher Scientific, Waltham, MA, USA). A pH meter (Orion
Star A211, Thermo Fisher, Scientific, Waltham, MA, USA) was used to determine the soil pH. At the
same time, the weather station (WatchDog2000 series, Spectrum, Chicago, IL, USA) recorded daily
weather patterns, soil water content, and soil temperature.

3. Results

3.1. PXRD Characterization of MOF

As shown in Figure 1, the PXRD pattern of MOF was very different from the previous study [21].
Furthermore, in comparison to the International Centre for Diffraction Data (ICDD), since no match
was found, it was assumed that our MOF was a newly synthesized compound.
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Figure 1. PXRD of MOF.

3.2. ATR-FTIR Characterization

The average ATR-FTIR spectral shapes and characteristic absorption peaks of the MOF samples
are similar for different degradation periods (Figure 2a); the broad peak in the range of 3500–3000 cm−1

can be associated with the N–H stretching vibration and the peaks at approximately 1662 cm−1 and
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1431 cm−1 correspond to C=O and C–C stretching vibrations, respectively. Regarding the fingerprint
area, the peaks at 1022 and 902 cm−1 were mainly associated with C–O and P–O stretching vibrations,
respectively. However, the intensity of the characteristic absorption peaks varied greatly for different
treatments. The absorbance intensity at zero months is significantly greater than other treatments,
which may indicate breaks in the chemical bonds during the degradation of the compound, such as
C=O, C–C, and C–O bonds. Principal component analysis (PCA) was used to reduce the dimensions
of the spectral data by providing new variables. The principal component distributions based on the
FTIR-ATR of the MOF are shown in Figure 2b. The first three principal components (PC1), (PC2), and
(PC3) accounted for 99.72% of the total variance. Therefore, PC1, PC2, and PC3 can accurately reflect
information regarding the original variables. In Figure 2b, the scores of PC2 and PC3 show irregular
distributions for all treatments. Also, it is easy to distinguish treatment at 0 month from the other
treatments using the distribution of the PC1 scores, indicating a chemical change in the compounds
during the degradation process. However, the PC1, PC2, and PC3 still show irregular distributions for
the one month, two months, four months, and six months treatments.
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3.3. LIBS Characterization

The average LIBS of the MOF samples at different degradation stages are shown in Figure 3a.
There is almost no change in the atomic emission peak positions of the MOF. The following spectral
signals were used to characterize the samples: Fe (274.6 nm), P (500.3 nm), C (844.8 nm), N (746.8,
819.2, 868.3 nm), O (777.3 nm), and H (655.6 nm). However, the intensity of the spectral absorption
peak gradually weakened with the degradation progress, especially for the N and H signals. Our
unpublished results about single crystal analysis results showed that the N nutrition is located inside
the MOF as NH4+. During the degradation of the MOF material, the framework structure gradually
collapses, resulting in the release of the N nutrients embedded in the skeleton; perhaps this explains
the decrease in the N and H element characteristic peaks. Principal component distributions based
on the LIBS of the MOF are shown in Figure 3b. The PC1, PC2, and PC3 explained the variances of
98.31%, which could be used to represent their spectral variations. The scores of PC1 show irregular
distributions for the treatments. However, the zero month, two months, and six months treatments are
easy to distinguish using the score of PC2, indicating that the content of MOF elements has changed
during the degradation process.
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3.4. SEM Characterization

The micrograph of MOF (Figure 4a0) reveals that a rod-like microstructure with rods of many
different lengths aggregated. Most of the rods have different dimensions, with lengths of approximately
1–10 µm, and diameter range of 100–200 nm. Interestingly, the surfaces of these micro-rod structures
are very smooth. In the subsequent month or two, the surface becomes rough, and the microstructure
of the surface begins to disintegrate (Figure 4(a1,a2)). With time, the surface structure of the micro-rod
peeled off and degraded in layers (Figure 4(a3,a4)).
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3.5. PXRD Characterization of MOF Samples

As shown in Figure 5, the characteristic peak intensity at 18.6◦ gradually decreased with the
degradation. Besides, the crystallinity of MOF samples at 0, 1, 2, 4, and 6 months are 96.64%, 91.09%,
89.70%, 86.01, and 82.23%, respectively, indicating that the longer the degradation time, the lower
the crystallinity. These results confirmed that the crystal structure was destroyed during the MOF
degradation process.
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3.6. Nutrient Release Status of the MOF

In the control and Urea treatments, the NH4
+-N concentration continued to decline throughout

the wheat growing period. However, for the MOF treatment, theNH4
+-N concentration increased

continuously in the first four months, then began to decline slowly; after six months, the NH4
+-N

concentration was still much higher than that in the other two treatments (Figure 6a). Compared with
control and urea treatments, the application of the MOF resulted in a very large increase in soil NO3

−-N,
mineral N and available P concentration, and reached maximums at two months, then declined
(Figure 6b–d), which is probably due to the increased demand of nutrients for the wheat. In contrast to
the control and urea treatments, the soil mineral N and available P concentration remained higher
even after six months. However, the available Fe concentration did not differ greatly among the three
treatments (Figure 6e). Additionally, the MOF also have an affected the soil pH, the soil pH increased
in the first two months, before decreasing slowly. After 6 months, the pH was still slightly higher than
that in the other two treatments, implying that the degradation of the compound can increase soil pH
(Figure 6f).
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3.7. Effects of Soil Temperature and Soil Water Content on the Degradation of the MOF

In the six months of the wheat season, the MOF degraded by 50.9% (Figure 7), the degradation
rate in one month differed due to many factors. The results showed that the effect of temperature
on the degradation rate was extremely significant (Figure 8a). When the average soil temperature
was 4.7 ◦C, the degradation rate of the MOF in one month was 4.2%. However, when the average
soil temperature was 19.8 ◦C, the degradation rates in one month reached 13.8%. The degradation
rate had a linear relationship with temperature, i.e., the higher the temperature was, the faster the
degradation was. The correlation coefficient (R2) between the degradation rate and the temperature
reached 0.99, which indicates that the MOF degradation rate was greatly affected by temperature.
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However, the effect of soil water content on the degradation rate of the MOF seems to be irregular
(Figure 8b). In this instance, with average soil water content in the range of 16.5–26.1%, it may not
have been the main factor affecting the degradation rate. Furthermore, soil is a complex system where
soil physics, chemistry, biology, and other factors may affect the MOF degradation.
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4. Discussion

4.1. Mechanism of Degradation of the MOF

The degradation process of the MOF is shown in Figure 9. In this study, oxalic acid was selected
as the organic ligand due to its role in the soil ecosystem. It has been reported that oxalate plays an
important role in increasing the soil available phosphorus [35,36]. The oxalate-carbonate pathway,
which is considered an important part of the biochemical carbon cycle on Earth. The essence of this
pathway is the transformation of oxalate to carbonate, usually a bio-transformation of calcium oxalate
to calcium carbonate, resulting in an increase in the soil pH. However, spontaneous oxidation of
oxalate, especially in the case of calcium oxalate, is unlikely to occur due to the high activation energy
required [37]. Further, the currently known existing microorganisms can drive this pathway using
oxalotrophy, where a group of bacteria use oxalate as carbon and energy sources. These bacteria have
been demonstrated by inoculating agar plates with enriched soil solutions. Calcium oxalate-modified
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agar has an opaque appearance due to the low solubility of calcium oxalate. Therefore, the clarification
zone surrounding calcium oxalate particles shows the consumption of calcium oxalate by bacterial
colonies growing on the plate. This further proves the existence of oxalate consuming bacteria in the
soil [38]. Therefore, these bacteria may cause the degradation of MOF by consuming oxalate.
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4.2. MOFs as Controlled-Release Fertilizer

A novel MOF was successfully synthesized under hydrothermal reaction conditions. A
hydrothermal reaction is a relatively mild synthetic process where each reaction parameter is easy to
control. The substrates used to synthesize the target compounds are non-toxic, inexpensive, and easily
obtained; therefore, the compounds are environmentally friendly and exhibit the possibility of industrial
production. Furthermore, the nutrient content of MOF is N, 5.16% and P, 14.68%, which contains more
nutrient than those previous synthesized MOF material (N, 3.1% and P, 12.5%) [22]. Therefore, the
nutrient content provides a theoretical basis for its potential application as controlled-release fertilizers.
The SEM micrographs of the different degradation stages of MOF in the soil clearly demonstrate that
the MOF degraded and peeled off in layers (Figure 4). Additionally, the MOF materials gradually
change from yellow to brownish red during the degradation process (Figure 10), which implies the
likely occurrence of biological oxidation.
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In six months, the MOF degraded by 50.9%. In the first month, it degraded by 5.6%, but it only
degraded by 4.2% in the second month, which is presumably due to the low soil temperature. The
average soil temperature was 7.3 ◦C in the first month, while the second month was in the winter
and the snowfall was relatively large, resulting in an average soil temperature of only 4.7 ◦C. As the
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temperature increased, the degradation rate of the compound gradually increased. The degradation
rate and temperature were highly correlated, suggesting that temperature was the main factor affecting
degradation. It was well known that temperature has a great influence on soil microbial activity,
and that microbial activity generally increases with increasing temperature. Although the soil water
content also changes, its effect on degradation is not regular; thus, it may not be a major factor affecting
degradation (Figure 8b). In the first four months, for treatment with the application of MOF, the
NH4

+-N concentration in soil increased due to the continuous release of ammonium ions from the
MOF compound (Figure 6a). NH4

+-N was converted to NO3
−-N due to nitrification, resulting in an

increase in the NO3
−-N concentration in the first two months. With the increased demand for nutrients

during the growth of wheat, the mineral N and available P concentration began to decline; however,
the final concentration was still higher than that in the control and urea treatments (Figure 6b–d). These
results indicate that the MOF can release nutrients continuously and steadily, which is consistent with
previous research [22]. Meanwhile, the differences in the available Fe contents in the treated soils were
not large. In fact, soil available Fe accounted only for a small part of the soil total Fe, and the proportion
varied with the soil physical and chemical properties, such as soil pH, soil water content, etc. For the
impact of MOF on soil pH, previous studies showed that the MOF caused a significant pH decline [22].
This result was probably attributed to the difference in MOF structures. In our study, single crystal
analysis result shows that the MOF contains only Fe3+, possible microbial degradation of MOF based
on oxalate-carbonate pathway can increase soil pH. However, previous related research suggests that
about a third of the Fe in the OPA-MOF is present as Fe2+. Hence, because of a higher redox potential
of Fe2+ oxidation to Fe3+ in comparison to NH4

+ nitrification, Fe2+ oxidation is a preferred reaction,
resulting in release of two protons for each oxidized Fe-atom [39]. Thus, this chemical process probably
leads to a decline in soil pH.

In summary, considering the feasibility of the synthetic procedure and the breakdown and
degradation of the MOF material in soil, we gradually evaluated the degradation rate and nutrient
release levels of the MOF compound. The results show that the MOF can provide nutrients continuously
and efficiently throughout the growth period of wheat. Therefore, this material can potentially be
applied in controlled-release fertilizers.

5. Conclusions

This study shows that MOF degraded behavior in the crop field. The ATR-FTIR and LIBS spectra
of MOF underwent significant changes during the degradation process. In addition, the SEM images
show that the MOF degraded and peeled off in layers. Additionally, Our MOF degraded by 50.9%
throughout the wheat growth period. Soil temperatures were found to have a great impact on the
degradation of the MOF, with the degradation rate increasing as the soil temperature increased. Due to
the nutrient release levels and efficiencies of the MOF, it can be utilized in controlled-release fertilizers.
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