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Abstract: Forty-four bicyclo ((aryl) methyl) benzamides, acting as glycine transporter type 1 (GlyT1)
inhibitors, are developed using molecular modeling techniques. QSAR models generated by multiple
linear and non-linear regressions affirm that the biological inhibitory activity against the schizophrenia
disease is strongly and significantly correlated with physicochemical, geometrical and topological
descriptors, in particular: Hydrogen bond donor, polarizability, surface tension, stretch and torsion
energies and topological diameter. According to in silico ADMET properties, the most active ligands
(L6, L9, L30, L31 and L37) are the molecules having the highest probability of penetrating the central
nervous system (CNS), but the molecule 32 has the highest probability of being absorbed by the
gastrointestinal tract. Molecular docking results indicate that Tyr124, Phe43, Phe325, Asp46, Phe319
and Val120 amino acids are the active sites of the dopamine transporter (DAT) membrane protein,
in which the most active ligands can inhibit the glycine transporter type 1 (GlyT1). The results of
molecular dynamics (MD) simulation revealed that all five inhibitors remained stable in the active
sites of the DAT protein during 100 ns, demonstrating their promising role as candidate drugs for the
treatment of schizophrenia.

Keywords: GlyT1; QSAR; schizophrenia; ADMET; molecular docking; DAT; MD

1. Introduction

About 1% of the worldwide population is affected by schizophrenia as a serious neu-
ropsychiatric disease [1]. Despite the current regimens with favorable levels of efficacy and
the great advancement in the treatment of schizophrenia, no antipsychotic medication can
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completely treat the cognitive dysfunction associated with this disorder, because its present
treatments are accompanied by undesirable secondary effects. Therefore, the discovery of
more clinically effective antipsychotic drugs are still necessary [2]. For this goal, the glycine
transporter type 1 (GlyT1) inhibitors approved by the Food and Drug Administration (FDA)
are a key therapeutic development strategy to treat a variety of central nervous system
(CNS) disorders, in particular schizophrenia and cognitive disorders [3,4]. In this regard,
type 1 glycine transporters regulate N-methyl-D-Aspartate (NMDA) receptor function via
modulation of glycine concentration at the glutamatergic synapses, but their deficiency
may affect the higher central nervous system functions [5,6]. In this paper, a systematic
in silico study was performed on 44 GlyT1 inhibitors, which were tested in a locomotor
activity assay (LMA) of the MK801 mouse to model the treatment of positive and negative
symptoms of schizophrenia [4], by means of the following molecular modeling techniques:
first of all, the quantitative structure activity relationships (QSAR) as a technology widely
used in drug discovery, indicating ligands with a high affinity for a given macromolecular
target and optimizing the quantitative linear and non-linear relationship established be-
tween structure and inhibitory activity [7,8]; secondly, in silico ADMET prediction of newly
engineered drugs [9]; and third, the molecular docking study as an approach designed
in computational chemistry to accelerate drug discovery at the early stages through the
detection of typical intermolecular interactions, established between the potent ligands and
the responsible protein target [10]. The last step concerns the molecular dynamics (MD)
simulation as an efficient technique to investigate the dynamic conformational changes of
the selected complexes (active ligands-protein target) [11,12]. In this context, we started our
study with a molecular descriptors calculation for each GlyT1 inhibitor, using a quantum
chemistry computation with the assistance of the molecular modeling method of MM2
type and the density functional theory (DFT) based on B3LYP/6-31 + G(d,p) level, in
order to optimize the molecular configurations of all inhibitors [13]. Then, we reduced the
dimension of the molecular descriptors using a principal component analysis (PCA) based
on the correlation matrix. Next, two QSAR models were developed using multiple linear
regression (MLR) and multiple nonlinear regression (MNLR). The robustness and reliability
of the established QSAR models were examined using the external validation technique,
followed by Y-randomization test, an applicability domain and a cross-validation technique
with the Leave-One-Out process, as one of the decisive steps to assess the confidence of
the developed model’s predictions for a new data set [14,15]. Moreover, we predicted the
molecules having the highest inhibitory activity, based on their adsorption, distribution,
metabolism, excretion and toxicity (ADMET) properties and the conditions mentioned
in the rules of Lipinski, Ghose, Veber and Egan [16]. Additionally, we studied the inter-
molecular interactions established between the more active ligands and the dopamine
transporter (DAT) membrane protein, encoded 4M48 as a crucial target for schizophrenia,
with the assistance of the molecular docking approach [2,17], which was validated using
docking validation protocol [18]. Lastly, we performed the molecular dynamics simulations
to analyze and elaborate the details of interaction and stability of the potent ligands in the
protein targets [19].

2. Results and Discussion
2.1. Pricipal Component Analysis

Principal component analysis (PCA) is one of the most widely applied multivariate
techniques. It is used to reduce the size of the variables into a limited number of principal
components (linear combinations of the original variables) [20]. In this paper, we calculated
40 different descriptors, which were later reduced to 27 descriptors based on the correlation
matrix, since descriptors that are strongly correlated with each other (r pearson > 0.9)
were removed. From this reduced number of variables, we were able to visualize the
projection of the new database on the first two principal components (factorial axes), as
shown in Figure 1, which clearly indicates that molecules 1 and 32 are poorly explained.
Consequently, they are considered as outliers.
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2.2. Statistical Database

Although observations 1 and 32 are considered as outliers, the new database will be
represented by a matrix of 27 descriptors and 42 molecules. Using the k-means method, we
randomly divided the database into training and test sets. The first one includes 80% of the
total data (35 molecules) and was taken to develop the QSAR models, while the second
one contains 20% of the total data (7 molecules) and was used to assess the validity of the
developed models [21].

2.3. Multiple Linear Regression

The Quantitative structure-activity relationships (QSAR) have the potential to reduce
the time and effort of molecular screening using mathematical predictive models [22].
One of these models is obtained by the multiple linear regression (MLR) technique, as
a statistical tool for estimating the linear relationship between more than two variables
which have cause-effect relations [23]. Thus, the first QSAR model was applied using
the MLR technique with stepwise selection, on a training set of thirty-five molecules
(N = 35), where the process was repeated more than a thousand times based on statistical
criteria: in particular, the determination and correlation coefficients, provided that they
will be validated in the next stage. Accordingly, the best QSAR model is given by the
following equation:

Log10IC50 = −10,407−0.279 × αe + 0.069 × γ + 0.156 × TE + 1.83 × HBD + 1.716 × SE + 1.029 × TD. (1)

This constructed model shows that the biological activity at the log scale is a quantita-
tive variable affected by the following six descriptors: polarizability (αe), surface tension
(γ), torsion energy (TE), Hydrogen bond donor (HBD), stretch energy (SE) and topolog-
ical diameter (TD), which have been calculated and presented in Table 1. Moreover, the
significance test demonstrates that the slope of each variable has a probability inferior to
5% as shown in Table 2, and so the selected descriptors have a significant weight on the
biological inhibitory activity at a 95% confidence interval. Except the polarizability, all five
molecular descriptors affect positively the biological activity as shown in Figure 2, where
a molecule can be more active if it is less polar and has higher values of surface tension,
torsion and stretch energies, hydrogen bond donor and topological diameter.
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Table 1. The values of selected descriptors for 44 molecules.

N◦ ae γ TE HBD SE TD Log10IC50

2 41.05 40.3 12.9136 1 2.609 11 0.47712126
3 43.9 43.9 12.833 1 3.43 11 1.61278386
4 43.9 43.9 12.2837 1 3.7251 11 0.77815125
5 41.96 44.6 10.5041 1 3.3398 11 1.96378783
6 43.87 50.9 5.8562 1 3.5148 10 0
7 43.11 54.3 10.9678 1 3.5012 10 0.77815125
8 44.29 57.7 10.6827 1 3.31 10 0.47712126
10 43.05 49.2 13.6092 1 3.581 10 2.69372695
11 43.82 51.6 16.8366 1 3.7574 10 2.67577834
12 42.28 53.7 12.0135 1 3.2349 10 1.87506126
13 43.11 54.3 15.9864 1 3.5181 10 2.90794852
14 43.87 50.9 12.0765 1 3.6081 10 1.36172784
15 43.11 54.3 15.211 1 3.5393 10 1.65321251
17 45.28 46.3 11.4242 1 4.1245 10 0.77815125
18 46.55 43.3 11.1295 1 4.5556 11 2.53147892
19 45.81 43.2 11.5098 1 4.5198 11 2.71096312
20 46.95 45.7 12.3354 1 3.7527 11 0.95424251
21 45.81 43.2 11.5767 1 3.7965 11 1.462398
22 46.55 43.3 12.3649 1 4.0183 12 2.24797327
23 45.81 43.2 11.5647 1 3.7752 12 3.23121465
24 46.55 43.3 12.3272 1 3.9781 13 3.24526584
25 41.5 38.4 18.5378 1 3.5883 11 3.52659771
26 40.85 43.8 14.1068 1 3.3294 11 1.8920946
29 43.14 46.6 17.5352 1 3.5318 11 2.95616843
30 42.67 45.3 11.6496 1 3.2701 10 0
31 43.05 49.2 15.9695 1 3.5677 10 0
33 52.92 45 13.4879 1 3.9397 14 2.97589114
34 41.86 48.5 7.3285 2 2.3774 10 0.47712126
37 45.11 46 10.9824 1 3.3677 10 0
38 44.35 48.9 16.6401 1 3.3293 10 1
40 39.53 51.1 7.6774 2 2.2337 10 1.76342799
41 38.77 54.5 13.3491 2 2.2124 10 1.65321251
42 40.15 49.3 8.3209 1 3.3316 10 0.84509804
43 41.98 47.7 10.8208 1 3.622 10 0.47712126
44 38.2 52.2 5.2114 2 2.8062 10 2.22530928
1 * 45.25 41.3 39.2347 1 2.6809 13 1.56820172
9 * 43.81 46.2 10.3084 1 3.6309 10 0

16 * 43.6 55.2 8.802 2 3.3159 10 0.90308999
27 * 43.14 46.6 18.0072 1 3.6639 11 1.25527251
28 * 43.14 46.6 18.0105 1 3.682 11 2.32428246
32 * 53.84 50.1 58.0893 1 5.1759 14 0
35 * 41.48 47.3 9.0526 1 2.9116 10 0.47712126
36 * 43.31 45.9 9.4978 1 3.0768 10 0.60205999
39 * 44.32 54.8 9.9783 1 2.9 10 0.30103

* indicates test set molecules.

Table 2. Significance test of the slopes.

Source Value Standard Deviation t Pr > |t| Lower Terminal (95%) Higher Terminal (95%)

Constante −10.408 3.172 −3.281 0.003 −16.905 −3.910
αe −0.279 0.079 −3.550 0.001 −0.441 −0.118
γ 0.070 0.033 2.101 0.045 0.002 0.138

TE 0.156 0.042 3.731 0.001 0.071 0.242
HBD 1.830 0.571 3.208 0.003 0.661 2.999

SE 1.716 0.387 4.429 0.000 0.922 2.510
TD 1.030 0.208 4.956 <0.0001 0.604 1.455
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Additionally, the null hypothesis (H0) postulated by the Fisher statistical test is re-
jected, because the calculated Fisher value (F = 10.325) is so much higher than its critical
value: [F (35,6) = 2.37, p < 0.0001], as presented in the one Anova test (Table 3). Therefore,
the variance between the response (Log10IC50) and the six predictor variables is homoge-
neous. Moreover, the correlation and determination coefficients of R = 0.83 and R2 = 0.69,
respectively, confirm that there is a strong relationship between the descriptors and the
inhibitory activity. Thus, the first QSAR model generated via MLR technique has a good
predictive performance, with a low standard error (RMSE = 0.66).

Table 3. Variance analysis.

Source DDL Total Square Mean Square F Pr > F

Model 6 26.753 4.459 10.325 <0.0001
Error 28 12.092 0.432

Adjusted
total 34 38.846

2.4. Multiple Non-Linear Regression

The multiple non-linear regression (MNLR) technique is applied using a set of adapted
algorithms to generate the quantitative predictive models [24]. In the present study, we
relied on the programmed function of the type:

Y = a0 + ∑n
i=1

(
ai × Xi + bi × Xi2

)
(2)

As:
Y: is the predicted biological activity (Log10IC50)
Xi: is the explicative variable
a0: is the constant of the QSAR model
ai and bi: are the slopes of each descriptor to one and two degrees, respectively.
Finally, we arrived at the second QSAR model given by the following equation:

Log10IC50 = −19.699 - 0.009 × αe - 0.056 × γ − 0.161 × TE + 1.466 × HBD + 0.5 × SE + 2.693 × TD
−0.002 × αeˆ2 + 0.001 × γˆ2 + 0.013 × TEˆ2 + 0.148 × SEˆ2 - 0.07 × TDˆ2.

(3)



Pharmaceuticals 2022, 15, 670 6 of 22

This mathematical model has a good predictive capacity, justified by a strong non-
linear relationship between the biological activity and the six descriptors, as it is defined by
a good correlation coefficient (R = 0.84) and a good coefficient of determination (R2 = 0.71),
in addition to its minimal mean square error (RMSE = 0.72).

2.5. QSAR Model Validation
2.5.1. Applicability Domain

The applicability domain (AD) of a quantitative structure-activity relationship (QSAR)
model is necessary to verify its reliability on new compounds (test set) that were not
considered during its development [25]. This technique has been evaluated by an analysis
expressed as a Williams diagram (Figure 3), which confirms that the molecules (1 and
32) belonging to the test set are really outliers, because they exceed the warning leverage
(h* = 0.6), where: h* = 3 × K/n and K = p + 1, (p = 6, K = 7, n = 35) as, n: is the number of
training set, and p: is the number of predictor descriptors [26,27]. Next, we noted that the
compound 33 from training test is not an outlier because it does not exceed the critical
leverage (h*). Therefore, except for molecules (1 and 32), all the others are well explained
because they have in addition a normalized residual included in the 3 times standard
deviation interval. Consequently, the 42 remaining molecules are tested in the applicability
domain and the QSAR model was predicted correctly.
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Figure 3. William’s diagram of the MLR model established by Equation (1). 1 and 32 are outliers in
the test set and 33 is a non-aberrant molecule in the training test.

2.5.2. External Validation

To assess the accuracy of the QSAR predictive model and guarantee its generalizability,
it is absolutely needed to validate it on new molecules included in the test set, before its
application in clinical practice [28]. Based on a training test (35 molecules), we tested the
seven new molecules from the test set and got the results presented in Table 4.

Table 4. External validation results of the MLR and MNLR models.

Molecule Number Observed Log10IC50 Predicted Log10IC50(MLR) Predicted Log10IC50(MNLR)

9 * 0.000 0.545 0.380
16 * 0.903 2.285 2.134
27 * 1.255 3.051 3.342
28 * 2.324 3.083 3.372
35 * 0.477 −0.158 −0.164
36 * 0.602 −0.414 −0.429
39 * 0.301 −0.304 −0.046

* Indicates test set molecules.
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The results mentioned in Figure 4 indicate that the MLR QSAR model is given by an
external validation correlation coefficient (R2ext = 0.63), and the results noted in Figure 5
indicate that the MNLR QSAR model is characterized by an external validation correlation
coefficient of R2ext = 0.68. According to the Alexander Golbraikh and Alexander Tropsha
theory, a QSAR model is externally validated if the correlation coefficient of its external
validation is greater than 0.6. Therefore, the mathematical models developed with the help
of MLR and MNLR techniques are externally validated.
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2.5.3. Internal Validation

To validate internally the QSAR model, we applied the cross-validation technique
with the leave-one-out procedure (CVLOO), so that each observation is tested exactly once,
by executing a new model each run on thirty-four compounds (N-1 = 34) and predicting the
biological activity of the removed sample, as shown in Table 5. This technique is based on
the calculation of the quadratic coefficient of cross validation (Q2cv), which is expressed in

the following equation [29,30]: Q2cv = 1 − ∑n
i (Ypred−Yobs) 2

∑n
i (Yobs−Ymean) 2 (4) AS: Ypred: is the predicted

activity value, Yobs: is the observed activity value, Ymean: is the mean of the observed
activity values. A high value of Q2cv = 0.57 (superior than 0.5) signifies that the established
model is reliable, robust and has better internal predictivity.
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Table 5. Observed and predicted activity values from the QSAR models.

Molecules Number Observed Log10IC50 Predicted Log10IC50 (MLR) Predicted Log10IC50 (MNLR) Predicted Log10IC50 (CV)

2 0.47712126 0.588 0.679 0.664
3 1.61278386 1.439 1.415 1.428
4 0.77815125 1.860 1.790 1.922
5 1.96378783 1.511 1.464 1.441
6 0 −0.040 0.405 −0.053
7 0.77815125 1.186 1.157 1.245
8 0.47712126 0.721 0.933 0.801
10 2.69372695 1.397 1.195 1.321
11 2.67577834 2.157 2.240 2.057
12 1.87506126 1.083 1.018 0.970
13 2.90794852 2.000 2.081 1.827
14 1.36172784 1.093 0.954 1.075
15 1.65321251 1.915 1.933 1.959
17 0.77815125 1.163 0.982 1.247
18 2.53147892 2.322 2.392 2.250
19 2.71096312 2.520 2.548 2.458
20 0.95424251 1.189 1.245 1.217
21 1.462398 1.289 1.302 1.272
22 2.24797327 2.623 2.680 2.667
23 3.23121465 2.281 2.338 2.174
24 3.24526584 3.578 3.538 3.710
25 3.52659771 2.891 3.183 2.562
26 1.8920946 2.311 2.171 2.396
29 2.95616843 2.751 3.000 2.717
30 0 0.391 0.176 0.443
31 0 1.744 1.675 1.934
33 2.97589114 3.062 2.907 3.204
34 0.47712126 0.463 0.555 0.454
37 0 −0.178 −0.276 −0.228
38 1 1.056 1.151 1.068
40 1.76342799 1.104 1.136 0.867
41 1.65321251 2.404 2.199 2.852
42 0.84509804 0.959 0.855 0.993
43 0.47712126 1.226 0.961 1.294

2.5.4. Validation Using Y-Randomisation Test

The statistical study of Alexander Golbraikh and Alexander Tropsha confirms that
the cross-validation technique is necessary but not sufficient, as the internal predictive
accuracy of the cross-validation procedure tends to be overestimated and the high value
of the quadratic coefficient may be the result of chance correlation. For this reason, the
Y-randomisation test is necessary [31]. Using java Platform SE binary, we tested the QSAR
model quality by running one hundred randomizations, as presented in Table 6. The results
of the Y-randomisation test demonstrate that the (cR2p = 0.602) criteria is superior than 0.5;
moreover, the R, R2 and R2cv values of the original model are much better than the values
obtained by 100 randomizations. Consequently, the biological activity values predicted by
the original model are not due to chance.

Table 6. Y-randomization test results.

Model R Rˆ2 Qˆ2 Model R Rˆ2 Qˆ2

Original 0.829884 0.688707 0.572045 Random 51 0.206983 0.042842 −0.46272
Random 1 0.252331 0.063671 −0.50878 Random 52 0.537396 0.288794 −0.15592
Random 2 0.457615 0.209411 −0.17702 Random 53 0.379861 0.144294 −0.43774
Random 3 0.47795 0.228436 −0.41001 Random 54 0.367538 0.135084 −0.29876
Random 4 0.375518 0.141014 −0.34708 Random 55 0.179251 0.032131 −0.54121
Random 5 0.422447 0.178462 −0.39625 Random 56 0.663141 0.439756 0.029755
Random 6 0.480602 0.230979 −0.17775 Random 57 0.36146 0.130653 −0.41471
Random 7 0.306791 0.09412 −0.47744 Random 58 0.445943 0.198865 −0.22915
Random 8 0.354955 0.125993 −0.40713 Random 59 0.417956 0.174687 −0.19669
Random 9 0.209847 0.044036 −0.71484 Random 60 0.204369 0.041767 −0.88175
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Table 6. Cont.

Model R Rˆ2 Qˆ2 Model R Rˆ2 Qˆ2

Random 10 0.395267 0.156236 −0.36218 Random 61 0.557804 0.311145 0.016035
Random 11 0.520928 0.271366 −0.1806 Random 62 0.50639 0.256431 −0.3063
Random 12 0.510412 0.260521 −0.21009 Random 63 0.37293 0.139077 −0.46899
Random 13 0.427634 0.182871 −0.23082 Random 64 0.383643 0.147182 −0.41262
Random 14 0.445148 0.198156 −0.41414 Random 65 0.414428 0.171751 −0.30301
Random 15 0.21278 0.045275 −0.4451 Random 66 0.292763 0.08571 −0.36258
Random 16 0.516892 0.267178 −0.45198 Random 67 0.526141 0.276824 −0.1287
Random 17 0.37686 0.142024 −0.55449 Random 68 0.284657 0.08103 −0.54548
Random 18 0.154692 0.023929 −0.85659 Random 69 0.456042 0.207974 −0.2171
Random 19 0.491084 0.241163 −0.24676 Random 70 0.451139 0.203526 −0.15451
Random 20 0.424795 0.180451 −0.30099 Random 71 0.402163 0.161735 −0.15347
Random 21 0.513699 0.263886 −0.1961 Random 72 0.480122 0.230517 −0.17729
Random 22 0.316251 0.100015 −0.30938 Random 73 0.426294 0.181727 −0.22948
Random 23 0.301949 0.091173 −0.63655 Random 74 0.475859 0.226442 −0.23411
Random 24 0.332628 0.110641 −0.8224 Random 75 0.462608 0.214006 −0.12839
Random 25 0.633727 0.401609 0.166923 Random 76 0.53816 0.289616 −0.33075
Random 26 0.328704 0.108046 −0.48201 Random 77 0.383709 0.147233 −0.30145
Random 27 0.46585 0.217016 −0.16011 Random 78 0.38822 0.150715 −0.41903
Random 28 0.441731 0.195126 −0.25279 Random 79 0.528782 0.279611 −0.29561
Random 29 0.355019 0.126039 −0.31878 Random 80 0.330001 0.1089 −0.41611
Random 30 0.329982 0.108888 −0.42698 Random 81 0.413654 0.171109 −0.22613
Random 31 0.378435 0.143213 −0.25482 Random 82 0.493491 0.243533 −0.12853
Random 32 0.462326 0.213746 −0.13151 Random 83 0.381202 0.145315 −0.49761
Random 33 0.343488 0.117984 −0.53921 Random 84 0.323593 0.104712 −0.30559
Random 34 0.462673 0.214066 −0.27221 Random 85 0.32106 0.103079 −0.33856
Random 35 0.35063 0.122941 −0.3394 Random 86 0.30071 0.090427 −0.55488
Random 36 0.522964 0.273491 −0.09258 Random 87 0.518334 0.26867 −0.1494
Random 37 0.222631 0.049564 −0.75169 Random 88 0.387695 0.150307 −0.45639
Random 38 0.241784 0.058459 −0.47485 Random 89 0.36652 0.134337 −0.30196
Random 39 0.339537 0.115286 −0.4132 Random 90 0.279562 0.078155 −0.47573
Random 40 0.448316 0.200987 −0.47037 Random 91 0.575806 0.331552 −0.03852
Random 41 0.487561 0.237716 −0.34662 Random 92 0.5706 0.325585 0.021398
Random 42 0.369003 0.136164 −0.33599 Random 93 0.381837 0.1458 −0.44739
Random 43 0.400756 0.160605 −0.30621 Random 94 0.385236 0.148406 −0.6547
Random 44 0.343595 0.118058 −0.42487 Random 95 0.251773 0.06339 −0.49809
Random 45 0.390289 0.152325 −0.27962 Random 96 0.446548 0.199405 −0.47359
Random 46 0.350185 0.12263 −0.22911 Random 97 0.316743 0.100326 −0.95316
Random 47 0.463947 0.215247 −0.27397 Random 98 0.367366 0.134958 −0.3352
Random 48 0.37435 0.140138 −0.27999 Random 99 0.631342 0.398592 0.090509
Random 49 0.452168 0.204456 −0.40118 Random 100 0.56162 0.315417 0.016006
Random 50 0.266881 0.071225 −0.47945

2.5.5. Golbreikh and Tropsha Criteria

The quantitative structure-activity relationship (QSAR) model, defined by the first
Equation (1), satisfies the threshold criteria postulated by Golbraikh and Tropsha theory, as
shown in Table 7.

Table 7. Golbraikh and Tropsha statistical criteria to validate the designed QSAR model.

Parameter Equation Model Score Threshold Comment

R2 R2 = 1 − ∑ (Yobs−Y cal ) 2

∑ (Yobs−Yobs) 2
0.69 >0.6 Accepted

R2adj R2adj = (N−1)R 2−p
N−p−1

0.62 >0.6 Accepted

R2test R2test = 1 − ∑ (Ycal(test)−Y obs(test) ) 2

∑ (Yobs(test)−Yobs(train)) 2
0.63 >0.6 Accepted

Q2cv Q2cv = 1 − ∑ (Ycal−Y obs ) 2

∑ (Yobs−Yobs) 2
0.57 >0.5 Accepted
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Table 7. Cont.

Parameter Equation Model Score Threshold Comment

R2 rand Average of the 100 R2 rand (i) 0.17 <R2 Accepted
Q2cv ‘LOO’ rand Average of the 100 Q2cv ‘LOO‘ rand (i) −0.34 <Q2cv Accepted

cR2p cR2p = R* 2
√
(R2 − ( Average Rrand ) 2) 0.60 >0.5 Accepted

Yobs and Ycalc: refer to the observed and calculated/predicted response values. Yobs and Ycal refer to the mean of
the observed and calculated/predicted response values. N and p refer to the number of data points (compounds)
and descriptors.

2.6. In Silico Pharmacokinetics ADMET Prediction

The most active ligands (L6, L9, L30, L31, L32 and L37), acting as inhibitors of type 1
glycine transporters, were tested based on the rules of Lipinski, Veber, Egan, and Ghose,
and the pharmacokinetic properties (ADMET) [32], which were compared to the obtained
results for nortriptyline as a co-crystallized ligand bound to the dopamine transporter
(DAT) membrane protein encoded 4M48. The results presented in Table 8 indicate that
all molecules respect the rules of Lipinski, Veber, Egan and Ghose except the ligand 32,
because its molar refractivity index exceeds 130 and its Ghose violation number is equal
to 2 (exceed 1). Additionally, the exact predictive model (BOILED-Egg), highly practical
in the context of drug discovery and medicinal chemistry, and based on the calculation of
lipophilicity given by the logarithm of the partition coefficient between n-octanol and water
(Log PO/W) and polarity signaled by the topological polar surface area (TPSA) of small
molecules, clearly shows that the molecule (L32) is the only one that does not belong to the
yellow Egan-egg, as presented in Figure 6. Therefore, the five ligands (L6, L9, L30, L31 and
L37) are the molecules having the highest probability to penetrate the brain. In comparison,
the molecule 32 belonging to the white region of the egg has the highest probability of being
absorbed by the gastrointestinal tract [33], which is why it was an outlier in the previous
QSAR study.

Table 8. Prediction of the physicochemical properties of nortriptyline and more active ligands, based
on Lipinski, Veber, Egan and Ghose violations.

Ligands Number

Physico-Chemical Propities Lipinski
Violations

Veber
Violations

Egan
Violations

Ghose
Violations

Synthetic
Accessiblity

Molecular Weight
(g/mol)

Molar Refractive
Index

Rotatable
Bonds

Log p
(Octanol/Water) H-BA H-BD

Rule ≤500 40 ≤ MR ≤ 130 <10 <5 ≤10 <5 ≤1 Yes/No Yes/No Yes/No 0 < S.A < 10

(1) L6 403.34 115.02 5 3.60 2 1 1 Yes Yes Yes 4.24
(2) L9 362.51 114.93 5 3.58 2 1 0 Yes Yes Yes 4.21

(3) L30 366.50 112.17 5 3.75 3 1 0 Yes Yes Yes 4.97
(4) L31 363.50 112.73 5 3.15 3 1 0 Yes Yes Yes 4.28
(5) L32 480.66 140.34 8 3.61 4 1 0 Yes Yes No 5.19
(6) L37 377.52 121.65 6 3.23 3 2 0 Yes Yes Yes 4.47

(7) nortriptyline 265.39 85.74 4 3.24 1 1 1 Yes Yes Yes 3.28

The pharmacokinetic parameters of adsorption, distribution, metabolism, excretion
and toxicity (ADMET) of the most active ligands as presented in Table 9 indicate that the
ligands have a good absorption in the human intestine (IAH so higher than 70%), and a
good distribution, since their human distribution volumes are estimated to be greater than
−0.44 Log L/kg. Their permeability to the blood-brain barrier (BBB) is greater than −1
Log BB, and their permeability to the central nervous system (CNS) outside the interval
(of −2 to −3) Log PS. Thus, they all penetrate the central nervous system (CNS) with the
exception of ligands L32 and L30. In addition, the molecules are all predicted as inhibitors
of cytochrome 2D6 except ligand 32. Consequently, the ligands (L6, L9, L30, L31 and L37)
are designed to be agents of the central nervous system due to the highest probability of
penetrating the blood-brain barrier (BBB).
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Table 9. Prediction of ADMET pharmacokinetic properties of nortriptyline and more active ligands.

Ligands Number

Absorption Distribution Metabolism Excretion Toxicity

Intestinal Absorption
(Human) VDss (Human) BBB Permeability CNS Permeability

Substrate Inhibitor

Total Clearance AMES ToxicityCYP

2D6 3A4 1A2 2C19 2C9 2D6 3A4

Numeric (%
Absorbed)

Numeric (Log
L/kg) Numeric (Log BB) Numeric (Log PS) Categorical (Yes/No) Numeric (Log

ml/min/kg)
Categorical
(Yes/No)

(1) L6 91.194 1.431 0.199 −1.06 Yes Yes Yes Yes No Yes Yes 1.058 Not toxic
(2) L9 93.373 1.477 0.223 −1.072 Yes Yes Yes No No Yes No 0.978 Not toxic
(3) L30 93.344 1.242 0.176 −2.055 Yes Yes No No No Yes No 0.883 Not toxic
(4) L31 95.105 1.187 0.048 −1.976 Yes Yes No No No Yes Yes 0.948 Not toxic
(5) L32 94.331 1.038 −0.378 −2.005 No Yes Yes No No No Yes 0.85 Not toxic
(6) L37 92.765 1.814 0.044 −0.657 Yes Yes No No No Yes No 0.905 Not toxic

(7) nortriptyline 98.519 1.688 0.854 −1.287 No Yes Yes No No Yes No 1.077 Not toxic

2.7. Molecular Docking

Molecular docking results are focused on the dopamine transporter (DAT) bound
to the tricyclic antidepressant nortriptyline, as a transmembrane protein that removes
the neurotransmitter dopamine from the synaptic cleft and transports it into the cytosol
of surrounding cells. The crystal structure of this receptor is extracted using the X-ray
diffraction method at a resolution of 2.96 Å taken from the protein data base (PDB) [34–36].
In this part of the research, the molecular docking process is started for the following most
active molecules (L6, L9, L30, L31 and L37) to predict the type of Intermolecular interactions
established with the protein encoded 4M48, compared to the established interactions with
the co-crystallized ligand (nortriptyline) pictured in Figure 7, which indicate that Phe43A,
Phe325A and Tyr124A amino acids, are the active sites of the target protein, as sourced
using the ProteinsPlus online server [37].

The results of molecular docking applied on the more active ligands, presented in
Figure 8, show that the ligands L6 and L9 share common molecular interactions as the
chemical bonds of type pi-sigma and Pi-Pi T-shaped established between the benzenic cycle
and (Val120 and Tyr124) amino acids respectively, in addition to two bonds of alkyl type
with Phe325 and Phe43 amino acids. L30 and L31 ligands also form common bonds, like
the hydrogen bond linked to the nitrogen atom, with the amino acid Asp46 at the same
nuclear distance (5.5 Å), in addition to the alkyl bond with bicyclo group and Tyr124 amino
acid. The same type of bond was established between the methyl group and the amino
acid Phe325 at a nuclear distance of 5.5 Å, more than Pi-Pi bonds with Phe43 and Phe319
amino acids. Even the ligand L37 formed an alkyl bond with Tyr124 amino acid, and two
Pi-Pi chemical bonds with Phe325 and Phe319 amino acids. Therefore, we can conclude
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that Tyr124, Phe43, Phe325, Asp46, Phe319 and Val120 amino acids are the active sites of
the dopamine transporter (DAT) membrane protein, in which the most active ligands can
inhibit the glycine transporter type 1 (GlyT1).
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Figure 8. 2D and 3D visualization of intermolecular interactions between DAT (PDB code: 4M48)
and the more active ligands (L6, L9, L30, L31 and L37), with binding energies of −10.74 kcal/mol,
−10.22 kcal/mol, −8.46 kcal/mol, −8.78 kcal/mol and −8.59 kcal/mol, respectively.

2.8. Docking Validation Protocol

The efficiency of the molecular docking algorithms was tested using the re-docking
methodology, which is based on the superposition of the docked ligand on the protein-
bound ligand, as shown in Figure 9. The superposition result indicates a root mean square
deviation smaller than 2 (RMSD = 0.022 Å), which explains an exact pose prediction.
Additionally, 2D and 3D visualization (Figure 10) of the intermolecular interaction between
the docked nortriptyline and the protein target indicates that the chemical bonds formed
with Phe43A and Tyr124A amino acids are the same as those observed experimentally.
Thus, the molecular docking protocol is successfully validated [18].
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2.9. Molecular Dynamics Simulations

The most active ligands (L6, L9, L30, L31 and L37) were chosen for the molecular
dynamic’s simulation during 100 ns, to examine their stability toward DAT protein, where
the conformational changes of one of these ligands are presented in Figure 11, and the
others were presented in Figure S1.

The dynamic changes of conformation for (L9-protein) complex shown in Figure 11,
indicate that the simulation is well-equilibrated, as the fluctuations of the root mean
square deviation (RMSD) of the protein (left Y-axis) are around the thermal mean structure
throughout the simulation time (100 ns), because the changes of the order of 1–3 Å are
perfectly acceptable for small globular proteins. Moreover, the RMSD evolution of the
heavy atoms of the ligand (right Y-axis) shows its stability with respect to the protein,
when the protein-ligand complex is first aligned on the protein backbone of the reference,
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because the observed values are significantly smaller than the RMSD of the protein, and so
the ligand did not diffuse away from its initial binding site.
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Figure 11. RMSD and RMSF graphs for the ligand 9 complexed with the dopamine transporter
membrane protein during 100 ns.

The root mean square fluctuation (RMSF) values are also computed to examine the
impact of the ligand binding on the internal dynamics of the target protein during 100 ns,
where the tails (N- and C-terminal) fluctuate more than any other part of the protein and
the secondary structure elements like alpha helices and beta strands are usually more rigid
than the unstructured part of the protein; for this reason, they fluctuate less than the loop
regions. Except for a single fluctuation of 3.2 Å, detected in the loop region of residue 390,
all fluctuations were less than 3 Å, indicating the binding strength between the ligand 9
and the DAT protein, and no significant change in the protein conformation resulting from
ligand binding.

Additionally, the radius of gyration (r Gyr) values fluctuated in a small interval from
3.45 to 3.76 Å until the end of the simulation, as shown in Figure 12, indicating that there
are just some changes in the compactness of the ligand; thus, the protein has a good
flexibility after its binding with the ligand 9. Moreover, the solvent accessibility of the
protein-ligand 9 complex was evaluated by the solvent accessible surface area (SASA)
analysis, which fluctuated between 0 and 15 Å2 for 100 ns; this graph revealed that the
structure of compound 9 was relatively stable during the simulation time. The polar surface
area (PSA) is a solvent accessible surface area in a molecule contributed only by oxygen and
nitrogen atoms; this parameter varies between 8 and 32 Å2, accompanied by some maximal
and minimal fluctuations during the simulation time. The contributions of this type of
atoms make the ligand relatively unstable. However, the molecular surface area (MolSA)
illustrates the molecular surface calculation with a probe radius of 1.4 Å, equivalent to a
Van der Waals surface, showing only minimal fluctuations.

Lastly, the graph of the total energy presented in Figure 12 shows a minimal variation
about the average −53.8682 kcal.mol−1, which means that the energy of the L9- DAT
protein complex remained in equilibrium throughout the MD simulation.

The dynamic changes of conformation for other complexes are available in the sup-
plementary material (Figure S1). The protein-ligands interactions fluctuate with a root
mean square deviation (RMSD) of 1 to 3 Å along the simulation time (100 ns), except for
the L31-protein complex, which oscillates for the first 20 nanoseconds from 1 to 3 Å, then
destabilizes until 50 ns, and stabilizes again with a deviation 4 Å of about until the end of
the simulation time.
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Minimal fluctuations have been observed during the established interactions between
the protein and the ligand 6, such as the observed root mean square fluctuations (RMSF) of
3.4 Å, 4.4 Å and 3.9 Å detected in the loop region of 10, 240 and 480 residues, respectively,
in addition to a maximal fluctuation of 5.5 Å recorded in the loop area of residue 380. No
fluctuation was noticed greater than 3 Å for L30-protein and L37-protein complexes. Three
fluctuations have been recorded for L31-protein complex of 3.6 Å, 3.5 Å and 7 Å reported
in the loop zone of 10, 480 and 520 residues, respectively.

Overall, we note that the protein has a good flexibility of binding with L6, L30, L31
and L37 inhibitors, as there are just a few changes in the compactness of the ligand, since
the r Gyr, SASA, MolSA and PSA parameters are varied with minimal fluctuations about
the mean along 100 ns.

Finally, the total energy plots presented in Figure S2 show a minimal variance around
the average energy of the total system, which was in Kcal/mol of −47.7003, −48.8821
−49.5236 and −62.5749 for L30, L31, L37 and L6 inhibitors, respectively, indicating that the
energies of the ligands-protein complexes have remained in equilibrium over the course of
the MD simulation.

We conclude that the molecular dynamics simulations reinforce the previous results
obtained by QSAR and docking studies, since the ligands L6, L9, L30, L31 and L37 are the
most active inhibitors, forming typical static interactions with some amino acids of the
target protein. These interactions form dynamically stable complexes during the 100 ns
of the simulation time, as there is no change in their properties, except for the minimal
fluctuations that were observed.

3. Materials and Methods
3.1. Database

The present study is performed on 44 bicyclo ((aryl) methyl) benzamides as glycine
transporter type 1 (GlyT1) inhibitors, whose biological activities are expressed on a loga-
rithmic decimal scale (log10IC50), as illustrated in Table S1.

3.2. Molecular Descriptors Calculation

To build the quantitative structure-activity relationship (QSAR) models that provide
information on the correlation between activities and structure-based molecular descrip-
tors, we calculated various types of molecular descriptors [38], as shown in Table S2.
Initially, the constitutional descriptors were calculated using the ACD/chemsketch soft-
ware [39]. Subsequently, the thermodynamic and physicochemical descriptors were ex-
tracted using the MM2 technique via the ChemBio3D software [40]. Lastly, the quantum
descriptors are calculated through Gaussian 09 software [41], using the density function
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theory (DFT)/B3LYP [42], combined with the 6-31 + G(d,p) basis set, in order to ensure the
molecules stability and optimize their three-dimensional geometries.

3.3. Statistical Methods

The Quantitative structure-activity relationships (QSARs) are developed with the help
of XLSTAT 2014 software [43], using different statistical methods such as: the principal
component analysis (PCA), multiple linear regression (MLR) and multiple non-linear
regression (MNLR). The principal component analysis method is a very important step that
serves to minimize the molecular descriptor dimension so as to identify the most predictive
variables [44]. This limited number of descriptors is mathematically modeled by the
multiple linear regression (MLR) and multiple non-linear regression (MNLR) techniques.
Therefore, the two obtained QSAR models were generated to predict the linear and non-
linear relationships established between the biological activity of glycine transporter type 1
(GlyT1) inhibitors and their relevant descriptors. For their applicability, these two models
have been evaluated by external and internal validation, as well as the molecules, which
have been tested in the applicability domain [45]. Additionally, the Golbreikh and Tropsha
criteria and the Y-randomization test were used to verify the robustness and predictive
potential of the established QSAR model [31,46].

3.4. Drug Likeness and In Silico Pharmacokinetics ADMET Prediction

To make the drugs applicable in clinical trials, it is necessary to study their absorption,
distribution, metabolism, excretion and toxicity (ADMET) in the human body before
starting the investigation protocols [21,47], respecting some important rules such as those
of Lipinski [48], Veber [49], Ghose [50] and Egan [51,52]. This technique is also applied to
eliminate the compounds with potentially undesirable physiological qualities, taking into
account toxicity and pharmacokinetic properties [53]. For this task, we estimated the drug
similarity and in silico pharmacokinetic properties of the newly selected molecules as GluT1
inhibitory agents, using the online SwissADMET [54] and pkCSM [55] servers, respectively.

3.5. Molecular Docking Modeling

The computational technique of molecular docking is an efficient, fast and powerful
tool for drug discovery [56]. For this project, we uploaded the three-dimensional coordi-
nates of the target protein from the protein data bank (pdb) using the Discovery Studio
2021 (BIOVIA) software package [57]. To improve the performance of the cavity method,
water molecules and suspended ligands bound to the protein were removed and polar
hydrogens were added. Accordingly, the prepared protein was docked with the most
active ligands, previously optimized by the density functional theory (DFT), with the
assistance of AutoDock 4.2 [58]. Moreover, the grid box was centralized on (−42.562 Å,
−0.46 Å, −55.066 Å) with the help of AUTOGRID algorithm, by putting the sizes (80, 80,
80) in their three-dimensional structure, and running 10 genetic algorithms with a total of
25 million trials. Finally, the molecular interactions of the protein-ligand were visualized
using discovery studio 2021 [59].

3.6. Molecular Dynamics

Based on QSAR and molecular docking results, the five best-docked ligands, having
the highest activity, were chosen for the molecular dynamics simulations in order to identify
the molecular recognition between the ligand and the dopamine transporter (DAT) mem-
brane protein. The MD simulations were performed for 100 nanoseconds using Desmond
software, a package of Schrödinger LLC [60]. The first stage in the molecular dynamic’s
simulation of protein-ligand complexes was obtained by docking studies, and preprocessed
using Protein Preparation Maestro, which performs optimization and minimization of
complexes that have been prepared by the System Builder tool using a solvent model with
an orthorhombic box that was chosen as TIP3P (transferable intermolecular interaction
potential 3 points), using the OPLS force field [61]. At 300 K temperature and 1 atm pres-
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sure, the models were made neutral with the addition of water molecules, and counter ions,
such as 0.15 M salt (Na+, Cl−) were added to mimic the physiological conditions. Finally,
the trajectories were saved after every 10 ps for analysis, and the stability of simulations
was evaluated by calculating the root mean square deviation (RMSD) of the protein and
ligand over time. In addition, the root-mean-square fluctuation (RMSF), gyration radius
(Rg), solvent accessible surface area (SASA), molecular surface area (MolSA) and polar
surface area (PSA) were recorded for 100 ns, and the free energies of the inhibitors-protein
interactions were evaluated using MM-GBSA approach [62].

4. Conclusions

A systematic in silico study was applied on 44 bicyclo((aryl)methyl)benzamide deriva-
tives as glycine transporter type 1 (GlyT1) inhibitors to discover effective antipsychotic
candidates for the treatment of schizophrenia. Initially, two QSAR models were devel-
oped using MLR and MNLR techniques and were examined through external and internal
validation, applicability domain (AD), Y-randomization test and Golbreikh and tropsha cri-
teria, indicating a significant effect of hydrogen bond donor, polarizability, surface tension,
stretch and torsion energies and topological diameter on the locomotor activity (LMA).
Subsequently, ADMET in silico pharmacokinetics prediction revealed a favorable profile
of the most active ligands, where L6, L9, L30, L31 and L37 were predicted as non-toxic
inhibitors for 2D6 cytochrome, which respect the rules of Lipinski, Veber, Egan and Ghose,
with an excellent absorption exceeded 91% and highest probability to penetrate the central
nervous system (CNS). In contrast, the ligand L32 as an outlier in the QSAR study has
an unfavorable ADMET profile with the highest probability of being absorbed by the
gastrointestinal tract. Lastly, the obtained results were further strengthened and qualified
using molecular docking and molecular dynamics studies, which confirm that L6, L9,
L30, L31 and L37 react specifically with Tyr124, Phe43, Phe325, Asp46, Phe319 and Val120
amino acids of the dopamine transporter (DAT) membrane protein in a way that blocks
glycine transporter type 1 (GlyT1) forming dynamically stable complexes during 100 ns
of MD simulation time. Therefore, they could be used as therapeutics in medicine to treat
schizophrenia. However, they must be subjected to in vitro and in vivo investigations to
evaluate their efficacy and safety as anti-schizophrenia drugs.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ph15060670/s1, Table S1: The 44 molecules and their biological activities. Figure S1: RMSD
and RMSF graphs for L6, L30, L31, L37 ligands complexed with the dopamine transporter membrane
protein during 100 ns. Figure S2: Rg, MolSA, SASA and PSA during 100 ns of MD simulation, and
the variation of total free energy for L6, L30, L31 and L37 ligands complexed with DAT protein.
Table S2: The calculated molecular descriptors.
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