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Diffuse large B-cell lymphoma (DLBCL) represents the most common form of non-Hodgkin

lymphoma (NHL) that is still incurable in a large fraction of patients. Tetraspanin CD37 is

highly expressed on mature B lymphocytes, and multiple CD37-targeting therapies are under

clinical development for NHL. However, CD37 expression is nondetectable in �50% of

DLBCL patients, which correlates with inferior treatment outcome, but the underlying

mechanisms for differential CD37 expression in DLBCL are still unknown. Here, we

investigated the regulation of the CD37 gene in human DLBCL at the (epi-)genetic and

transcriptional level. No differences were observed in DNA methylation within the CD37

promoter region between CD37-positive and CD37-negative primary DLBCL patient samples.

On the contrary, CD37-negative DLBCL cells specifically lacked CD37 promoter activity,

suggesting differential regulation of CD37 gene expression. Using an unbiased quantitative

proteomic approach, we identified transcription factor IRF8 to be significantly higher

expressed in nuclear extracts of CD37-positive as compared with CD37-negative DLBCL.

Direct binding of IRF8 to the CD37 promoter region was confirmed by DNA pulldown assay

combined with mass spectrometry and targeted chromatin immunoprecipitation (ChIP).

Functional analysis indicated that IRF8 overexpression enhanced CD37 protein expression,

while CRISPR/Cas9 knockout of IRF8 decreased CD37 levels in DLBCL cell lines.

Immunohistochemical analysis in a large cohort of primary DLBCL (n 5 206) revealed a sig-

nificant correlation of IRF8 expression with detectable CD37 levels. Together, this study pro-

vides new insight into the molecular mechanisms underlying differential CD37 expression in

human DLBCL and reveals IRF8 as a transcriptional regulator of CD37 in B-cell lymphoma.
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Key Points

� IRF8 is a
transcriptional
regulator of CD37
expression in DLBCL,
which may have
implications for
anti-CD37 therapies.

� Patients with poor
prognostic
CD37-negative
DLBCL show
significantly lower
IRF8 expression
compared with
patients with
CD37-positive
DLBCL.
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Introduction

Diffuse large B-cell lymphoma (DLBCL) is the most common type of
non-Hodgkin lymphoma (NHL). It accounts for approximately one-
third of all NHL diagnoses, and a large fraction of DLBCL patients
develop relapsed/refractory disease.1,2 Tetraspanin CD37 is a
4-transmembrane protein exclusively expressed on hematopoietic
cells, with the highest levels detected in the B-cell lineage from pre-B
to mature B cells, but is absent on plasma cells.3,4 CD37 recently
regained attention as a promising therapeutic target for the treatment
of mature B-cell malignancies,5 and several CD37-targeting therapies
are currently under clinical investigation.6,7 Although many B-cell
malignancies express CD37 on the cell surface,4 we discovered that
approximately 50% of DLBCL shows undetectable CD37 protein
expression by immunohistochemistry (IHC), which is correlated with
inferior overall and progression-free survival of these patients.8,9

Inactivating CD37 gene mutations have been reported in �20% of
DLBCL presenting at immune-privileged sites.10,11 However, CD37
mutations are rarely observed in nonimmune-privileged DLBCL,10,12,13

and cannot provide an explanation for the undetectable CD37 expres-
sion in a significant fraction of DLBCL. Thus, we hypothesized that
other mechanisms like epigenetic or transcriptional gene regulation
might underlie the differential expression of CD37. Aberrant DNA
methylation patterns are known to occur in DLBCL.14,15 Moreover, it
is well-established that altered expression of transcriptional regulators
is common in B-cell NHL (B-NHL), including gene rearrangements of
MYC and BCL6.16 Other transcription factors, such as FOXO1, can
modulate the expression of cell surface protein CD20, thereby affect-
ing therapy response and prognosis in B-NHL.17

Here, we performed an unbiased quantitative proteomic approach
of CD37-positive and CD37-negative DLBCL cells and identified
transcription factor interferon regulatory factor 8 (IRF8) as a regula-
tor of CD37 expression in DLBCL. IRF8, also known as interferon
consensus sequence binding protein (ICSBP), is part of the IRF
family of transcription factors that bind to specific DNA sequences
named interferon-stimulated response elements (ISRE). IRF8 plays
an important role in immune cell development and innate and adap-
tive immune responses,18 including the promotion of the develop-
ment of pro- to pre-B cells,19 as well as the germinal center
response.20,21 Altogether, we provide new insight into the molecular
mechanisms underlying differential CD37 expression in human
DLBCL.

Methods

Collection of primary DLBCL patient samples

Primary human DLBCL samples diagnosed between 2000 and
2015 were retrieved from the archives of the Department of Pathol-
ogy at Radboudumc and CWZ Hospital (Nijmegen, The Nether-
lands) and Rijnstate Hospital (Arnhem, The Netherlands), and
collected in accordance with the Declaration of Helsinki.

Culture and transfection of DLBCL cell lines

DLBCL cell lines were cultured in RPMI-1640 containing 10% fetal
bovine serum, 1% antibiotics/antimycotics, and 1% Ultraglutamine
and maintained at 37�C, 5% CO2. BJAB cells were transfected
using the Neon Transfection System (Invitrogen) according to the

manufacturer’s protocol. Other cell lines were transfected using SF
Cell Line 4D-Nucleofector X Kit L (Lonza) and the AMAXA Nucleo-
fector biosystem (OCI-Ly1: program DN-100; OCI-Ly8 and SU-
DHL-10: program DN-103; SU-DHL-6 and OCI-Ly19: program
CV-104; Lonza).

Flow cytometry

Membrane expression of CD37 and CD19 was determined using
CD37-FITC (clone M-B371; Biolegend), CD37-APC (clone MB-1;
eBioscience), or CD19-APC (clone HIB19, eBioscience) antibod-
ies. Total IRF8 expression was determined with anti-IRF8-PE (clone
U31-644; BD Pharmingen) using Transcription Factor Buffer Set
(BD Pharmingen) according to the manufacturer’s protocol. All fluo-
rescence intensities were measured on a BD FACSLyric or BD
FACSVerse Flow cytometer (BD Biosciences), and data were ana-
lyzed using FlowJo X software.

Transient reporter assay

Plasmid psGFP2-C1 (Addgene Plasmid #22881) was digested with
AseI and AgeI restriction enzymes (New England BioLabs) to remove
the cytomegalovirus (CMV) enhancer and promoter sequence. A region
of approximately 2 kb upstream of the CD37 transcription start site
(chr19:49836,812-49838,766 [GRCh37/hg19]) was amplified from
genomic DNA of SU-DHL-5 cells (supplemental Table 2) and ligated
into digested psGFP2-C1 to replace the CMV enhancer and promoter
region. Cell lines were cotransfected with CMV promoter-GFP (green
fluorescent protein) or CD37 promoter-GFP construct and pmScarlet-
C1 (Addgene plasmid #85042) as the transfection loading control. In
case of cotransfection of the CD37 promoter-GFP with PU.1 and/or
IRF2 (both in pCDNA3.1, Genscript), pIRF670-N1 plasmid22 was
used as a loading control. If required, pCDNA3.1 empty vector was
added to obtain equal amounts of total plasmid DNA. Fluorescent pro-
tein expression was analyzed by flow cytometry 24 hours after transfec-
tion. Viable cells were gated on positive expression of Scarlet and/or
GFP, and the percentage of GFP-expressing cells within this population
was determined.

Nuclear proteome

Nuclear extracts from OCI-Ly8 and SU-DHL-6 cells were generated
as described previously23 and subjected to filter aided sample prep-
aration.24 Tryptic peptides were purified on C18 Stage Tips as
described previously.25 Samples were analyzed using mass spec-
trometry (see below).

DNA pulldown assay

Oligo baits for DNA pulldown assay were ordered from IDT, with
the forward strand containing a 59 biotin moiety (supplemental Table
3). DNA affinity purifications and on-bead trypsin digestion were
performed as described previously.26 Tryptic peptides were first
desalted on C18 Stage Tips (without acidification) as described pre-
viously.25 On-Stage Tip dimethyl labeling was performed by apply-
ing 300 mL of labeling reagent (0.2% CH2O [light] or CD2O
[medium]) 2 mg/mL sodium cyanoborohydride, 10 mM NaH2PO4,
35 mM Na2HPO4) to the Stage Tip. Stage Tips were centrifuged
for 10 minutes at 2200 xg to pass the labeling reagent through, fol-
lowed by a wash with 100 mL Buffer A (0.1% formic acid). Samples
were analyzed using mass spectrometry.
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Mass spectrometry analysis

Samples were eluted from the Stage Tips with 30 mL of Buffer B
(80% acetonitrile and 0.1% formic acid). Light and medium labeled
DNA pulldown pairs were combined into the same tube. Acetonitrile
was evaporated by SpeedVac centrifugation at room temperature,
after which Buffer A (0.1% formic acid) was added to a total volume
of 12 mL. Half of the sample was applied to reverse phase chroma-
tography using an Easy-nLC 1000 with a �30 cm C18 column
coupled online to a Q Exactive HF-X Hybrid Quadrupole-Orbitrap
mass spectrometer (ThermoFisher). For nuclear proteome samples,
a 120-minute gradient, and for DNA pulldown samples, a 60-minute
gradient of Buffer B (80% acetonitrile and 0.1% formic acid) was
applied. Peptides with a charge state between 2 and 6 were
selected for fragmentation with a dynamic exclusion list of 30 pepti-
des for 45 seconds.

Mass spectrometry data analysis

Raw data were analyzed using MaxQuant27 version 1.5.1.0 (DNA
pulldowns) and version 1.6.1.0 (nuclear proteome) with a database
coding for all human proteins (downloaded June 2017). For DNA
pulldown data, requantify was enabled. For the proteome data,
match between runs, LFQ, and iBAQ options were enabled. Data
were then further processed and filtered using Perseus.28 Protein
intensities were log10 transformed, and proteins were filtered for
common contaminants, reverse hits, having at least 1 unique pep-
tide, and LFQ nuclear proteome data: having at least 3 valid values
in 1 group of triplicates. Missing LFQ values were imputed using
default settings, and a Student t test was performed to identify out-
liers. For the DNA pulldowns, outliers were determined using box-
plot statistics.

ChIP assay

Cells were crosslinked with formaldehyde and subsequently resus-
pended in ice-cold lysis buffer (50 mM HEPES-KOH [pH 7.6]; 140
mM NaCl; 1mM EDTA [pH 8.0]; 1% Triton X-100; 0.1% sodium
deoxycholate; Complete Protease Inhibitor Cocktail [Roche]). After
lysis, chromatin extracts were sonicated with the Bioruptor PICO
(Diagenode). Fragmented chromatin extracts were subjected to ChIP
using Protein A/G PLUS-Agarose beads (Santa Cruz Biotechnology)
conjugated to anti-IRF8 (E-9 X, Santa Cruz Biotechnology). Controls
were subjected to Protein A/G beads only. Following the pulldown,
DNA was decrosslinked and purified. Isolated DNA fragments were
amplified by quantitative polymerase chain reaction (qPCR) using 2
primer sets to analyze CD37 upstream loci (supplemental Table 4).
CD74 and MB primer sets were used as positive and negative con-
trols, respectively (supplemental Table 4). Ct values were used to cal-
culate primer binding efficiency in anti-IRF8 ChIP samples relative to
the input chromatin samples, shown as the percentage of input.

Generation of IRF8 plasmid constructs and

knockout (KO) cell lines

IRF8 wild-type (WT) sequence was amplified from cDNA of cell line
OCI-Ly8 (supplemental Table 5), digested using EcoRI-HF and SalI-
HF (New England BioLabs), and subsequently ligated into pIRES2-
EGFP plasmid to create an IRF8 expression plasmid. A guide RNA
(gRNA) pair targeting the first coding exon of IRF8 was designed
using CRISPOR29 (supplemental Table 6), annealed, and cloned into
the pX330-U6-Chimeric_BB-CBh-hSpCas9 (Zhang,30 Addgene
plasmid #42230) that was linearized using BbsI-HF (New England

BioLabs). To obtain IRF8 KO cells, cell lines were transfected with 2
mg of IRF8gRNA-pX330 plasmid or empty pX330 vector (control)
and 0.5 mg of pSGFP2-C1, and GFP-positive cells were sorted on a
FACS Aria (BD Biosciences) 24 hours later to obtain a polyclonal
KO cell population. Additional IRF8 KO cells in BJAB and OCI-Ly8
cells were generated using 3 new gRNAs designed using the
CRISPOR database (supplemental Table 6; set #2). Oligos for these
gRNAs were annealed and ligated into the pSpCas9(BB)-2A-Puro
(PX459) V2.0 (Addgene Plasmid #62988)31 using the BbsI site.
The efficiency of these gRNAs was determined using a T7 endonu-
clease assay. For KO experiments, cells were nucleofected with the
different gRNA constructs. To select for cells that expressed Cas9,
puromycin was added to the BJAB and OCI-Ly8 cells at a concen-
tration of respectively 2 and 1 mg/mL, dead cells were removed using
Ficoll separation 24 hours after nucleofection, and cells were ana-
lyzed for IRF8 and CD37 expression.

IHC

IHC staining on lymphoma tissues was performed on formalin-fixed,
paraffin-embedded tissue microarrays following the manufacturer’s
instructions using mouse anti-CD37 antibody (clone 2B8; Thermo-
Scientific and Novus Biologicals) or mouse anti-ICSBP (IRF8,
clone E-9; Santa Cruz Biotechnology) followed by hematoxylin
counterstaining.

Results

Mutation and DNA methylation analysis of the CD37
promoter region

Previously we reported that �50% of primary DLBCL show unde-
tectable CD37 expression by IHC, which is associated with inferior
treatment outcome after R-CHOP (a combination therapy of anti-
CD20 antibody rituximab, cyclophosphamide, hydroxydaunorubicin,
vincristine [oncovin], and prednisone) treatment in both germinal cen-
ter B cell-like (GCB) and non-GCB DLBCL.8,9 We analyzed a cohort
of CD37-negative DLBCL (n 5 12) that displayed no genetic altera-
tions within theCD37 coding sequence,10 for the presence of poten-
tial mutations in the CD37 promoter sequence. This region of
approximately 1.7 kb upstream of the CD37 transcription start site
was selected based on epigenetic profiling data from ENCODE in a
malignant B-cell line at this locus (supplemental Figure 1).32 No
mutations were detected in this locus in any of the CD37-negative
DLBCL cases, indicating that alternative mechanisms are responsible
for the attenuated CD37 expression in these tumors.

Next, we determined the methylation status in the upstream regula-
tory locus of CD37, as well as the 39 untranslated region (UTR), in
DLBCL cell lines and primary human DLBCL tumor samples using
bisulfite sequencing PCR (BSP) (supplemental Figures 1 and 2;
supplemental Tables 8-13). BSP analysis was performed for 2 loci
in the CD37 promoter region and 1 locus in the 39 UTR, which con-
tains a higher density of CpG pairs than the promoter, which lacks
CpG islands. Little differences in methylation levels were observed
between CD37-negative and CD37-positive DLBCL cell lines. This
was confirmed in primary DLBCL samples, where similar methyla-
tion levels between CD37-negative and CD37-positive samples
were detected (supplemental Figure 2). Human embryonic kidney
cells that do not express CD37 were included as a control in these
experiments, showing a high level of methylation in the promoter
region (supplemental Figure 2). Together, these data indicate no
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significant role for aberrant DNA methylation at these 3 loci in the
regulation of CD37 expression in human DLBCL.

Identification of IRF8 as candidate transcriptional

regulator of CD37 expression

While no mutations or differential DNA methylation were detected in the
CD37 promoter region in CD37-negative DLBCL cells, lymphoma cells
with reduced CD37 expression may still show diminished promoter
activity. To study differential gene regulation, human DLBCL cell lines
were first analyzed for membrane expression of CD37 and the B-cell
marker CD19 as control. DLBCL lines OCI-Ly19 and SU-DHL-6 were
CD37-negative, and BJAB, OCI-Ly1, OCI-Ly8, and SU-DHL-10 were
CD37-positive (Figure 1A). CD19 was expressed on all DLBCL cell
lines as expected (supplemental Figure 3). In line with CD37 membrane
expression, CD37 mRNA expression was strongly reduced in CD37-
negative cell lines (supplemental Figure 4). Sequence analysis of the
CD37 coding region in these CD37-negative cell lines showed no
mutations. To investigate the CD37 promoter activity in the different
DLBCL cell lines, we exchanged the CMV promoter and enhancer
region of a GFP-reporter plasmid for the �2 kb upstream sequence of
the CD37 gene (Figure 1B-C). DLBCL cell lines were transfected with
CD37 promoter-GFP or the original CMV promoter plasmid as control.
CD37-negative DLBCL cell lines showed lower GFP expression
than CD37-positive DLBCL cell lines (Figure 1D), suggesting that tran-
scriptional activators or repressors involved in the regulation of CD37
gene transcription are differentially expressed in CD37-negative DLBCL
lines.

In order to identify these components, the nuclear proteome of
CD37-positive (OCI-Ly8) and CD37-negative (SU-DHL-6) DLBCL
cell lines were investigated for differentially expressed candidate
transcriptional regulators using an unbiased quantitative proteomic
approach. Transcription factors p53 and IRF8 were both higher
expressed in CD37-positive DLBCL compared with CD37-negative
DLBCL, with IRF8 being the most significantly upregulated tran-
scription factor, showing about 60 times higher expression in OCI-
Ly8 (Figure 2A; supplemental Table 14; for a summary of hits see
supplemental Table 15). To confirm this finding, protein expression
of IRF8 was analyzed with both flow cytometry and western blotting
in multiple DLBCL lines (Figure 2B-C). Significantly lower IRF8
expression was observed in CD37-negative DLBCL lines (SU-DHL-
6 and OCI-Ly19) as compared with CD37-positive cell lines (BJAB,
OCI-Ly1, OCI-Ly8, and SU-DHL-10). Moreover, analysis of publi-
cally available data from the Cancer Dependency Portal (Dep-
Map)33,34 showed that expression levels of IRF8 protein positively
correlated with CD37 mRNA levels in NHL cell lines (supplemental
Figure 5). Together these data indicate that IRF8 is a candidate reg-
ulator of CD37 expression in human DLBCL.

IRF8 binds to the upstream regulatory region of the

CD37 gene and induces its expression

Next, we assessed whether IRF8 was able to interact with the
CD37 promoter region in DLBCL. IRF8 is known to bind several
conserved DNA motifs, including ISREs and ETS-IRF composite
elements (EICE).35,36 We identified an EICE motif within the 2 kb
upstream sequence of the CD37 gene (supplemental Figure 6).
WT and mutated DNA oligo baits of this potential binding site
(Figure 3A) were incubated with nuclear extracts of CD37/IRF8-
positive OCI-Ly8 cells. Oligo bait interactors were subsequently

analyzed by liquid chromatography-mass spectrometry using
dimethyl labeling for quantification. Analysis of the interacting pro-
teins showed significant binding of multiple factors, including IRF8,
to the WT sequence over the mutated sequence (Figure 3B). In
addition, the WT oligo bait also demonstrated binding of
IRF2, another related family member that may act in a complex with
IRF8.

To further confirm the binding of IRF8 to the CD37 promoter region
in CD37-positive DLBCL, we selected 2 loci for targeted ChIP anal-
ysis. One of these contained the EICE motif to which IRF8 binding
was detected in the DNA pulldown assay (supplemental Figure 6).
This element contains both an IRF8 binding motif and one for ETS
proteins, including transcription factor PU.1, a known partner of
IRF8.18,21,35,36 We observed higher PU.1 expression in CD37-
positive DLBCL cell lines compared with CD37-negative DLBCL
(supplemental Figure 7A). CD37-promoter activity was induced
upon combined PU.1/IRF2 expression in CD37-negative DLBCL,
but not in CD37-positive DLBCL (supplemental Figure 7B). The
second ChIP locus that was selected also harbored a binding motif
for PU.1.

ChIP-qPCR analysis with anti-IRF8 antibody showed enrichment of
IRF8 to these 2 loci (Figure 3A,C). Specificity for IRF8 binding was
confirmed by significant binding to the known IRF8 target gene
CD74,35 while there was no recruitment of IRF8 in the negative
controls (ie, to the myoglobin [MB] locus and in the CD37-negative
DLBCL cell lines that express significantly less IRF8 than the
CD37-positive cell lines) (Figure 3C). Together, these data confirm
that IRF8 can directly bind to the promoter region of the CD37
gene in DLBCL.

To determine whether the expression of IRF8 directly affects CD37
expression levels, both IRF8 overexpression and IRF8 KO experi-
ments were performed in DLBCL cell lines. Transient overexpression
of IRF8 in OCI-Ly1 cells resulted in a significant upregulation of
CD37 protein expression at the cell surface (Figure 4A). Moreover,
2 independent pools of CD37-negative OCI-Ly19 cells with stable
overexpression of IRF8 were created (supplemental Figure 8), result-
ing in increased CD37 and PU.1 expression compared with the
nontransduced control cells (Figure 4B; supplemental Figure 8).
Additionally, the importance of IRF8 in regulating CD37 expression
was validated in 2 IRF8 KO DLBCL cell lines (Figure 4C). Analysis
of CD37 membrane expression in these IRF8 KO DLBCL cells
showed a significant decrease (15% to 36%) in CD37 levels by
flow cytometry (Figure 4C). Independently generated IRF8 KO
DLBCL cells using different CD37 guide RNAs showed a similar
trend (supplemental Figure 9). The moderate decrease in CD37
expression by IRF8 CRISPR KO in both DLBCL cell lines is likely
caused by the limitation to generate a complete IRF8KO, which was
incompatible with the viability of the cells. Together these results
demonstrate that IRF8 can directly bind to the upstream promoter
region of the CD37 gene and affects its expression in DLBCL cells.

IRF8 expression correlates with CD37 mRNA and

protein levels in primary DLBCL

To assess the role of IRF8 in regulating CD37 expression in primary
human DLBCL, data on mRNA expression of IRF8 and CD37 were
obtained from gene expression profiling previously performed on
tumor samples (n 5 498) of the International DLBCL R-CHOP
Consortium Program.9 The prognostic association of CD37
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expression was also evident in this cohort (supplemental Figure
10A), and correlation analysis showed a positive linear relationship
between IRF8 and CD37 mRNA levels (Pearson correlation r 5

0.3174; P , .0001) (Figure 5A) in both GCB and ABC subtype
(supplemental Figure 10B). The correlation between IRF8 and

CD37 mRNA expression was not affected by IRF8 mutations as
analyzed in a publicly available RNA-Seq database (supplemental
Figure 11). Protein expression of IRF8 and CD37 in DLBCL tissues
was determined by IHC analysis in an independent DLBCL cohort
(n 5 206) (Figure 5B) consisting of both GCB and non-GCB
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subtypes (supplemental Figure 12). IRF8 was expressed in a signifi-
cantly lower fraction of tumor cells in CD37-negative DLBCL than
CD37-positive DLBCL (P 5 .0001) (Figure 5C). In line
with this, absence of CD37 expression highly correlated with low
IRF8 expression in total DLBCL, as well as in GCB and non-GCB
tumors separately (protein expression by IHC ,60%; P , .0001,
P , .0001, and P 5 .0007, respectively) (Figure 5D). IRF8 expres-
sion was low in 138 out of 206 DLBCL samples (67%) and 82 out
of 90 CD37-negative DLBCL samples (91%). Taken together,
these data reveal that IRF8 expression positively correlates with
CD37 expression in human primary DLBCL.

Discussion

Tetraspanin proteins have been linked to cancer progression and
patient outcome.37 In particular, the expression of tetraspanin CD37
is significantly attenuated in �50% of DLBCL, which correlates

with inferior survival of these DLBCL patients.8,9 However, the
underlying cause for differential CD37 expression levels in DLBCL
is largely unknown. Here, we investigated diverse molecular mecha-
nisms that may contribute to the regulation of CD37 in human
DLBCL, where we identified IRF8 as a transcriptional regulator of
CD37 expression.

We detected a significantly higher expression of transcription factor
IRF8 in CD37-positive DLBCL compared with CD37-negative
DLBCL cell lines. In line with our findings, the expression pattern of
IRF8 during normal B-cell development is similar to that of CD37,
with high IRF8 expression observed in GC B cells and low levels in
plasma cells.20 IRF8 can function as a transcriptional activator or
repressor in B cells.35 We observed that overexpression of IRF8
induced CD37 expression in DLBCL cells, while IRF8 KO
decreased CD37 expression, implying IRF8 as a transcriptional acti-
vator of CD37 gene expression. Our findings are in accordance
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with an IRF8 transcriptional profiling study, in which binding of IRF8
to the CD37 gene in GC B cells was observed.35

Moreover, IRF8 expression positively correlated with CD37 expres-
sion in primary human DLBCL tissue samples. IRF8 expression was
low as determined by IHC in 138 out of 206 DLBCL samples
(67%), which correlated with attenuated CD37 expression. The role
of IRF8 in DLBCL pathogenesis has not been fully elucidated. One
study showed that loss of IRF8 in DLBCL cells reduced their

growth in vitro and in vivo, suggesting an oncogenic role.38 In line
with this, we observed the complete IRF8 KO in DLBCL cell lines
was difficult to generate. Moreover, IRF8 was detected as a novel
fusion partner of IGH in DLBCL,39,40 and this fusion resulted in
higher IRF8 expression levels.39 In a mouse model of the IGH-IRF8
fusion, this deregulation resulted in lower survival of these mice
compared with the WT control; however, no increased incidence of
B-cell lymphoma was observed.41 IRF8 is shown to be recurrently
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mutated in comprehensive whole-genome studies of DLBCL.12,13,42

In addition, aberrant DNA methylation of the IRF8 promoter region
has been observed in multiple myeloma and B-cell acute lympho-
blastic leukemia.43,44 Our studies did not show a relation between
IRF8 mutations and CD37 expression; thus, how IRF8 expression is
differentially regulated in CD37-negative DLBCL is subject for future
studies.

We observed no significant differences in DNA methylation in the
CD37 promoter and 39UTR gene region in CD37-positive compared
with CD37-negative DLBCL, although we cannot exclude that
methylation in other CpG-rich regions of the CD37 gene regulates
CD37 expression. Alterations in DNA methylation of tetraspanin
genes in other hematological cancers have been reported in
multiple myeloma (hypermethylation of tetraspanin genes CD9,
CD81, and CD82)45,46 and mantle cell lymphoma (CD37
hypomethylation).47

It is expected that supplemental (co)factors are involved in the regula-
tion of CD37 expression in DLBCL. We confirmed direct binding
of IRF8 to 2 sequences that included an EICE or a PU.1 binding
motif in the CD37 locus in CD37-positive DLBCL cells. Next to IRF8,
we observed the binding of IRF2 and ELF1 to the CD37 EICE
sequence upon incubation with DNA oligo baits. IRF2 also belongs
to the IRF family of transcription factors and is able to heterodimerize
with IRF8.48 Like PU.1, ELF1 is a member of the ETS family.49

Both transcription factors have also been indicated to be required for
normal B-cell development.50,51 Furthermore, the EICE is a well-
known binding motif for IRF8-PU.1, as well as IRF4-PU.1 com-
plexes.18,35,36 The expression of IRF4 is, like IRF8, restricted to
hematopoietic cells and implicated in the development of dendritic
cells and B cells.18,19,52 Our initial data shows a potential role for
PU.1 and/or IRF2 in the activation of CD37 expression; however, the
exact role of IRF2, IRF4, PU.1, and ELF1 in this regulation, and
whether or not this is in conjunction with IRF8, remains to be
elucidated.

Although our study was focused on positive regulators of CD37
expression, it is possible that negative regulators also contribute to
the regulation of its expression. For example, higher expression of
SCML2 was observed in CD37-negative cells, which is a member of
the Polycomb group proteins and contributes to target gene repres-
sion.53 Whether SCML2 or chromatin remodeling by Polycomb
group complexes are involved in the silencing of the CD37 locus
requires further investigation.

CD37 is a prognostic factor for R-CHOP-treated DLBCL indepen-
dent of TP53 mutation and the international prognostic index as
shown in a large international DLBCL R-CHOP Consortium Pro-
gram.9 CD37 facilitates the formation of tetraspanin nanodomains in
the cell membrane and regulates intracellular signaling pathways

through lateral interactions with partner proteins.37,54 It has no
known ligand, although crossligation of CD37 can induce apopto-
sis.55 Multiple antibody-based CD37-targeting therapies are under
(pre)clinical development for B-NHL.6,7 Current targeted immuno-
therapies have shown the pivotal importance of target expression,
exemplified by the downregulation of CD20 membrane expression
as a proposed mechanism of rituximab resistance.56 In this context,
it is of high interest to induce CD37 membrane expression, and it
remains to be investigated whether this can be achieved by manipu-
lating IRF8 levels or activity in DLBCL. Taken together, we have
shown that IRF8 is a transcriptional activator of CD37 gene expres-
sion in human DLBCL. Full elucidation of the regulation of CD37
expression can provide new therapeutic strategies for the large pop-
ulation of patients with poor prognostic CD37-negative DLBCL.
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