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Pancreatic cancer is a devastating disease with the worst mortality rate and an overall 5-
year survival rate lower than 5%. In the U.S., this disease is the fourth leading cause of 
death and represents 6% of all cancer-related deaths. Gemcitabine, the current standard 
first-line treatment, offers marginal benefits to patients in terms of symptom control and 
prolongation of life. Since 1996, about 20 randomized phase III trials have been 
performed to improve the efficacy of gemcitabine, with little success regarding a 
significant improvement in survival outcomes. The need for novel therapeutic strategies, 
such as target therapy, is obvious. Monoclonal antibodies have finally come of age as 
therapeutics and several molecules are now approved for cancer therapies. This review 
aims to give a general view on the clinical results obtained so far by antibodies for the 
treatment of pancreatic cancer and describes the most promising avenues toward a 
significant improvement in the treatment of this frustrating disease. 
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INTRODUCTION 

Pancreatic Cancer  

Pancreatic cancer is a devastating disease with the worst mortality rate and an overall 5-year survival rate 

lower than 5%. Although accounting for only 3% of all cancers, this disease is the fourth leading cause of 

death and represents 6% of all cancer-related deaths. In the U.S., the overall incidence is about eight to 

ten cases per 100,000 persons/year and rises slowly over the years[1]. Pancreatic cancer remains one of 

the most difficult to treat due to late initial diagnosis and to intrinsic resistance to conventional treatments. 

About 50% of patients have distant disease at the time of diagnosis (locally advanced stage) and in 40%, 

the tumor has spread (metastatic stage). Risk factors have been identified[2], molecular pathogenesis has 

been elucidated, but advances in early detection and efficient treatments remain rather disappointing 

despite tremendous efforts. The majority of pancreatic tumors (95%) is adenocarcinomas and they mainly 

develop from exocrine cells. They are characterized by an aggressive behavior with a fast progression rate 

that makes them highly metastatic, by a dense fibrotic stroma surrounding a minor population of 

cancerous cells, and by an early and vascular invasive growth. This reactive stroma is composed of 

extracellular matrix proteins (collagen, fibronectin), myofibroblastic pancreatic stellate cells, immune 

cells, cytokines, growth factors, proteases, and vessels.  
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Current Treatments 

There is consensus on the fact that surgical removal of the tumor represents the best option for pancreatic 

cancer treatment; to be resectable, tumors need to be small and strictly localized to the pancreas without 

invasion into surrounding organs and evidence of metastasis. However, only 15–20% of all patients are 

candidates for potentially curative surgery. Depending on the tumor localization, pancreaticoduodenectomy, 

distal or total pancreatectomy can be performed. However, even with an optimal curative surgery, 

metastases often occur. Median survival time without evidence of recurrent disease is 21.2 months after 

resection[3].  

For locally advanced or metastatic disease, treatment is still palliative rather than curative, and 

chemotherapy remains the only option. Since its approval in 1997, gemcitabine is the current standard 

first-line treatment. It was shown by Burris and colleagues[4] to improve median disease-free survival 

and overall survival (OS) rate at 5 years. Since 1996, about 20 randomized phase III trials have been 

performed to improve the efficacy of gemcitabine, with little success regarding a significant improvement 

in survival outcomes (for review, see [5,6,7]). A small clinical benefit is evidenced for the 

erlotinib/gemcitabine and platinum/gemcitabine combinations, but it must be balanced by increased 

toxicity. Up to now, the only combination approved by U.S. Food and Drug Administration (FDA) is the 

erlotinib/gemcitabine combination (Tarceva®), which increased the median OS from 6 to 6.4 

months[8,9].  

New Potential Targets 

Advances in the understanding of pancreatic cancer biology and of the mechanisms by which it eludes 

conventional cytotoxic therapies should lead to the identification of new potential targets. Cancer stem 

cells (CSC) might be one of them. Tumors are constituted by differentiated cells that have limited 

proliferative potential, and by a small subset of cancer cells responsible for tumor initiation and 

propagation[10,11]. In pancreatic cancer, CSC represent 0.2–0.8% of all cancer cells and they are 

characterized by cell surface markers CD44, CD24, and ESA (epithelial specific antigen)[12]. CSC have 

been shown to be resistant to conventional chemotherapy and radiation[13], which might explain the poor 

therapeutic results of current therapies. The contribution of tumor/stroma interactions in pancreatic cancer 

progression has also been recently emphasized[14,15]. Promising results in a phase II trial have been 

obtained by combining gemcitabine with nab-paclitaxel[16]. This compound, which is an antimitotic 

agent, increased the potency of gemcitabine by altering the stroma surrounding the tumor.  

Thus, the need for novel therapeutic strategies, such as target therapy, in pancreatic cancer patients is 

obvious. Recent years have seen the approval of several therapeutic antibodies for cancer therapy (Table 

1), some of them leading to very significant therapeutic effects[17]. Disappointments met with the first 

murine therapeutic molecules that were rapidly eliminated by the patient’s immune system and that were 

not interacting properly with human receptors of the patient’s effector cells have been replaced with 

significant clinical outcomes achieved by chimeric (human IgG bearing murine-variable domains), 

humanized (human IgG bearing murine-hypervariable loops), and fully human antibodies[17]. 

Therapeutic antibodies have been shown to rely on various modes of action, including direct blocking of a 

ligand or a receptor, induction of apoptosis by receptor clustering, complement-dependent cytotoxicity, or 

cell-mediated cytotoxicity/phagocytosis. The last generation of therapeutic antibodies has been 

engineered to interact strongly with activating receptors, such as FcRIIIA expressed on NK cells. 

Modifications have targeted some residues of the Fc fragment involved in the interaction with Fc 

receptors, or the nature of the Fc glycosylation shown to influence greatly the affinity of the receptors for 

the IgG. More recently, bispecific antibodies capable of simultaneously binding to a tumor antigen and to 

CD3 on T cells, and thereby redirecting polyclonal T cells to tumor cells, have led to exciting clinical 

results[18,19]. 
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TABLE 1 
Antibodies Approved for Therapeutic Use in Cancer 

Generic 
Name 

Trade 
Name 

Antibody 
Format 

Antigen Approved 
Indication 

FDA 
Approval

9
 

EMEA 
Approval

9
 

Rituximab
1
 Mabthera Chimeric, IgG1 CD20 CD20-positive 

B-cell non-
Hodgkin’s 
lymphoma 

11/26/97 06/02/98 

Trastuzumab Herceptin Humanized, 
IgG1 

HER2/Neu Metastatic 
breast cancer 

09/25/98 08/28/00 

Gemtuzumab
2
 Mylotarg Humanized, 

IgG4 
CD33 CD33-positive 

acute myeloid 
leukemia 

05/17/00 NA 

Alemtuzumab
3
 Mabcampath Humanized, 

IgG1 
CD52 B-cell chronic 

lymphocytic 
leukemia 

05/07/01 07/06/01 

Ibritomomab
4
 Zevalin 

90
Y Mouse, IgG1 CD20 B-cell non-

Hodgkin's 
lymphoma 

02/19/02 01/16/04 

Tositumomab
4,5

 Bexxar 
131

I Mouse, IgG2a CD20 CD20-positive 
B-cell non-
Hodgkin’s 
lymphoma 

06/27/03 NA 

Cetuximab Erbitux Chimeric, IgG1 EGFR Metastatic 
colorectal and 
head and 
neck 
carcinoma 

02/12/04 06/29/04 

Bevacizumab
6
 Avastin Humanized, 

IgG1 
VEGF-A Metastatic 

colon and 
rectum and 
non–small cell 
lung cancer 

02/26/04 01/12/05 

Panitumumab
7
 Vectibis Human, IgG2 EGFR Metastatic 

colorectal 
carcinoma 

09/27/06 12/19/07 

Catumaxomab
8
 Removab Mouse,IgG2a/rat 

IgG2b 
EpCAM/CD3 Malignant 

ascites 
NA 05/13/09 

Ofatumumab
7
 Arzerra Human, IgG1 CD20 B-cell chronic 

lymphocytic 
leukemia 

10/26/09 NA
 

1 
Rituximab is commercialized under the trade name Rituxan in the U.S.  

2
 Gemtuzumab “ozogamicine“ is coupled to calicheamicin, an antitumoral antibiotic. 

3
 Alemtuzumab is commercialized under the trade name Campath in the U.S. 

4
 Ibritomomab “tiuxetan“ and tositumomab are coupled to radioisotopes. 

5
 All approved antibodies have a κ light chain except tositumomab, which has a λ light chain.  

6
 Bevacizumab has also been recently approved for breast (February, 2008) and renal (July, 2009) cancers, and 

glioblastoma (May, 2009). 
7
 Human antibodies obtained from humanized mice. 

8
 Catumaxomab is a bispecific antibody obtained from mouse and rat monoclonal antibodies. 

9
 Month/Day/Year; NA, not approved; EMEA, European Medicines Agency. 
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The aim of this paper is to review the most recent studies involving the use of antibodies for the 

treatment of pancreatic cancer. 

CLINICAL TRIALS INVOLVING ANTIBODIES 

Angiogenesis 

Vascular Endothelial Growth Factor (VEGF)  

Angiogenesis provides the required substrates for tumor growth and dissemination. Targeting 

angiogenesis is attractive because, in theory, it can reduce cancer progression. VEGF-A (or VEGF) is the 

predominant member of the VEGF family. VEGF receptor is similar to EGFR because after binding to its 

ligand, VEGF receptor forms a dimer, and the tyrosine kinase becomes autophosphorylated and amplifies 

the initial signal by activating the intracellular pathways, such as MAPK and PI3K[20]. VEGF exerts 

most of its neoangiogenic effects through VEGF-R2[21]. VEGF is expressed in 88–93% of the patients 

with pancreatic adenocarcinoma[22]. Moreover, VEGF presence in tumor samples correlates with tumor 

size and is also a predictor of early recurrence after surgery, development of liver metastasis, poor 

prognosis, and cancer-related death[23]. 

Bevacizumab is a recombinant, humanized, anti-VEGF-A, monoclonal antibody that prevents binding 

to VEGF-R1 and VEGF-R2 (Table 1). This antibody has proven clinical benefit in metastatic colon, 

breast, and non–small cell lung cancer. Bevacizumab decreases lymphangiogenesis and 

neovascularization in vivo and is expected to increase the delivery of chemotherapy to the tumor in 

pancreatic cancer. Kindler and colleagues reported the results of a phase II trial of bevacizumab plus 

gemcitabine in 52 patients with metastatic pancreatic cancer. Partial responses were observed in 21% of 

patients, the median survival time was 8.8 months, and the 1-year survival rate was 29%[24]. The major 

side effect with bevacizumab therapy in pancreatic cancer was bleeding and perforation. Therefore, it was 

not recommended in patients with tumors invading the duodenum or other organs. These data prompted 

the CALGB to conduct a double-blind, placebo-controlled, randomized phase III trial (CALGB 80303) of 

gemcitabine plus bevacizumab vs. gemcitabine plus placebo in 602 advanced pancreatic cancer patients. 

Gemcitabine was given in the standard fashion and bevacizumab was given at a dose of 10 mg/kg on days 

1 and 15 of each 28-day cycle. Unexpectedly, the median OS times were 5.7 months and 6.0 months for 

gemcitabine plus bevacizumab and gemcitabine plus placebo, respectively[25]. Finally, a phase III trial of 

bevacizumab in combination with gemcitabine and erlotinib involving 607 patients with metastatic 

pancreatic cancer demonstrated that the addition of bevacizumab to gemcitabine/erlotinib does not lead to 

a statistically significant improvement in OS in patients, although progression-free survival (PFS) was 

significantly longer in the bevacizumab group compared with placebo[26]. 

Unfortunately, it appears that bevacizumab does not lead to clinical benefits for pancreatic cancer 

treatment, probably because other proangiogenic factors, including insulin-like growth factor-I, 

hepatocyte growth factor, fibroblast growth factor, platelet-derived growth factor, and TGF-α are often 

overexpressed by pancreatic cancer cells. 

Integrin α5β1  

Integrins form a superfamily of widely expressed transmembrane glycoprotein receptors for extracellular 

matrix ligands, such as fibronectin, vitronectin, laminin, collagens, and other plasma membrane proteins, 

and are involved in the regulation of a broad variety of cellular processes, including embryogenesis, 

inflammation, bone metabolism, apoptosis, cell proliferation, angiogenesis, and tumor metastasis. Integrin 

α5β1, the principal fibronectin receptor, is an important survival factor that plays a key role in 

angiogenesis. Endothelial cell expression of the α5β1 integrin and its ligand fibronectin are both up-
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regulated during tumor angiogenesis[27]. Volociximab, a high-affinity IgG4 chimeric monoclonal 

antibody, has led to a very efficient apoptosis of vascular endothelial cells, angiogenesis, and tumor 

growth inhibition in preclinical studies, independently of the VEGF pathway[28]. Volociximab is 

currently being tested in a phase II study in combination with gemcitabine in 40 patients with metastatic 

pancreatic cancer. Preliminary results (ASCO 2008 Gastrointestinal Cancers Symposium, abstract 142) 

indicate three partial remissions and 17 stable diseases. The treatment was well tolerated and these results 

are thus encouraging. 

Tumor Targeting 

Epidermal Growth Factor Receptor (EGFR) 

The EGFR, also known as ErbB1 or HER1, is a 170-kDa protein belonging to the four-member ErbB1-4 

family of transmembrane tyrosine kinase growth factor receptors. Upon binding to a number of ligands, 

conformational alterations occur in the single-chain receptor, allowing dimerization or oligomerization with 

other EGFR molecules or other members of the ErbB family, leading to autophosphorylation and signal 

transduction. EGFR is expressed in 30–89% of pancreatic cancers assayed by immunohistochemistry 

techniques[29,30].  

Cetuximab is an anti-EGFR therapeutic antibody already approved for the treatment of colorectal 

cancer (Table 1). This antibody has also been investigated in pancreatic cancer in combination with the 

standard gemcitabine agent. In a phase II study with chemotherapy-naïve patients with advanced disease, 

41 patients with EGFR immunostain-positive tumors (six locally advanced, 35 metastatic) were treated 

with cetuximab (initial dose 400 mg/m
2
, followed by 250 mg/m

2
 weekly) and gemcitabine. Five patients 

(12.5%) achieved a partial response and 26 patients (63.4%) had stable disease. The median time to 

progression was 3.8 months and the median OS duration was 7.1 months. The 1-year survival rate of 

31.7% compared favorably to 18% with gemcitabine alone in historical series. The combination was well 

tolerated, with the most commonly reported toxicities of all grades as follows: rash (87.8%), nausea 

(61.0%), weight loss (58.5%), and diarrhea (53.7%)[31]. This small, but significant, improvement 

warranted further studies and two trials were launched. The SWOG S0205 study was a randomized phase 

III trial of gemcitabine with or without cetuximab in 766 patients with locally advanced or metastatic 

pancreatic adenocarcinoma. The data, presented in 2007, did not evidence a statistically significant 

difference in PFS (3 vs. 3.5 months, p = 0.14) and OS duration (6 vs. 6.5 months, p = 0.058), in the 

gemcitabine alone vs. gemcitabine and cetuximab groups, respectively[32]. The second study (ECOG) 

was a randomized phase II trial in which 87 eligible patients with metastatic pancreatic cancer were 

randomized to the Murren regimen of docetaxel and irinotecan with or without cetuximab. Unexpectedly, 

the patients treated with cetuximab had shorter median survival duration (5.3 months) compared to the 

placebo group (6.5 months). A very short PFS was observed in the cetuximab arm, not well explained by 

the data. The toxicity of this regimen was high, even without cetuximab. Grade 3 or 4 diarrhea was 

observed in 47% of the patients in the three-drug arm and the rate of treatment-related death was 4%[33]. 

Thus, unfortunately, no significant improvements could be demonstrated using cetuximab. Of note, 

another anti-EGFR antibody, matuzumab, has demonstrated some activity in clinical trials. A phase I 

study assessed the safety and potential benefit of combined treatment with matuzumab and standard-dose 

gemcitabine[34]. Seventeen chemotherapy-naive advanced pancreatic adenocarcinoma patients received 

escalating doses of matuzumab (400 mg weekly, 800 mg biweekly, or 800 mg weekly) and gemcitabine. 

Severe treatment-related toxicities were limited to grade 3 neutropenia, leucopenia, and decreased white 

blood cell count. Common study drug-related adverse events were skin toxicities and fever. Matuzumab 

inhibited phosphorylated EGFR and affected receptor-dependent signaling and transduction; effects were 

seen even in the lowest-dose group. Partial response (PR) or stable disease occurred in eight of 12 

evaluated patients (66.7%), with three PRs among six evaluated patients in the group receiving 800 mg 

weekly. Matuzumab was thus well tolerated and the combination may have enhanced activity. 
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Panitumumab is a fully human, anti-EGFR that prevents EGF and TGF-α from binding to the receptor 

(Table 1). This antibody has yielded exciting preclinical data, including the complete eradication of 

established human tumors (derived from the human vulvar epidermoid carcinoma cell line A431) as large 

as 1.2 cm
3
[35]. A phase II clinical trial comparing gemcitabine plus erlotinib with or without 

panitumumab is currently ongoing in the U.S. (NCT00550836). 

Human Epidermal Growth Factor Receptor 2 (HER2)  

HER2 (or ErbB2) is another member of the EGFR family. HER2 is involved in signal transduction 

pathways leading to cell growth and differentiation, and is overexpressed in a number of cancers, 

including breast and pancreatic cancer. Up to 26% of pancreatic tumor specimens express HER2 as 

shown by immunohistochemistry[36]. Trastuzumab is a neutralizing, humanized antibody directed against 

the extracellular domain of the HER2 receptor (Table 1). The therapeutic effect of trastuzumab is well 

documented in breast cancer, and has been ascribed to cell cycle arrest and induction of apoptosis, as well 

as induction of antibody-dependent cellular cytotoxicity (ADCC) against HER2-overexpressing tumor 

cells[37]. Based on this rationale and on several encouraging preclinical results, a phase I clinical trial 

enrolling 34 patients with metastasized HER2 overexpressing (grade 2–3) pancreatic cancer was 

launched. A combination of trastuzumab and gemcitabine resulted in partial response rates of 6%, and 

41% of patients showed a >50% reduction of the tumor marker CA19-9[38]. A modest improvement of 

the median survival in patients with metastatic pancreatic cancer suggested that there may be a modest 

benefit of trastuzumab treatment for some patients. A larger phase II trial combining trastuzumab and 

capecitabine should start soon[39].   

Interestingly, a combination of anti-HER1 and anti-HER2 antibodies was tested in preclinical studies, 

and demonstrated a significant improvement of survival and tumor regression in mice treated with 

trastuzumab plus cetuximab in first- and second-line treatments, compared with gemcitabine. These 

results warrant further clinical trials[40]. 

Mesothelin  

Mesothelin is a differentiation antigen whose expression in normal human tissues is limited to mesothelial 

cells lining the pleura, pericardium, and peritoneum[41]. The mesothelin gene encodes a precursor protein 

of 71 kDa that is processed to a 31-kDa shed protein called megakaryocyte potentiating factor (MPF) and a 

40-kDa fragment, mesothelin, that is attached to the cell membrane by a glycosyl-phosphatidylinositol (GPI) 

anchor. Mesothelin binds the mucine MUC-16, also called CA-125[42], but little is known about its 

function. It has been shown that mesothelin is highly expressed in several human cancers, including 

virtually all mesotheliomas and pancreatic adenocarcinomas, and approximately 70% of ovarian cancers and 

50% of lung adenocarcinomas. Argani and colleagues were the first to show mesothelin expression in 

pancreatic ductal adenocarcinoma, but not in normal pancreas[43]. In addition, mesothelin mRNA 

expression was present in four of four resected primary pancreatic cancers and all 60 resected primary 

adenocarcinomas were mesothelin positive as shown by immunohistochemistry. These results were 

confirmed by Hassan and colleagues who showed that mesothelin was expressed in all 18 cases of 

pancreatic adenocarcinomas examined, but absent in normal pancreas and in chronic pancreatitis[44]. 

Mesothelin is also highly expressed in other adenocarcinomas of the biliary tree, such as gallbladder cancer 

and tumors of the common bile duct[45]. This tumor marker is being evaluated for targeted therapy.  

SS1P is a recombinant immunotoxin consisting of a mouse antimesothelin disulfide-stabilized Fv 

linked to a truncated Pseudomonas exotoxin (dsFv-PE38) that mediates cell killing upon internalization. 

Preclinical studies have shown that SS1P is cytotoxic to cell lines expressing mesothelin and causes 

complete regression of mesothelin-expressing tumor xenografts in nude mice[46]. This construct was 

further tested in a phase I clinical trial. Out of the 34 patients treated (20 mesothelioma, 12 ovarian 
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cancer, and two pancreatic cancer), four had minor response and 19 had stable disease, including 

complete resolution of ascites in two patients[47]. The immunotoxin was well tolerated and led to some 

clinical results, warranting further clinical trials. 

MORAb-009 is a chimeric (mouse/human) IgG1 with high affinity and specificity for mesothelin. 

The heavy- and light-chain variable regions of mouse antimesothelin scFv (obtained by panning on 

mesothelin-positive cells a phage display library made from an immunized mouse) were grafted with 

human IgG1 and κ constant regions. MORAb-009 was shown to prevent adhesion of mesothelin-bearing 

tumor cells to MUC16-positive cells and to elicit cell-mediated cytotoxicity on mesothelin-bearing tumor 

cells. Treatment that included MORAb-009 in combination with chemotherapy led to a marked reduction 

in tumor growth in nude mice compared to chemotherapy or MORAb-009 treatment alone[48]. This 

antibody is now being evaluated in clinical trials. A phase I study of MORab-009 on 24 mesothelioma, 

pancreatic, and ovarian cancer patients gave encouraging results. MORAb-009 was well tolerated and six 

subjects demonstrated stable disease warranting additional therapy[49]. Given the favorable safety profile 

and possibility of clinical benefit, a phase II study of the efficacy of MORAb-009 with gemcitabine in 

unresectable pancreatic cancer is underway. 

Carcinoembryonic Antigen (CEA, CEACAM5)  

Carcinoembryonic antigen (CEA), a glycoprotein, is a tumor-associated antigen and elevated levels are 

detected in the cell membrane of tumors derived from the epithelium. CEA is overexpressed in over 90% 

of pancreatic cancers[50]. Binding of antibodies to CEA has been shown to inhibit cell migration, cell 

invasion, and cell adhesion, and to have antimetastatic effect in vivo[51]. In a phase I/II clinical trial, 

Sultana and colleagues enrolled 25 patients to assess the safety and efficacy of I
131

-labeled, anti-CEA, 

chimeric (sheep/human), antibody KAb201 in patients with unresectable pancreatic adenocarcinoma[52]. 

In this approach based on the use of a monoclonal antibodies conjugated with radionuclides, the radiation 

component has a bystander effect, i.e., killing of adjacent unbound cells, while lessening toxicity to 

normal tissues. The results demonstrated tumor targeting, with hematological toxicity of varying degrees. 

Survival and efficacy data were comparable to the median survival and efficacy seen with single-agent 

gemcitabine. An antigenic response directed to the chimeric antibody was observed and might constitute a 

limitation for repeated dosing. 

Insulin-Like Growth Factor 1 Receptor (IGF-1R)  

Cixutumumab (IMC-A12) is a fully human, monoclonal antibody (IgG1) against type 1 insulin like 

growth factor receptor (IGF-1R). The IGF-1R and its ligands IGF-1 and IGF-2 have been implicated as 

playing key roles in the development, maintenance, and progression of cancer[53]. IGF-1R signaling is 

known to activate both the PI3K/Akt and the MAPK pathways, leading to increased tumor cell survival 

and proliferation, respectively. By blocking this signaling, cixutumumab has demonstrated encouraging 

results in preclinical studies, with significant growth inhibition of breast, renal, and pancreatic tumors, 

and a marked increase in apoptotic tumor cells in antibody-treated animals[54]. A phase I/II clinical trial 

is currently comparing the efficiency of gemcitabine and erlotinib with or without cixutumumab for the 

treatment of patients with metastatic pancreatic cancer (NCT00617708). 

AMG 479 is also a fully human, monoclonal, IgG1 antibody that binds IGF-1R without cross-reacting 

with the closely related insulin receptor. AMG 479 has been shown to inhibit binding of IGF-1 and IGF-2 

to the receptor[55]. As a single agent, AMG 479 strongly inhibited the growth of pancreatic carcinoma 

xenografts, and long-term treatment was associated with reduced IGF-IR signaling activity and 

expression. The combination of AMG 479 with gemcitabine resulted in additive inhibitory activity both 

in vitro and in vivo. A phase II study of AMG 479 as single therapy in advanced carcinoid and pancreatic 

neuroendocrine tumors is currently ongoing (NCT01024387). 
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PRECLINICAL STUDIES 

Several other tumor targets have been explored as markers for antibody therapy of pancreatic cancer.  

Nonspecific Cross-Reacting Antigen (NCA, CEACAM6) 

CEACAM6 (CD66c) is an integral member of the CEA family. It is a cell-surface glycoprotein composed 

of an extracellular region containing three immunoglobulin-like domains (344 residues) and linked to the 

plasma membrane via a glycophosphoinositol anchor. CEACAM6 is capable of homophilic and/or 

heterophilic adhesion to other CEACAM family members[56]. CEACAM6 is expressed on normal 

human epithelial and myeloid cells, but the level of expression is 1 to 2 logs lower compared with 

expression in malignant tissue[57]. Several gene-expression profiling studies on pancreatic ductal 

adenocarcinoma (PDA) cell lines[58,59] and human PDA biopsy samples[60,61] have shown a 20- to 25-

fold overexpression of CEACAM6 compared with normal pancreatic ductal epithelial cells[58,61]. 

CEACAM6 is also overexpressed in several other epithelial carcinomas (colon, breast, ovarian and non–

small cell lung cancers)[57]. Based on these data, CEACAM6 appears as an attractive pancreatic tumor 

marker. However, expression of CEACAM6 protein has been noted in a variety of normal human tissues, 

including granulocytes, and antigen-dependent toxicity cannot be easily tested in the preclinical model 

since rodents do not express CEACAM6. A recent interesting preclinical study has evaluated the potential 

of an immunoconjugate between a chimeric (mouse/human) anti-CEACAM6 IgG and an antimitotic 

agent, maytansinoid (DM1), in Cynomolgus macaques[62]. The authors first confirmed the expression of 

CEACAM6 in >90% of invasive pancreatic adenocarcinomas as well as in intraepithelial neoplastic 

lesions by tissue macroarrays, and obtained a marked tumor growth inhibition in xenografted mice. As 

expected, the treatment induced neutropenia in macaques as a result of antigen-dependent toxicity. 

However, this phenomenon was fully reversible and the authors observed a repopulation from the pool of 

CEACAM6-negative, lineage-committed progenitors in a time span shorter than typically seen after bone 

marrow ablation in the course of conventional, nontargeted, cytotoxic chemotherapy. Beside this rapid, 

but reversible, neutrophil depletion, no adverse effects were seen, which encourages further studies of this 

immunoconjugate. 

CEACAM6 has also been targeted in another preclinical study for the treatment of pancreatic ductal 

adenocarcinoma. The authors produced a humanized, anti-CEACAM6 scFv fragment and PEGylated the 

fragment through the introduction of a cysteine in the linker to increase serum half-life[63]. In vivo, the 

fragment inhibits tumor growth in a murine xenograft model through inhibition of angiogenesis and 

proliferation. It was shown to induce targeted tumor cell apoptosis specifically, without dependence on 

antibody-dependent cellular cytotoxicity, complement-dependent cytotoxicity, or conjugation with a 

cytotoxic agent. The proposed mode of action was high-affinity binding to CEACAM6, which enhances 

the disruption of domain-1 homophilic dimer with consequent functional inhibition of CEACAM6, 

known to play an important role in apoptosis resistance in conditions where cells lose contact with the 

extracellular matrix[64]. These promising results justify clinical trials.             

Epithelial Cell Adhesion Molecule (EpCAM)  

EpCAM is a glycosylated, 30- to 40-kDa, type I membrane protein, which is expressed in a variety of 

human epithelial tissues, cancers, and progenitor and stem cells. EpCAM is comprised of an extracellular 

domain with EGF- and thyroglobulin repeat-like domains, a single transmembrane domain, and a short 

26-amino-acid intracellular domain. EpCAM in normal cells is predominantly located in intercellular 

spaces where epithelial cells form very tight junctions. It has, therefore, been speculated that EpCAM on 

normal epithelia is sequestered and, therefore, much less accessible to antibodies than EpCAM in cancer 

tissue, where it is homogeneously distributed on the cancer cell surface. 
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Moreover, EpCAM is expressed on essentially all human adenocarcinomas, on certain squamous cell 

carcinomas, on retinoblastomas, and on hepatocellular carcinomas[65]. Importantly, EpCAM is part of 

the signature of cancer-propagating cells in numerous solid tumors and of normal progenitor and stem 

cells[11,66]. Moreover, EpCAM is apparently needed to maintain distinct cancer cell attributes[67] and, 

potentially, cancer stem cell phenotypes as well. 

Recently, several studies using various formats of bispecific antibodies (bsAbs) to retarget T cells to 

tumor cells have yielded outstanding results in cancer therapy studies[18,19]. Interestingly, several of 

these molecules target EpCAM. Catumaxomab, an EpCAM x CD3 bsAb, represents the first success of 

this new class of therapeutic antibodies as it was recently approved for the intraperitoneal treatment of 

patients with EpCAM-positive malignant ascites[68]. In clinical trials, this molecule could lead to very 

clear clinical results, including a reduction of EpCAM-positive malignant cells in ascites by up to 5 

logs[69] and the induction of a long-term anticancer immunity[70]. The efficiency of this new molecule 

for pancreatic cancer should soon be assessed. 

MT-110 is another EpCAM x CD3 bsAb that can induce potent redirected lysis of target antigen-

expressing cells at pico- to femtomolar concentrations, which is accompanied by highly conditional T-cell 

activation. Redirected lysis involves formation of a cytolytic synapse, possibility of serial lysis at very 

low effector-to-target (E:T) ratios, and no longer depends on MHC class I expression or costimulatory 

molecules[71,72]. This molecule is also expected to be tested soon for pancreatic cancer treatment. 

Finally, a third EpCAM x CD3 bsAb is yielding promising results for pancreatic cancer treatment. 

HEA125 x OKT3, a hybrid-hybridoma-derived murine bsAb, has recently been investigated in preclinical 

studies using BxPC-3 pancreatic carcinoma xenografts in nonobese diabetic (NOD) severe combined 

immunodeficiency (SCID) mice[73]. The bsAb could significantly retard growth of xenografts in vivo, 

and was shown to increase duration of the contact between migrating lymphocytes and tumor cells, and to 

stimulate secretion of effector cytokines from nonstimulated peripheral blood mononuclear cells 

(PBMCs) in the presence of EpCAM-bearing tumor cells in vitro. 

Mucin 1 (MUC-1) 

MUC-1 is a mucin expressed by >85% of invasive pancreatic adenocarcinomas, including early stage I 

disease and the precursor lesions, pancreatic intraepithelial neoplasia, and intraductal papillary mucinous 

neoplasia[74]. PAM-4, a murine anti-MUC-1 IgG, targets an epitope of MUC-1, which is absent from 

normal and inflamed pancreatic tissues, as well as from most other malignant tissues[75]. Preclinical studies 

demonstrated that PAM-4 was able to target pancreatic cancer with high specificity, achieving high 

concentrations at the tumor site using xenografted athymic nude mice. More recently, TF10, an anti-MUC-1 

x HSG bsAb, was derived from this monoclonal antibody. This bsAb can be used in pretargeted approaches 

in which the bsAb is first injected and is allowed to accumulate in the tumor before injecting, in a second 

step, a radiolabeled hapten (
111

In-HSG) that is captured by the bsAb at the tumor site. This method can lead 

to very high tumor-to-normal tissue contrasts. When compared with its parental monoclonal antibody in 

studies conducted in nude mice bearing CaPan1 human pancreatic cancer xenografts, TF10 led to much 

greater tumor/blood ratios of 
111

In-HSG (1,000:1 at 3 h) compared to 
111

In-PAM4-IgG (5:1 at 24 h)[76]. The 

high therapeutic potential of this approach should thus soon be tested in the clinic. 

Death Receptor 5 (TRAIL-R2)  

Tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) binds to death receptors 4 and 5 (DR4, 

DR5) to transduce apoptotic signals. TRAIL receptors are increased in the membrane of cancer cells. 

More than 50% of cancer cell lines tested in vitro are TRAIL susceptible. Brain, lung, pancreatic, liver, 

ovary, rectum, cervix, testes, thyroid, stomach, and laryngopharynx cancers frequently overexpress DR4 

and DR5[77]. However, the ability of soluble human TRAIL to induce apoptosis of normal human 
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hepatocytes in vitro has raised questions regarding the potential usefulness of this agent in cancer therapy. 

TRA-8, an antihuman DR5 monoclonal antibody, induces apoptosis of most TRAIL-sensitive tumor cells 

both in vitro and in vivo. However, unlike TRAIL, it does not induce apoptosis in normal 

hepatocytes[77]. In animal models, TRA-8 produced synergistic cytotoxicity in combination with 

gemcitabine or irinotecan through enhanced caspase activation[78,79,80]. These findings, with substantial 

inhibition of tumor growth in a mouse pancreatic cancer xenograft model receiving combination therapy, 

are encouraging for antideath receptor therapy in the treatment of pancreatic cancer. Tigatuzumab, the 

humanized, IgG1 monoclonal antibody derived from TRA-8, is in ongoing phase I clinical trials at the 

moment[81]. 

Conatumumab (AMG 655) is a fully human, monoclonal agonist antibody (IgG1) to human DR5. 

This monoclonal antibody can also induce apoptosis via caspase activation and could inhibit tumor growth 

in colon (Colo205 and HCT-15), lung (H2122), and pancreatic (MiaPaCa2/T2) xenograft models[82]. 

These results suggest that conatumumab is a potential therapeutic agent for treating patients with multiple 

tumor types, including pancreatic tumors. Clinical trials are expected for soon. 

Other Targets of Interest 

Human Claudin-4 (CLDN4) is a tetraspanin transmembrane protein consisting of 209 amino acids (aa) 

belonging to the CLDN family, which play an important role in tight junction formation and function. 

The protein structure consists of cytoplasmic N- and C-termini, four transmembrane domains, and two 

extracellular loops. Immunohistochemical analysis and differential expression studies between normal 

and cancerous tissues indicate that CLDN4 expression is highly detectable in a variety of carcinomas, 

including pancreatic cancers. However, CLDN4 protein is detectable in normal breast, prostate, bladder, 

and gastrointestinal mucosa, although its expression is substantially less intense than that seen in cancer 

tissue samples[83]. Recently a chimeric (mouse/human) anti-CLDN4 has been evaluated in preclinical 

studies[84]. The monoclonal antibody KM3934 induced dose-dependent antibody-dependent cellular 

cytotoxicity and complement-dependent cytotoxicity in vitro, and significantly inhibited tumor growth in 

CFPAC-1 xenografted SCID mice, indicating that CDLN4 might be a valuable pancreatic tumor target. 

Fetoacinar pancreatic protein (FAPP) is present at the cell surface of human pancreatic tumoral 

tissues. A murine antibody, mAb16D10, recognizing the O-glycosylated COOH-terminal domain of 

FAPP, has been developed. In a recent study[85], this monoclonal antibody stained 22 tumoral tissues 

over the 22 tested, independently of the tissue pretreatment (frozen sections or formalin-fixed, paraffin-

embedded sections) and presented a unique specificity for membranes of neoplastic cells. Furthermore, 

the mAb16D10 did not react with all nonpancreatic tumoral and normal tissues tested. Moreover, 

intraperitoneal injections of mAb16D10 in mice xenotransplanted with human pancreatic tumoral SOJ-6 

cells decreased the growth rate of the established tumor[86], indicating that this target might be of interest 

for antibody-based pancreatic cancer therapy. 

CONCLUSION 

There is an obvious need for new therapies in pancreatic cancers. Therapeutic antibodies have been 

successful in a number of malignancies, but results obtained on pancreatic cancer treatments have so far 

been extremely frustrating, with all phase III clinical trials leading to failure. However, recent years have 

seen the emergence of new antibody formats, such as bispecific antibodies and the discovery of highly 

specific tumor markers. These advances should yield major improvements in a near future and should 

ultimately greatly impact the treatment of this devastating disease. 
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