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Abstract: Photodynamic therapy (PDT) is an appealing therapeutic modality in management of
some solid tumors and other diseases for its minimal invasion and non-systemic toxicity. However,
the hydrophobicity and non-selectivity of the photosensitizers, inherent serious hypoxia of tumor
tissues and limited penetration depth of light restrict PDT further applications in clinic. Functional
polymer nanoparticles can be used as a nanocarrier for accurate PDT. Here, we elucidate the
mechanism and application of PDT in cancer treatments, and then review some strategies to
administer the biodistribution and activation of photosensitizers (PSs) to ameliorate or utilize the
tumor hypoxic microenvironment to enhance the photodynamic therapy effect.
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1. Introduction

Photodynamic therapy (PDT) is a non-systemic therapeutic procedure and can function only when
combining with three nontoxic individual components (the light-activated photosensitizer, specific
light source and molecular oxygen) [1–8]. The photosensitizers (PS), once activated by light of matched
wavelengths and dose, can undergo chemical reaction through two types of mechanisms [9,10]. In type
I reaction, free radicals and radical ions are formed through the electron/hydrogen transfer process
between photosensitizers and substrate molecules [11]. In type II mechanism (the dominant process in
PDT), highly cytotoxic singlet oxygen species (1O2) are produced through the energy transfer process
from PS to molecular oxygen (Scheme 1) [9,12]. The optimal effective action radius of the 1O2 is in
20 nanometers due to its high reactivity, which means the PDT is a highly localized treatment [5,13–19].

The PDT is of dual selectivity for the preferential accumulation of PSs in neoplastic lesions and
precise spatiotemporal control of the light. Therefore, PDT has outstanding advantages in rapidly
destroying the primary tumor and avoiding unnecessary side effects to healthy tissues [20]. As a
noninvasive therapeutic mode, PDT is a more secure, convenient, and less painful therapeutic option
and can significantly improve the life quality of patients [21]. Currently, photodynamic therapy
has become a new intriguing treatment modality in the field of age-related macular degeneration
(AMD) [22], polypoidal choroidal vasculopathy (PCV) [23–30], non-melanoma skin cancer, oral
premalignant lesions, head and neck squamous cell carcinoma dermatology, and dentistry [23,31–35].
Additionally, the PDT can also interrupt the vessel integrity and promote the delivery efficiency of
drug load [36–38].

However, conventional photodynamic therapy also suffers from several dilemmas, including the
light penetration depth in tissues and activation efficiency to PSs [39–41], oxygen reliance, and oxygen
consumption during PDT [42–44], biodistribution of PSs in the targeted site and persistent skin
and eyes photosensitivity [9,17,45–51]. Therefore, great efforts have been devoted to manage the
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distribution of PSs, increase penetration depth for deep tissue treatment, and improve oxygen supply
of the tumor tissue [1,40,41,43,52–59].
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PDT [64,65]. It can, thus, be generally expected that the PSs can selectively concentrate in the targeted 
tumor site effectively and minimally reside in non-targeted normal tissue. Functional polymer 
nanocarriers can enhance the solubility of hydrophobic PSs and prevent their aggregation in blood. 
Meanwhile, the drug delivery system can administrate the accumulation of hydrophobic drug by 
specific target recognition and/or enhanced permeability and retention effect (EPR) of solid tumors. 
Hence, the nanocarriers have been promising platforms to modulate the biodistribution of PSs 
(Figure 1) [66]. 

Scheme 1. Mechanism of action of photodynamic therapy (PDT). Reproduced with permission from [8].

Nanocarriers, particularly functional polymer nanocarriers, offer unique therapeutic application
platforms for PDT because of their controllable size and shape, and extensible functionalities [3,6,47,60,61].
Numerous reviews have been published to discuss the conventional design concepts for efficient
delivery and specific activation of PSs, introduce the revolutionary strategies for deep tumor treatment
and summarize the comprehensive application of nanoparticles for enhanced PDT [6,47,61–63]. On this
basis, this review is devoted to functional polymer nanocarrier platforms which can enhance PDT due
to their specific tumor targeting or stimulus responsiveness. We will attempt to provide an overview
of the nanocarriers by focusing on the work on administrating the biodistribution and activation of
PSs, improving the tumor hypoxic microenvironment, as well as extending to the combination therapy
of photodynamic therapy and other treatments.

2. Administration of PSs

The biodistribution and photochemical activity of PSs are important parameters during PDT [48,60].
In this part of the review, we will introduce how to administer the photosensitizers with functional
polymer nanocarriers.

2.1. Administrate the Biodistribution of PSs via Targeting

The biodistribution of the photosensitizers in vivo is a clinically intractable issue for PDT [19].
After entering the bloodstream, drugs can relocate in the body as a function of time and affect
the PDT [64,65]. It can, thus, be generally expected that the PSs can selectively concentrate in
the targeted tumor site effectively and minimally reside in non-targeted normal tissue. Functional
polymer nanocarriers can enhance the solubility of hydrophobic PSs and prevent their aggregation
in blood. Meanwhile, the drug delivery system can administrate the accumulation of hydrophobic
drug by specific target recognition and/or enhanced permeability and retention effect (EPR) of solid
tumors. Hence, the nanocarriers have been promising platforms to modulate the biodistribution of PSs
(Figure 1) [66].
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Figure 1. Schematic presentation of passive and active PDT. Reprinted from International Journal of 
Pharmaceutics, 392, Fabienne Danhier et al., Active and passive tumor targeting of a novel poorly-
soluble cyclin-dependent kinase inhibitor, JNJ-7706621, 20–28., Copyright (2010), with permission 
from Elsevier [67]. 

2.1.1. Passive Targeting 

The passive target is a common strategy to increase the specific accumulation in target tissues 
[15,63]. By optimizing the physicochemical properties, the polymer nanocarriers can accumulate in 
the tumor tissues selectively through the EPR effect due to their prolonged circulation time in the 
blood [3]. Many nanocarrier systems based on biodegradable polymer have been used in PDT. By 
incorporating hydrophobic PSs into nanoparticles, and the non-aggregated PSs revealed higher 1O2 
quantum yield than their aggregates [68,69]. The nanoparticles can selectively accumulate within the 
target tumor tissue and enhance the light-dark toxicity ratio [70,71]. 

The geometrical shape of nanocarrier has a powerful impact on cellular internalization [72,73]. 
Rod-like nanoparticles can facilitate the cellular uptake than spherical nanoparticles in general 
[74,75]. Tumor-triggered geometrical-shape-switched nanoparticles based on chimeric peptide 
(PEAK-DMA) was reported by Han et al. [76]. The chimeric peptide can self-assemble into spherical 
nanoparticles in neutral solution while forming short rod-like nanoparticles when triggered by tumor 
extracellular acidity. This nanocarriers with geometrical shape switch can enhance the targeted PDT 
efficacy and reduce cytotoxicity to normal tissue (Figure 2). 

Figure 1. Schematic presentation of passive and active PDT. Reprinted from International
Journal of Pharmaceutics, 392, Fabienne Danhier et al., Active and passive tumor targeting of
a novel poorly-soluble cyclin-dependent kinase inhibitor, JNJ-7706621, 20–28., Copyright (2010),
with permission from Elsevier [67].

2.1.1. Passive Targeting

The passive target is a common strategy to increase the specific accumulation in target tissues [15,63].
By optimizing the physicochemical properties, the polymer nanocarriers can accumulate in the tumor
tissues selectively through the EPR effect due to their prolonged circulation time in the blood [3].
Many nanocarrier systems based on biodegradable polymer have been used in PDT. By incorporating
hydrophobic PSs into nanoparticles, and the non-aggregated PSs revealed higher 1O2 quantum yield
than their aggregates [68,69]. The nanoparticles can selectively accumulate within the target tumor
tissue and enhance the light-dark toxicity ratio [70,71].

The geometrical shape of nanocarrier has a powerful impact on cellular internalization [72,73].
Rod-like nanoparticles can facilitate the cellular uptake than spherical nanoparticles in general [74,75].
Tumor-triggered geometrical-shape-switched nanoparticles based on chimeric peptide (PEAK-DMA)
was reported by Han et al. [76]. The chimeric peptide can self-assemble into spherical nanoparticles
in neutral solution while forming short rod-like nanoparticles when triggered by tumor extracellular
acidity. This nanocarriers with geometrical shape switch can enhance the targeted PDT efficacy and
reduce cytotoxicity to normal tissue (Figure 2).
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The surface property of the nanoparticles is another important factor for passive target.
Nanoparticles with negatively-charged surfaces are effective in evading the reticuloendothelial
system (RES) and prolong blood circulation [51,77–79]. However, the electro-positivity is much
better to accelerate cellular internalization for the electro-negativity of cell membranes. Liu et al.
developed a charge reversible upconversion nanocarrier loading with Chlorin e6 (Ce6) to achieve
tissue-penetrating PDT [59]. The nanocarrier can expose positively charged naked surface by removing
the dimethylmaleic acid (DMMA) groups under the slightly acidic tumor microenvironment and
significantly enhance cell uptake.

2.1.2. Active Targeting

Active targeting, distinguishing from passive targeting, delivers PSs to cancer tissue specificity
based on molecular recognition [19]. During positive targeting, specific ligands of the carriers can
recognize and then bind to appropriate receptors overexpressed only at the target site. In this way, active
targeting can guarantee the specific accumulation of nanoparticles in tumor tissues and enhance the
specificity of PDT. The targeting moieties, such as peptides [66,80,81], aptamers [82], and proteins have
been applied to target tumor vasculature [83,84], tumor cells [85], and subcellular organelles [45,46].

The vasculature targeting performs its function in two ways: destroying the vasculature directly
or enhancing the delivery capacity of PSs to the tumor. Destruction of the endothelium, which shows
no differences among different types of solid tumors, can suppress cancer growth and metastatic
ability by cutting off the supply of oxygen and nutrients [15]. Additionally, vasculature targeting can
significantly increase nanocarrier accumulation in tumor tissue by interrupting the vessel integrity.

Vascular endothelial growth factor (VEGF) and its receptor are important hallmarks overexpressed
on the tumor cells. Both of them can be designed as main antiangiogenic targets [56,86]. Combining



Pharmaceuticals 2018, 11, 133 5 of 23

with PDT, VEGFR has been a validated molecular target for head and neck squamous cell carcinoma [34,
86–90].

Vascular cell adhesion molecule-1 (VCAM-1) is bound up with tumor cell adhesion and
metastasis [84,89]. Fu et al. designed a targeted nanodrug (PVQ) by loading the PSs and VCAM-1
binding peptides with conjugated water-dispersible colloidal [84], indicated that the PVQ can target
VCAM-1 expressing tumor cells selectively while have no obvious preferences to the normal cells [84].

The matrix metalloproteinases (MMPs) are the drivers of angiogenesis and metastasis,
and overexpressed on endothelial tumor cells [89,91]. Cui et al. developed a redox-responsive
nanocarriers for MMP2-targeting photodynamic therapeutic (Figure 3) [52]. The model PS was modified
with hydrophobic polypeptide and hydrophilic polyethylene glycol (PEG) via MMP2-cleavable
conjugate structure and GSH-responsive disulfide linker, respectively. After forming nanoparticles
via self-assembly in aqueous solution, the nanocarrier can specifically accumulate in the areas of the
tumor owing to the EPR effect and MMP2 targeting. After that, the free Ce6 was delivery in tumor cells
triggered by GSH and significantly improved PDT efficiency [52].
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in vivo. Copyright (2016) American Chemical Society [52].

The RGD sequence can be recognized by dozens of integrins and endow prodrug with targeting
function when be integrated into nanocarriers [92–96]. αvβ3 integrin is closely related to the endothelial
cell migration by impacting calcium-dependent signaling pathway and it is overexpressed mainly
on neovascular endothelial cells [19,89]. Xie et al. designed a tumor vasculature targeted PDT
nanocarriers using RGD-modified ferritin (RFRT) to target the αvβ3 integrin [83]. The nanoparticles can
recognize the neoplastic endothelial cells specifically through binding affinity of multiple RGD ligands
towards αvβ3 integrin. After photoirradiation at a low dose, the permeabilization of vasculature in
tumors is enhanced significantly and the drug release efficiency to tumor is increased by as much
as 20.08-fold [83]. In addition, there are a lot of other hallmarks related to the tumor vasculature,
which can be used in active targeting of PDT [67].
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Tumor accumulation of PSs is an important step in PDT. Nevertheless, accelerated cellular
internalization is the guarantee of effective PDT [97,98]. Tumor cell-targeted PDT is a responsible
strategy to accelerate the phagocytosis/endocytosis of nanocarriers [51,99,100]. Nanocarriers grafted
with targeting ligands can recognize and adhere to the surface receptors overexpressed by tumor
cells and then improve the internalization ability. Numerous receptors can work as targets to develop
internalization-prone drug delivery systems, such as folate (FA) receptor [101], epidermal growth
factor receptor [90], transferrin receptor [102], and proteins/glycoproteins [103].

FA-targeted PDT can increase the cellular internalization via receptor-mediated endocytosis.
Folic acid is an essential reactant in the synthesis process of nucleotide bases and folate receptors
are overexpressed on the surfaces of the malignant cells. The stable, inexpensive, easily conjugated
characteristics make folic acid a promise candidate ligands for targeted cancer therapy [85,104–107].
Cheng et al. developed a charge-switchable nanocapsules for FA-targeted chemo/photodynamic
therapy [79]. The surface charge of nanocapsules can be switched to positive in mildly acidic conditions
after the protonation of oleylamine and then facilitate the endocytosis by means of FA-targeting.
Chang et al. reported a pH-responsive upconversion drug delivery systems for near infrared PDT [41].
The upconversion nanoparticle was grafted with FA, and then it was manufactured by loading
PEGylated polymeric lipid vesicles (PLV). The nanocarrier maintains stable in blood circulation
and enhances the accumulation in the tumor via the EPR effect. Once stimulated by mildly acidic
conditions in tumor sites, the shell of PEGylated PLV is removed and the exposed FA ligand can
increase cellular internalization.

Transferrin is a serum protein participating in the circulating iron transport through the blood
into cells [7]. Transferring receptor is overexpressed on several types of cancer cells surfaces and it
is closely correlated with cell growth, proliferation and metastasis [19]. Many drug delivery systems
based on transferrin targeting have been developed for transporting PSs to target cells [102,108,109].
Yu et al. prepared a transferrin-modified nanoparticle loaded with hypocrellin A to enhance the
antitumor efficacy of the PS [110]. The size distribution of the nanoparticle was around 96–156 nm in
aqueous solution, which avoided the hydrophobic defect of PS and enhanced the ability of targeting to
transferrin receptor. Animal experiments on A549 tumor-bearing model in nude mice showed that the
drug delivery system can achieve remarkable tumor inhibition rate while slight side effects in normal
organs. Actively targeting polymeric nanoparticles conjugated with a peptide (hTf) ligand were used
for against triple-negative breast cancer (TNBC) [111]. The hTf can specifically bind to the transferrin
receptor and promote internalization of the nanocarrier. This remarkable selective phototoxicity in
TNBC cells implies that the transferrin-targeted nanocarrier is a promising platform for the treatment
of TNBC.

Epidermal growth factor (EGF) is a small polypeptide related to cell mitosis and angiogenesis [112].
Epidermal growth factor receptor (EGFR), a tyrosine kinase receptor, is overexpressed on many
epithelial tumors cells surfaces [113–115]. This makes EGFR a potential important target for PDT [7,19,89].
Tan et al. designed an aptamer-based upconversion nanoparticles, which targeted the protein tyrosine
kinase 7, for targeted PDT and bioimaging [82]. The sgc8 aptamer can specifically bind toward the
EGFR and achieve highly efficient and selective cytotoxicity. Yang et al. developed a pH-responsive
EGFR-targeting nanocarrier for PDT of colorectal cancer [116], and the mixed micelle contained
pH-responsive copolymers and EGFR-targeting ligand. The nanocarrier was used to encapsulate
hydrophobic Ce6 to enhance the photodynamic therapy effect. Biological experiments confirmed
that mixed micelle can specifically target the colorectal cancer cells and significantly suppress tumor
growth (Figure 4) [116].
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CD44 receptor is a familiar target overexpressed on tumor cells, which can be specifically
recognized by hyaluronic acid (HA) [117,118]. Nanoparticles based on hyaluronic acid was developed
to encapsulate Ce6 and DOX for chemo-photodynamic therapy [119]. The nanocarriers can accumulate
at the tumor site via EPR effect and be internalized rapidly for the active targeting of hyaluronic acid
to the CD44. In endosomes or lysosomes, the inclusion was released for pH-responsive disassembly
and enhanced the synergistic therapeutic efficacy accordingly [120].

There are many changes in physiology and biochemistry associated with the malignant cell
transformation, such as steroids [121], bisphosphonates [122,123], αv integrin receptors [4,53,54,124],
and glycoproteins or lectins [103,125]. These changes can be designed as targets to enhance the
specificity of cancer therapies [7].

Singlet oxygen species produced in type II processes are the most important ROS in PDT. However,
the optimal effective radius of 1O2 can be negligible compared to the tumor cells (104–105 nm in
diameter) [7], resulting in that elevated tumor cell internalization does not necessarily improve the
effect of PDT. Therefore, subcellular targeting is another area worthy of exploration to improve
the photodynamic response after cell internalization [48,126]. At present, subcellular targeting
for mitochondria [127], endoplasmic reticulum [45,128], lysosome [126], and nucleus [46,129] has
been developed with only a fairly limited number [48]. Among which, mitochondria targeting is of
special concern.

Mitochondria, cellular organelle with a two-membrane structure, has high membrane
potential (negative inside) and this makes it possible to target the mitochondria with cations,
triphenylphosphonium (TPP) cation for example [63,130,131]. A smart drug delivery system with
the function of tumor cell and mitochondria targeting was fabricated based on graphene oxide
(NGO) [127]. Integrin αvβ3 monoclonal antibody was used to modify NGO and target the tumor
cells by the specific recognition between the integrin and its receptor on the cancer cells surfaces.
Just as designed, the nanocarrier can effectively target the tumor cells and enhance cellular uptake.
Once internalized, the modified NGO can escape from lysosomes and subsequently selectively
accumulate in the mitochondria by electrostatic interaction with the negatively-charged mitochondria
membrane. Cai et al. reported a pH and GSH cascade-responsive nanocarrier for dual-targeted
chemo-photodynamic therapy [101]. Cationic porphyrin derivative, as the mitochondria-targeting PS,
was encapsulated in polymeric micelle. The FA and camptothecin (CPT) were covalently conjugated
with the polymeric micelle to modulate the biodistribution of drugs on systemic, local, and subcellular
levels. After accumulating at tumor site via EPR effect, the prodrug nanocarrier can significantly
enhance uptake efficiency by the folate receptor-mediated endocytosis. When escaping from lysosome,
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the CPT and PS are released in response to GSH in cytoplasm. Furthermore, the PS could selectively
target mitochondria by electrostatic interaction and induce mitochondrial apoptotic, while the CPT
could travel to the cell nucleus by diffusion and implement chemotherapeutic (Figure 5) [101].
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Apart from the biodistribution, activation of PSs is another keypoint [132,133]. Although the PS
can escape from the carrier and recover its activation after the biodegradation of polymer nanocarriers,
stimuli responsive drug delivery systems are preferred [134–139].

2.2. Administer the Activation of PSs by Responses

Targeting strategies to restrict the localization of the PSs are not always effective for the unexpected
payload leakage and retention at non-target sites during systemic circulation. Additionally, there is
irreconcilable contradiction between enhancing targeting ability and reducing photosensitivity to
skin and blood vessel: contradictory—needs for prolonging the retention time of the PSs in the blood
against accelerating elimination from the blood circulation. Therefore, modulating the activation of
PSs, which means the PSs can be activated and demonstrate phototoxicity only in the targeting site, is
a reliable drug delivery strategy for PDT.

5-aminolevulinic acid (5-ALA) can be metabolized to protoporphyrin IX (PpIX) via heme
biosynthetic enzymes in certain tumor cells [140–142]. The PpIX exhibits red fluorescence and can serve
as a natural photosensitizer for PDT when activated with a light source of appropriate wavelength [143].
Now, the activatable 5-ALA, which can be orally administered, has been approved by European Agency
for the Evaluation of Medicinal Products and FDA for the resection of malignant glioma in adults and
treatment of actinic keratosis, respectively [16,31,140,142–144]. Image-guided photodynamic therapy
based on 5-ALA offers an intriguing concept for the clinical trials of malignant gliomas recently [145].
Blood-brain barrier (BBB) can protect the central nervous system (CNS) by preventing passage of
most harmful substances and circulating cells from entering the brain [146]. However, the BBB also
makes the diseases of the brain and spinal cord the most dramatic disability in society for its shielding
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effect to the most of the beneficial drugs [147,148]. 5-ALA-based PDT, that can temporally increase
the permeability or induce the disruption of the BBB, can enhance the anti-cancer effect by increasing
permeability of the BBB to drugs [149,150].

Activatable PS formulations based on polymer nanocarriers should be able to switch between the
deactivation and activation state [151]. In the deactivation state, the PSs can keep dormant in blood
circulation and normal tissues, and demonstrate negligible phototoxicity even under illumination.
After reactivated in response to the stimuli in tumor sites, the PSs recovery their activity and generate
singlet oxygen to kill the cells directly when irradiated.

Many methods have been implemented to inhibit the generation of singlet oxygen, containing
contact quenching, increasing the internal conversion, enhancing the Förster resonance energy transfer
(FRET), accelerated dynamic quenching, and triplet state quenching [152], among which, quenching
through the FRET is the most frequently used approach to maintain the deactivation state of the PS.
FRET is an energy transfer process associated with space length (the distance between photosensitizer
and its counterpart, quencher for example, should be in nanoscale) and spectral overlap (high overlap
ratio between the absorptive spectral of chromophore acceptor and fluorescence emission spectral of
PS is necessary) [153]. Stimuli-sensitive nanocarriers are ideal platforms to structure activatable PSs.
They can control the activation of PSs by adjusting the distance of PS and quencher [154]. Many stimuli,
such as external stimuli (e.g., light [155]) and internal environment of tumor (e.g., pH [135,139,156–163],
enzyme [91,164], GSH [165–168], and ROS [169–176]), have been used as the keys to turn on the PSs by
increasing the distance among the PSs.

Self-quenchable nanoparticles can control the off/on states of the PSs by regulating their
aggregation/disaggregation [40,177]. The self-assembled nanoparticles tend to concentrate PSs into
the nano-sized core and resulting in self-aggregation. When irradiated, the PS leaps into an excited
singlet state from its ground state and then the neighboring PS molecules can quench the excited PS
through energy transfer, resulting in the interruption of singlet oxygen generation [105,120,178,179].
After rapidly reversed from the suppression at the tumor site, the activated photosensitizers
demonstrate effective singlet oxygen generation.

Chen et al. designed a plasma membrane activatable polymeric nanocarrier for enhanced
photodynamic therapy [17]. The hydrophobic protoporphyrin IX (PpIX) and hydrophilic PEG
were conjugated into biodegradable glycol chitosan (GC) and the polymer can self-assemble into
nanocarriers in aqueous solution. The PSs in the inner core can be quenched effectively due to
energy transfer. Once encountering plasma membranes, the PpIX moieties can insert into plasma
membranes for their membrane affinity. The disassembling induced by plasma membranes can recover
the activity of PpIX, leading to significantly enhanced phototoxicity. Glutathione (GSH) is much
abundant in tumor intracellular environment (2–10 mM) and can be used to modulate the activation of
PSs [180–183]. Huh et al. developed a GSH responsive bioactivatable delivery carrier for enhancing
PDT [50]. The photosensitizers, pheophorbide a (PhA), were chemically conjugated to a biarmed
methoxy poly(ethylene glycol) via disulfide bonds. The amphiphilic polymer prepared as aforesaid
remains photoinactive in aqueous media due to the self-quenching effects from intramolecular and/or
intermolecular. However, once getting inside the cells, the PhA were released instantaneously for the
cleavage of the disulfide bonds induced by the GSH-rich intracellular environment in tumor cells.
The activatable PSs can not only maximize the cancer treatment but also minimize the phototoxicity in
normal tissues [166].

Similar to self-quenching, PS/quencher complexation is another alternative strategy for
controlling and adjusting the photoactivity of PS sophisticatedly. Generally, photosensitizer should
conjugate with a quencher through a bioactive linker.

NIR light is an excellent external stimulus to trigger the activity of PSs for its deep penetrability
and exact controllability. Wu et al. designed a light-triggered switchable nanoparticle by quenching the
Ce6 with near-infrared (NIR) dye IR-780 iodide (IR780) to reduce skin photosensitization in PDT [184].
The nanoparticle was fabricated by encapsulating the IR780 with self-assembling albumin-PS conjugates.
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Due to the good match of the spectrum, the pathway of Ce6 for singlet oxygen generation is suppressed by
IR780 when in aggregation state, and the nanoparticle has no phototoxicity to the skin. After degradation
of IR780 under NIR irradiation, the nanocarrier disaggregates and “turns on” the photosensitizer of the
Ce6 (Figure 6).
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Figure 6. The scheme of switchable photodynamic therapy (Switch-PDT). (a) Schematic of self-assembly
of albumin-Ce6 conjugates into NP induced by a NIR-dye bridge. (b) Schematic illustrating the quench
effect of IR780 on Ce6 photosensitization (PDT OFF) and recovery of the photosensitization under
808-nm laser irradiation (PDT ON). Reprinted from Biomaterials, Yifan Zhang et al., Switchable PDT
for reducing skin photosensitization by a NIR dye inducing self-assembled and photo-disassembled
nanoparticles, 23–32, Copyright (2016), with permission from Elsevier [184].

pH-responsive polymers are preferred in the drug delivery systems. Jiang et al. conjugated Ce6 to
gold nanorod (AuNR) via a pH responsive hydrazone bond for enhancing photothermal/photodynamic
effect [185]. Before triggered, the Ce6 was quenched by the longitudinal surface plasmon resonance
(LSPR) of the gold nanorod. After engulfed by the cancer cells, the hydrazone bond was cleaved
upon the low pH in lysosomes and the Ce6 was separated from AuNR, recovering its phototoxicity
and fluorescence. Meanwhile, as a potential photo-thermal therapy reagent, gold nanorod can
translate the absorbed light of 808nm into heat and implement satisfactory photothermal therapy
(PTT) effect [186,187].

Enzymes are conventional triggers in responsive drug delivery systems. Matrix metalloproteinase-7
(MMP7) is a hallmark of endothelial tumor cells and can cleave the certain peptide linker
specifically [91,188]. Zheng et al. designed a photodynamic molecular beacons for activatable PDT by
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conjugating pyropheophorbide and black hole quencher 3 (BHQ3) with a MMP7-cleavable peptide
linker. The activity of PS can be precisely controlled by MMP7, and the PS showed less phototoxicity
until the peptide linker was cleaved in MMP7-expressing cells. This strategy can significantly minimize
PDT complications and at the same time enhance the specificity and efficacy of PDT (Figure 7).
Lange et al. have a series of excellent studies on drug activation by cancer associated enzymes for
PDT [189–191]. It is one hot topic for 5-ALA and its esters to enhance their stability, reduce acute toxicity,
and optimize systemic administration. Andrej Babič et al. designed a tunable phosphatase-sensitive
stable 5-ALA derivatives by incorporating a phosphatase sensitive group to 5-ALA [192]. The prodrugs
display controllable profiles of PpIX synthesis and fluorescence intensity.
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3. Administration of Oxygen

In type II processes, oxygen is an indispensable element in PDT. The molecular oxygen can
quench the excited triplet states of PS and subsequently generate highly cytotoxic singlet oxygen.
However, the undesirable intrinsic tumor hypoxia in most tumor tissues, caused by uncontrollable
tumor cell proliferation and imperfect vascular system, significantly affects the efficiency of PDT [193].
Even worse, oxygen consumption and tumor vasculatures shutdown during PDT will further aggravate
tumor hypoxia, thus inducing angiogenesis, local invasive growth, and metastasis of cancers [58].
Currently, many efforts have been made to ameliorate or utilize the tumor hypoxia microenvironment
to enhance the PDT efficiency.

3.1. Carrying Oxygen

Red blood cell (RBC), containing hundreds of millions of hemoglobin molecules, is a valid oxygen
storage pool [194]. Zhang et al. reported a microcarriers based on RBC to overcome hypoxia and
evade biological barriers in the process of PDT [43]. The UCNPs functionalized with hypoxia probe
(HP) and PSs were installed into the surface of the RBC. The RBC conjugated with HP can implement
site-specific O2 release in hypoxia cells only when the HP was activated by nitroreductases as well as
excited with a 980 nm laser. With the increase of O2 supply, microcarriers exhibited enhanced PDT
efficiency when exciting photosensitizer with 808 nm laser. This strategy controlling O2 release by NIR
light and site-specific hypoxia probe is a promising means to improve the oxygen supply in PDT.

Perfluorocarbon is another candidate to carry oxygen for its highlighted oxygen capacity and
extended 1O2 lifetime [195]. Due to the higher oxygen capacity, perfluorocarbon (PFC) nanodroplets
can maintain a higher oxygen content even at hypoxic tumor microenvironment [10,196,197].
Photosensitizer loaded into PFC nanocarriers is isolated in oxygen self-enriched environment and
could effectively enhance the producing of singlet oxygen. Beyond that, the longer 1O2 lifetime endows
it with long-lasting photodynamic effects.

3.2. Oxygen Generations in Situ

Elevated level of endogenous hydrogen peroxide (H2O2) is a characteristic aberrance of cancer
cells, and is associated with tumor aggressiveness and metastasis. H2O2 has been a possible source of
oxygen through decomposing it into O2 to relieve tumor hypoxia [198]. Catalase, a specific catalytic
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enzyme, is considered as a promising candidate for triggering H2O2 decomposition [199]. Zhu et al.
fabricated a chitosan based nanoparticles to load with catalase as an efficient catalyst via electrostatic
interaction for enhanced photodynamic therapy [200]. The pH-sensitive aerobic nanoparticles can
accumulate in tumors preferentially and exhibit rapid responsiveness to tumor acidic environment.
The quick release of catalase could alleviate the hypoxia in solid tumors and enhance the PDT
effect. Manganese dioxide (MnO2) is an ectogenic catalyzer which could reduce H2O2 and generate
oxygen meanwhile [201]. When loaded with polymer, MnO2 could program oxygen generation rate
and lower the acidity in the tumor microenvironment (from pH 6.7 to pH 7.2) [55,56]. Above all,
the down-regulation of hypoxia-inducible factor-1 alpha and VEGF, induced by MnO2, can regulate
the progression and aggressiveness of tumor cells [202].

3.3. Oxygen-Independent PDT

Endoperoxide derivatives can generate 1O2 by chemical reaction, which is independent with the
hypoxia microenvironment [203]. Ge et al. devised an oxygen-independent polymeric nanocarrier
for combined PTT/PDT [204]. The nanoparticle was prepared by encapsulating the cypate and
diphenylanthracene endoperoxide (DPAE, singlet oxygen donor) within a triblock copolymer.
The nanocarrier had weak negative potential at pH 7.4 and showed remarkable tumor accumulation in
tumor tissues due to prolong circulation time in the serum. After protonated in tumor tissues (at pH 6.8),
the zeta-potentials turned to positive (+11 mV) and the internalization of the nanocarrier was accelerated.
The cypate could induce remarkable hyperthermia under 808 nm NIR irradiation and implement
potential PTT. Simultaneously, the DPAE went through thermal cycloreversion and generated singlet
oxygen without participation of oxygen molecules in this process. This oxygen-independent combined
PTT/PDT therapy strategy offers a rational opportunity to extend the category of PDT (Figure 8).
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Figure 8. Schematic illustration of C/O@N-micelle with pH-responsive promoted cellular uptake
and oxygen-independent photothermally triggered photothermal/photodynamic therapy under NIR
irradiation. Reprinted from Journal of Controlled Release, 284, Yu Han et al., Oxygen-independent
combined photothermal/photodynamic therapy delivered by tumor acidity-responsive polymeric
micelles, 15–25, Copyright (2018), with permission from Elsevier [204].
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3.4. Utilizing Tumor Hypoxia

In distinction from improving the hypoxia microenvironment, one also can make much use of
the tumor hypoxia physiology to design novel living delivery system. An azobenzene bridge is a
hypoxia-responsive bond which can be severed in the tumor site [42]. After triggered in hypoxic
environment, the PEGylation was shed and the cellular uptake of micelles was facilitated for the
changes of the surface charge [44]. Tirapazamine (TPZ) is of selective toxicity to hypoxic tumor cells.
PDT could activate TPZ by aggravating hypoxia through oxygen consumption and vascular shutdown
effects [53].

4. Conclusions

PDT is a local therapy and represents an effective and highly selective therapeutic option in
management of cancer. To optimize the PDT effect, comprehensive management the PSs, light,
and tumor hypoxic microenvironment is the prerequisites. In addition, combination therapy with
chemotherapy, photothermal therapy, surgery, and immunotherapies has been a particularly promising
therapy mode for PDT.
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