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Introduction

Cooperative behavior is a hallmark of living organisms across 
many length-scales, from colonies of bacteria to schools of fish.1 
Understanding how such behavior is coordinated has impor-
tant consequences for biological phenomena such as growth and 
cancer, which result from orchestrated communication between 
cells. Cooperative behavior also has applications in robotic self-
assembly, the development of autonomous, self-propelled inter-
acting agents that link together to perform complex tasks without 
centralized command.2-4 Shrinking technologies are enabling 
robots to act more autonomously and in a more life-like man-
ner, making visions of modular robotics a reality. For both bio-
logical and robotic applications, the ability to numerically scale 
up a swarm from 10 to 10,000 individuals is an important trait. 
However, observing such phenomena in nature and quantifying 
the algorithms involved are rare. In this combined experimental 
and theoretical study, we investigate the behaviors underlying the 
coordination of large swarms of fire ants.

Certain cooperative organisms can link their bodies together 
to build large living networks called self-aggregations. This 
behavior can increase a colony’s structural integrity in the face 
of harsh environments. For example, bacteria constructs biofilms 
by excreting scaffolding in the form of extracellular polymeric 
substances, enabling them to survive disinfectants. Another class 
of self-aggregations comprises those built by social insects.5 Bees, 
army ants, and fire ants are known to readily construct self-
aggregations such as bridges to cross ravines, bivouacs to provide 
shelter during nomadic travels, and rafts to float upon during 
flash flooding. Although these structures have been documented 

To survive floods, fire ants link their bodies together to build waterproof rafts. such rafts can be quite large, exceeding 
100,000 individuals in size. In this study, we make two improvements on a previously reported model on the construction 
rate of rafts numbering between 3,000 and 10,000 individuals. That model was based upon experimental observations 
of randomly-directed linear ant trajectories atop the raft. here, we report anomalous behavior of ants atop larger rafts 
of up to 23,000 ants. as rafts increase in size, the behavior of ants approaches diffusion, which is in closer alignment 
with other studies on the foraging and scouting patterns of ants. We incorporate this ant behavior into the model. Our 
modified model predicts more accurately the growth of large rafts. Our previous model also relied on an assumption 
of raft circularity. We show that this assumption is not necessary for large rafts, because it follows from the random 
directionality of the ant trajectories. Our predicted relationship between raft size and circularity closely fits experimental 
data.

Dynamics and shape of large fire ant rafts
Nathan J. Mlot,1 Craig Tovey2 and David L. hu1,3,*

1school of Mechanical engineering; Georgia Institute of Technology; atlanta, Ga Usa; 2school of Industrial systems and engineering; Georgia Institute of Technology; atlanta, 
Ga Usa; 3school of Biology; Georgia Institute of Technology; atlanta, Ga Usa

Keywords: Brownian motion, swarm, cooperative, social insects, simulation, model, emergent

in the biology literature, little is known quantitatively about their 
construction process.

A recent study by the authors has provided some insight on the 
mechanisms underlying raft construction.6 In that study, we con-
structed spherical clumps of ants and floated them on the water 
surface. We observed that ants would morph their raft into a pan-
cake shape of 2–3 ant layers in thickness, as shown in Figure 1. 
We predicted the spreading rate of this pancake by tracking ant 
walking patterns to formulate a differential equation in terms of 
the number of ants n on the bottom layer of the raft. The current 
study represents two improvements to this model.

One motivation for the current study is the absence of analysis 
or explanation of the overall shape of the raft, which had been 
circular in our previous experiments. In fact our previously pub-
lished analysis implicitly assumed circularity but gave no expla-
nation to how it arises. A second motivation is our observation 
that our model was a better fit for small rafts of 1,000–6,000 
ants than for large rafts greater than 8,000 ants. Fire ant rafts 
found in nature often comprise entire colonies of ants, and thus 
can span tens of centimeters and carry tens of thousands of ants, 
as shown in Figure 2A. In order to build a model that can bet-
ter account for the largest of rafts, we have re-investigated the 
growth of ant rafts, focusing on those of large size.

In this study, we report the results of a model specifically for 
large ant rafts. We begin in the next section by reviewing our 
previously published work. We follow with our new experimental 
results for the trajectories of ants atop large rafts and discuss the 
resulting implications to our model. We also include a justifica-
tion for the circular shape of the ant raft. We continue with a 
mathematical modification to our model from 2011 and compare 
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layer at the edge of the raft. An important aspect of 
this motion is that the ants do not change direction 
appreciably until they reach the raft edge.

Using locally gathered experimental parameters 
describing ant behavior and average ant trajecto-
ries on a growing disc, we formulated the following 
expression for the number dn/dt of ants added to the 
bottom layer per second:

(1)

Our previous model involved a number of 
parameters measured experimentally, which we 
reiterate here. The initial condition for the equation 

(1) can be found using N, the total number of ants forming the 
raft, which sets the number of ants on the bottom when the ant 
raft is initially shaped as a sphere. The local parameters include 
the following: h = 2.5, the eventual thickness of raft in terms of 
number of ants; α = 3.1, the average number of circle radii trav-
eled by a straight-line motion ant until sticking to a circle bound-
ary; γ = 34, the ant density in an ant layer in units of ants per 
cm2; v = 0.39, the instantaneous speed of an ant’s straight motion 

in cm/sec; and the fraction . We use 
the following expression for converting raft radius to an equiva-

lent number of ants on the bottom layer:  where 
the radius of raft at time t is in cm. The expression “≥ N/(h + 1)” 
indicates the raft reaches a point in its growth where there is a 
full layer of ants or less on top of the raft available to add to the 
edges. The inverse inequality indicates a full layer of ants or more 
are available to add to the edges. For a complete derivation of 
Eq.(1), we refer the reader to our previous work.6

Step size measurement. For modeling, we have approximated 
the motion of individual ants using two protocols. As reviewed in 
the previous section, we observed ant motion atop rafts of ants. 
We now observe single ants atop Styrofoam discs of the same size 
as the rafts, approximately 4 cm. We choose the white Styrofoam 
to avoid the problem of visually resolving a small ant atop a large 
raft of live ants. We find no qualitative differences between loco-
motion on the two surfaces. This similarity is consistent with 
observations by Fourcassie, who finds there is no significant dif-
ference in trajectory characteristics between solitary ants and 
groups of ants, although there are velocity differences.7

Conducting experiments on a larger Styrofoam disc (r > 4 cm), 
we find that the ant trajectories vary from those on small disks 
(r < 4 cm). On this larger disk, ants walk in straight-line segments 
of length s, interspersed by turns in a random direction, as shown 
in Figure 2C. In our modeling section we refer to this distance 
s as the step size. Using a sample size of m = 14 random turns by 
one ant, we find s to be 4 ± 1.5 cm.

Although ants make a greater number of turns on larger rafts, 
we observed that their instantaneous walking speed remains the 

its predicted results to those of our previous model. Next, in 
Discussion, we flesh out the implications of our work and sug-
gest directions for future research. Lastly, in Methods, we provide 
details of our experimental procedures.

Results

We begin by reviewing results from our previous model. Then we 
discuss measurements of a new parameter, the step size, which we 
incorporate into this previous model.  Next we reformulate our 
model using this new parameter.  After that we present results 
comparing the utility of this new model to its predecessor.  An 
assumption in this modeling is that rafts are perfectly circular.  
Lastly, we proceed to report measurements and simulations of the 
shape of rafts to justify this assumption.

Review of previous model. We find that when a sphere-
shaped clump of ants is placed on the water’s surface, it quickly 
morphs into a pancake-like shape, as shown in Figure 1. Ants 
rearrange themselves by traveling atop the raft (shown in green) 
and joining to its edges, becoming part of the stationary bot-
tom layer of ants (shown in red). This motion consequently 
exposes a new layer of ants that become mobile and travel 
atop the previously mobile but now stationary ants. This new 
layer of ants also travels toward the newly created edge, and 
the process repeats until the raft has shortened to a height h of 
2.5 ± 0.1 layers.

We also made the raft thinner than h by plucking ants off the 
top.  We observed that the radius of the thinned raft decreased 
as ants on the edge moved back to the top.  There were insuffi-
ciently many ants on the top to keep the ants on the edge pinned 
by walking on top of them. Consequently the raft will begin to 
shrink as ants on the edge move back to the top.

The rate that the ant rafts morph is a function of how quickly 
the ants can reach the raft edge. We observed ants moving on 
small ant rafts, composed of N = 1,000 ants. Figure 2B shows 
an actual example trajectory of a single ant in the raft. As shown, 
during the growth phase of the raft, the ant moves in straight-line 
randomly-directed paths alternating with ricochets off the raft 
edge with probability 1 – p, and stops when it joins the bottom 

Figure 1. a sphere of ants will spread out to a pancake in a matter of minutes. Mobile 
ants on the top layer walk toward the edge and become part of the fixed bottom lay-
ers. This leaves a new mobile layer of ants that follow the same pattern. This behavior 
continues until the raft reaches an equilibrium thickness of 2.5 ants.
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r/r2 = 1/r. The effective velocity also ought to be proportional 
to the instantaneous velocity v, by scaling reasoning. Moreover, 
the effective velocity ought to be proportional to the step size s, 
again by scaling reasoning. This is because if one took k steps 
of size s, then irrespective the direction each step is taken, one 
would end up exactly s times as far away as if one had taken the 
same k steps of size 1. Hence the effective velocity of an ant, 
when r is large, should be vs/r. Combining these two cases, we 
may write the ant’s effective velocity u as a function of the raft 
size:

   

(2)

Note that the effective velocity u(r) is a continuous function 
of r and is consistent with ant- trajectory observations in both 
Figure 2B and C.

The formula vs/r for the ant’s effective velocity is also at least 
fairly accurate for intermediate values of r. Approximate the circle 
as a square, and ant motion as random vertical and horizontal 
steps of length s. The expected number of horizontal steps to 
reach a boundary equals the expected number of steps a simple 
one-dimensional random walk takes to get r/s steps to the left 
or right of its starting location,10 which is well known to equal 
(r/s)2. The total time for the horizontal motion to reach a bound-
ary is therefore r2/sv. Hence the effective speed is r/(r2/sv) = vs/r. 
Vertical motion behaves identically. Neglecting constant factors, 
the effective speed is again vs/r, as found previously.

Using this effective speed given in Eq.(2), we re-formulate 
Eq.(1) to include two new regimes dictated by the value of raft 
radius r(t) relative to s. We refer to this new model as the “dif-
fusive model.” Our modified differential equation to predict 

same as on small rafts. The average 
walking speed along the straight-line 
paths is v ≈0.39 cm/s. The speeds on 
large rafts match our previously mea-
sured speeds on small rafts,6 as well as 
measurements of ant speed made by 
Gordon.8

Based on our combined observations 
of motion on both small rafts (see pre-
vious section) and large ant rafts, we 
hypothesize the following algorithm 
for individual behaviors during raft 
construction:

1. An ant only moves if there are no 
ants atop it.
2. When an ant moves, it travels 
straight in a random direction (uni-
formly distributed over 360 degrees) 
for a distance s, changes direction 
randomly, and repeats this pattern 
until it reaches an edge.
3. Upon reaching an edge, an ant 
gets stuck with probability p ≈0.3, measured experimentally. 
With complementary probability 1 – p, the ant “bounces” off 
the edge and begins traveling straight in a random direction 
away from the edge (uniformly distributed over 180 degrees), 
continuing with behavior 2.
Ants follow the algorithm above until they are pinned at the 

edge of the raft by other ants. The modification from the previ-
ous algorithm reviewed in the previous section is the inclusion of 
a step size s.

Diffusive model. For the purpose of modeling raft spreading 
behavior, we idealize a single ant’s behavior as choosing a new 
random direction after traveling a step size s. This behavior is 
consistent with our previous observations: if the radius r of the 
raft is less than s, then one would simply observe ants traveling in 
a straight line until reaching an edge, as was the case of our previ-
ous observations. At the other extreme, when r is very large com-
pared with s, this behavior will, in the limit, approach Brownian 
motion.

We had observed previously6 how clumps of ants behave as a 
viscoelastic solid as the raft flows from an initially spherical shape 
to form a pancake. Their diffusive motion is consistent with this 
view of ants as a fluid. Using the measured step size s and walk-
ing speed v, we can roughly estimate a diffusion coefficient D for 
ants, given by vs, to be 1.6 cm2/s. For some comparison, D is larg-
est in gases (103 cm2/s), intermediate in liquids (0.01 cm2/s), and 
smallest in solids (10-7 cm2/s). This hierarchy is due to the kinetic 
energy of the respective phases and their inter-atomic spacing. 
Larger values of D mean the molecules spread out at higher rates. 
Our diffusion coefficient for rafting ants falls in between those 
of gases and liquids.

In Brownian motion,9 the expected time to reach the bound-
ary of a disc of radius r from the center is proportional to r2. 
The effective velocity u of an ant is therefore proportional to 

Figure 2. ant rafts (A-B) and a styrofoam raft (C) for measuring ant trajectories. In (B-C), the lines 
show sample ant trajectories interrupted by the dots indicating turns made by the ant.
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For instance, for the intermediate-sized raft of N = 6,000 ants in 
Figure 3A, the results for both models are nearly indistinguish-
able. This is because these rafts are small enough (r ≈s) that the 
diffusive behavior in Eq.(2) doesn’t take effect until the raft is 
almost complete.

For larger N, the discrepancy between the models is more 
apparent, with the diffusive model providing a better fit for the 
experimental results (Fig. 3A-D). The raft of size N = 22,500 
ants (Fig. 3D) is a good example of a clear deviation between 
the two models. While our previous model failed to accurately 
predict the growth rates for very large rafts, our new results show 
that the diffusive element of our new model accurately captures 
the dynamics of the larger raft. Specifically, the straight-path 
model over-predicts the construction rate in Figure 3D, as shown 
by the higher rate of growth between 100–250 sec. In contrast, 
the diffusive model shows a raft growth rate that is slower and 
more consistent with the experiments. This difference occurs 
because the new model increases the time for the ants to reach 
the edge of the raft.

By using a range of values for the step size s in our diffusive 
model, we find that the raft growth rate is highly sensitive to 
step size. Figure 4 shows the time course of the number of ants 
on the bottom of the raft for a series of values of s = 2, 4, and 
10 cm. As s approaches the final raft radius (the solid purple line 
signifying s = 10), the diffusive model approaches the straight-
path model (the dashed black line). A large step size means that 
the ants do not change direction until reaching the raft’s edge, 
thus exhibiting the same behavior as in our straight-path model. 
Also, as s approaches zero (solid orange line signifying s = 2), the 
ant behavior becomes purely diffusive and raft construction time 

the rate of growth of the ant raft is defined in terms of the four 
regimes (A-D) that follow:

  

(3)

where n(t) is the number of ants on the bottom surface of the 
raft and t is in seconds, and s is our new parameter ant step size. 
The new model differs from Eq.(1) by the inclusion of two new 
regimes that are dictated by the value of r(t) relative to s. When 
r ≤ s, the model is equivalent to Eq.(1) and follows either Regime 
A or D depending on the how many ants are on the bottom. 
Regimes B and C are activated when the raft grows to a radius 
r ≥ s, at which point instantaneous velocity v is replaced with 
effective velocity u = vs/r.

Comparison to previous model. We use a first-order scheme 
to numerically integrate our governing equation for dn/dt given 
in Eq.(3), incorporating the effective velocity given in Eq.(2). In 
this section we report results of this new diffusive model to our 
previous straight-path model.

Previously,6 we limited N to 10,000 ants. We now present new 
results for experiments with larger ant rafts of N = 15,000 and 
22,500. Figure 3A-D shows the time course of the number of 
ants n on the bottom of the raft for various sizes of raft as indi-
cated. Experiments are denoted by the open symbols, and associ-
ated predictions from theory are given by the solid line (diffusive 
model) and dashed line (straight-path model). Both models are a 
good fit for short times (t ≤ 50 sec) when r is small, as expected. 

Figure 3. The growth of ant rafts N = 6000, 10000, 15000, and 22500. The vertical axis is n(t), the number of ant on the bottom layer. The floating ant 
ball spreads out on the water’s surface and reaches an equilibrium size. The plots compare experimental findings to both our previous straight-path 
only model and our new model that incorporates a Brownian element, accounting for the diffusive nature of ant motion. The diffusive element is trig-
gered when the radius of the raft reaches a critical size. For large N, the diffusive model is clearly a better fit than the straight-path only model.
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approaches perfection with probability 1 as N approaches ∞. The 
behavior of ants on large rafts can be idealized in this manner for 
analyzing the raft’s shape. We expect that as the number of ants 
in the raft N increases, the equilibrium profile shape will become 
more circular. To measure the raft’s deviation from circular, top 
view images of rafts (size N = 5, 10, 50, 100, 1000, 5000, and 
10000) at equilibrium (Fig. 5A) are processed using Matlab to 
find an ellipse which best fits the raft profile. We define eccentric-
ity of the ellipse as e = 1 – min/maj, where min and maj are the 
lengths of the minor and major axes of the ellipse respectively. 
An e value of 0 indicates a perfect circle where min = maj. The 
e values for the raft profiles are plotted against logN revealing a 
declining trend in e as expected (Fig. 5C). These results show 
that the raft is indeed nearly circular and approaches that limit as 
N approaches infinity.

Asymptotic formulae for circularity are known,11 but to com-
pare actual ant raft shapes to the random walk growth model 
around an origin for moderate values of N, it is necessary to run 
our own simulation. A single 1x1 element rests at an origin (0,0). 
Each iteration, another element starts at the origin and follows a 
random walk of unit steps until it reaches an unoccupied site. For 
the first element added, this would be either (1,0), (0,1), (-1,0), or 
(0,-1). The second element to be added then starts at the origin 
and performs the random walk on this new two-element shape. 
This continues until the number of elements reaches N. We ran 
this simulation 20 times each for N = 10, 50, 100, 1000, 5000, 
and 10000. Select images of the resulting shapes are shown in 
Figure 5B. Figure 5C plots the average eccentricity value against 
logN. Before plotting, values of N from 50 through 10,000 for 
the simulation were multiplied by 2.5 for comparison to our 
experimental findings. This was done because all elements in a 

approaches infinity. Cases s = 2 and s = 10 shown in Figure 4 
demonstrate the high sensitivity of the model to step size, high-
lighting the importance of measuring step size accurately. The 
s value of 4 cm found in our experiments (solid red line) yields 
diffusive model results that match closely to our experimental 
results (red circles).

We now comment on the significance of the four regimes 
given in Eq.(3). We use as an example the model predictions 
given by the red solid line in Figure 4, the diffusive model with 
s = 4. Here, Regime A is the same as the original model, but it only 
lasts while the raft radius r(t) is less than the step size s, or n(t)/
γπ = n(t)/34π = n(t) cm2/107 ≤ 16 cm2, or n(t) ≤ 1,710 ants. 
For very large rafts, N > 35,000 ants, Regime A does not occur at 
all because the initial sphere of ants is so large that r(t = 0) > s. In 
Figure 4, Regime A occurs during time 0 to approximately 40 sec. 
Regime B has linear growth of n(t). This can be seen in Figure 4 
in the time interval approximately [40, 105] seconds, where 
the experimental data fits this linear growth very well. During 
Regime C, n(t) grows at a decreasing rate, approaching a growth 
rate of 0 as n(t) approaches N/h. Regime D does not occur at all 
unless N/(h+1) ≤ n(t) ≤ s2γπ = 1,710 ants, which is impossible for 
N > (h+1)s2γπ = 3.5(16 cm2)(34 ants/cm2)π = 6,000 ants. Since 
n(t) never exceeds N/h = N/2.5 (i.e., 2.5n(t) ≤ N) and the new 
model doesn’t take effect unless n(t) > 1,710 ants, the new model 
never takes effect unless N > 2.5(1,710) ≈4,300 ants.

In summary, for N ≤ 4,300 our new model behaves exactly 
like the straight-path model of our previous paper, transition-
ing directly from Regime A to Regime D, where the four regimes 
are listed in Eq.(3). For 35,000 ≥ N ≥ 6,000 our new model 
behaves like Regime A, as in the straight-path model, for a short 
time period, and then progresses to the linear growth of Regime 
B, ending with Regime C. For N > 35,000 our new model begins 
immediately with the linear growth of Regime B, ending with 
Regime C. For the narrow range 4,300 ≤ N ≤ 6,000 our new 
model progresses from Regime A to Regime D to Regime C.

In our derivation of the regimes of validity, we use an approxi-
mation that does not appear to affect the accuracy of our model 
substantially (as shown in Fig. 4), but is worth noting here. 
Although Regimes B and C don’t kick in until r ≥ s, it is more 
complicated than a simple switch at r = s. Instead it is a gradual 
shift between regimes. The point at which r = s is roughly in the 
middle of the shift. The beginning of the shift is at 2r = s, which 
is the smallest diameter at which the ant might change direction, 
but occurs zero percent of the time. As r increases and approaches 
s the probability of random direction changes will increase. At 
r = s, a direction change occurs 2/3 of the time after bouncing 
off a boundary, but less than 1/2 and more than 1/3 of the time 
when starting at a random point on the raft surface, yielding 
slightly more than a 1/2 probability that an ant will change direc-
tion. Therefore, r  s marks the end of the shift, but even when r  s, 
there will still be a few short moves that hit a boundary before the 
travel distance reaches s.

Raft circularity. It has been established11 that when N random 
elements starting at the origin of a two-dimensional grid each in 
turn performs a simple random walk until reaching an unoccu-
pied site, the set of occupied sites will form a disc whose circularity 

Figure 4. Time course for the number n of ants on the raft bottom for 
a raft N = 10,000 ants. solid lines are the diffusive model for various val-
ues of ant step size s. The plot for s = 10 is consistent with the straight-
path (dashed line) model since an ant won’t change direction before 
reaching an edge. The value s = 2 shows longer construction times for 
the raft since the ants must make many direction changes before reach-
ing an edge. The value s = 4, found experimentally, yields model results 
that are consistent with our experimental findings and are also clearly a 
better fit than the straight-path only model.
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despite the inability of individuals to perceive the overall shape of 
the raft. Our numerical simulation of this phenomenon predicts 
a pattern of greater circularity as the raft size increases, a pattern 
that closely matches our experimental data.

Our earlier model of rafting fire ant motion6 described their 
individual behavior as strictly straight-line motion combined 
with a bounce probability function to describe raft edge con-
ditions. Our current model uses a Brownian element based on 
new observations of the step size s of ants moving diffusively on 
large rafts. Using an s value from experiments yields construction 
times in the model that more accurately reflect those found in 
experiments. We have also presented the time-regimes of validity 
of our new model in Eq.(3), which are based on the initial size of 
the raft with respect to s. 

Our previous model also made an implicit assumption of raft 
circularity. Our new simulations based on a random walk from 
an origin provide an explanation for the circular raft shapes we 
observe. The close fit between the shape simulations and the 
actual raft shape supports the validity of our explanation.

Incorporating a Brownian element is more in line with pre-
vious work on animal behavior. In previous literature, diffu-
sion models have shown broad applicability to modeling animal 
motions such as the swarming behavior of insects. Specifically 

simulation form a single layer, but real ants form a raft 2.5 layers 
thick. This means that a simulation of N elements corresponds to 
a raft of 2.5N real ants. In our simulations, the value N=10 was 
not multiplied by 2.5 because, in our experiments, a raft of only 
10 ants forms a single layer.

The simulation follows the experimental data very closely. 
The closeness of this fit supports our hypothesis that the indi-
vidual ant random movements cause the circular shape of the ant 
raft. If circularity were due to some other cause, it seems unlikely 
that the relationship between raft size and raft circularity would 
be the same.

Discussion

The two main contributions of this work are the following: (1) 
We improve the accuracy of our previous model’s assumptions 
of individual behavior, and thereby improve the accuracy of the 
model’s predictions for larger rafts without sacrificing accuracy 
for smaller ones. We verify this improvement through a compari-
son to new data gathered from observing large rafts, the results of 
which clearly show the new model’s improvement. (2) Through 
describing the behavior of an individual ant within the raft with 
a few simple rules, we show that ants can build circular rafts 

Figure 5. (A) selection of raft profiles at equilibrium. (B) sample profiles from our simulation that randomly adds individuals to the edges. (C) plot 
comparing the eccentricities for experimental rafts and average values of simulation data.
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small ant rafts in laboratory settings. This suggests that we have 
identified the critical elements of the individual ant behaviors 
that result in the observed raft formation.

Methods

Ant husbandry. Ant colonies are procured from roadsides near 
Atlanta, GA. Colony selection aims for an average ant weight 
of 1.5 mg. Colonies are removed from the soil and placed into 
bins according to methods by Chen.22 Ants are fed crickets and 
water three times a week. They are housed in an 8-h light and 
16-h dark cycle. As a measure taken to ensure repeatable results, 
ants that are used for experimentation are afterward reintroduced 
to the colony and allowed at least 2 h to resume normal colony 
behavior before being used again.

Filming of large ant rafts. Using high-definition video cam-
eras, we film the construction of ant rafts floating on the water 
surface. We parameterize the raft size by the number of ants in 
the raft N, and perform experiments on rafts of N = 6000, 10000, 
15000, and 22500, measured by weighing the rafts. Ants are ini-
tially collected from bins and placed into a beaker, taking care to 
avoid collection of queens and males. The beaker is then swirled 
so that ants clump together forming a cohesive spherical aggrega-
tion. To ensure a spherical aggregation, beaker size is chosen such 
that when the ants are formed into a ball and centered in the bea-
ker, there is at least a 1-cm and no more than a 2-cm gap between 
the ball edge and beaker wall. Using tweezers, ant balls are placed 
on the surface of clean, room-temperature water, and centered 
upon a partially submerged pin to prevent drifting. Resulting ant 
motion is recorded from above until equilibrium is reached. Four 
trials for each raft size N are performed and filmed. The average 
top-view projected-area change of the ant raft in number of ants 
is digitized using image processing for each N.

By tracking individual ants as we played videos frame-by-
frame, we determined values for several parameters in the model. 
These parameters include the average walking speed v, the prob-
ability p of joining the bottom layer during the growth phase, 
the walking distance s between turns, and ant planar density γ 
in ants per centimeter squared. The use of these experimental 
findings in our model development is documented in our previ-
ous work.6
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Harkness developed a model that incorporates both straight-line 
and diffusive elements to describe the foraging behavior of ants.12 
Others such as Schweitzer and Theraulaz both suggest a diffu-
sive mechanism behind the ant’s walking patterns.13,14 Helland 
discusses the effectiveness of diffusion models for the dispersion 
of insect populations attracted toward a point.15 Such diffusive 
behaviors are especially important when the number of agents, be 
they ants or robots, is very large, as in the case of ant rafts, which 
can exceed 100,000.

We have observed fire ants in a raft moving in random direc-
tions interspersed by a distance s. Rather than systematic search-
ing, ants typically employ random search strategies.16 This allows 
moving to be optimized so as to increase their chances of locating 
resources by increasing the chances of covering certain regions. 
The optimal solution often arises by merely carrying out a ran-
dom-walk search strategy.16 In the case of rafting, the step size 
may be a behavior originally adapted for moving on land.

The diffusive behavior observed sheds light on Detrain’s claim 
that ants are not simply “behaving like molecules,” but rather are 
acting upon the complex and changing parameters of their sur-
roundings based on response thresholds.17 Studies have shown 
that ants can collectively “make decisions,” demonstrating capa-
bilities far beyond simple molecules.18,19 Conversely, our research 
reveals that when ants form self-assemblages, such as the floating 
raft, they begin to exhibit behavior similar to the diffusive nature 
of some molecules. Moreover, a short set of behavior rules is suf-
ficient to predict their group motion. These results suggest that 
in times of emergency, such as rapid raft construction, ants do in 
fact behave like molecules to some extent.

There are a number of other factors that likely could have an 
effect on rafting dynamics. Chemical signals have been shown to 
affect a colony’s exploration of new space through recruitment.8 
The rate of antennal contact is a way for ants to measure raft-
mate density.20 The presence of queen and brood in a raft, such 
as occurs in nature, affects the worker distribution of ants within 
a raft. A heightened defensiveness while rafting will cause behav-
ioral changes in the ants.21

The above factors, as well as the position of ambient lights, 
may affect raft equilibrium shape in natural settings. Also, a 
floating or partially submerged object such as grass or twigs (as in 
Fig. 2A) appears to strongly affect the shape of the portion of the 
raft adjacent to the object. We also have observed the raft form-
ing “appendages” that seem to be reaching out toward nearby 
landmasses as an attempt to dock the raft.

The model we have presented omits these factors. In par-
ticular, it omits chemical signaling and antennal contact, which 
occur in both natural and laboratory settings. Yet, it provides an 
accurate representation of the growth rate and shape of large and 
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