
Programming biological models in Python using PySB

Carlos F Lopez1,3, Jeremy L Muhlich2,3, John A Bachman2,3 and Peter K Sorger2,*

1 Department of Cancer Biology, Center for Quantitative Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA and 2 Department of Systems Biology,
Center for Cell Decision Processes, Harvard Medical School, Boston, MA, USA
3 These authors contributed equally to this work
* Corresponding author. Department of Systems Biology, Center for Cell Decision Processes, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115,
USA. Tel.: þ 1 617 432 6901; Fax: þ 1 617 432 5012; E-mail: peter_sorger@hms.harvard.edu

Received 31.8.12; accepted 7.1.13

Mathematical equations are fundamental to modeling biological networks, but as networks get
large and revisions frequent, it becomes difficult to manage equations directly or to combine
previously developed models. Multiple simultaneous efforts to create graphical standards, rule-
based languages, and integrated software workbenches aim to simplify biological modeling but
none fully meets the need for transparent, extensible, and reusable models. In this paper we
describe PySB, an approach in which models are not only created using programs, they are
programs. PySB draws on programmatic modeling concepts from little b and ProMot, the rule-based
languages BioNetGen and Kappa and the growing library of Python numerical tools. Central to PySB
is a library of macros encoding familiar biochemical actions such as binding, catalysis, and
polymerization, making it possible to use a high-level, action-oriented vocabulary to construct
detailed models. As Python programs, PySB models leverage tools and practices from the open-
source software community, substantially advancing our ability to distribute and manage the work
of testing biochemical hypotheses. We illustrate these ideas using new and previously published
models of apoptosis.
Molecular Systems Biology 9: 646; published online 19 February 2013; doi:10.1038/msb.2013.1
Subject Categories: computational methods; simulation and data analysis
Keywords: apoptosis; modeling; rule-based; software engineering

Introduction

Mechanistic studies that couple experimentation and compu-
tation typically rely on models optimized for specific questions
and biological settings. Such ‘fit-to-purpose’ models can
effectively describe and elucidate complex biological pro-
cesses, but given the available data, they are usually restricted
in scope, encompassing only a subset of cellular biochemistry
(Batchelor et al, 2008; Xu et al, 2010; Huber et al, 2011; Schleich
et al, 2012). Even in disciplines in which modeling is more
mature, all-encompassing models are rare. However, it is
common for fit-to-purpose models to require changes invol-
ving the addition, modification or elimination of species and
reactions based on new discoveries. Often a family of models is
needed (Albeck et al, 2008b; Muzzey et al, 2009; Rehm et al,
2009; Xu et al, 2010; Kleiman et al, 2011), each of which
represents a competing molecular hypothesis derived from the
literature, a different way of encoding ambiguous ‘word
models’ drawn from molecular biology, or postulated differ-
ences in a network from one cell type to the next (Gnad et al,
2012). One of the promises of systems biology is that
collaborative and iterative construction and testing of models
can improve hypotheses by subjecting them to an ongoing
process of testing and improvement. However, the current

proliferation of independently derived fit-to-purpose models
frustrates this goal (Krakauer et al, 2011). We require ‘second
generation’ tools that leverage existing approaches to biologi-
cal model construction and documentation while adding new
means for modifying, comparing and sharing models in a
transparent manner.

Dynamic biological systems are generally modeled using
stochastic or deterministic rate equations. The latter can be
described using networks of ordinary differential equations
(ODEs) that precisely represent mass action kinetics. However,
when a network model has many species and variables,
equations become a poor tool for model development and
understanding. Even familiar biochemical processes are
remarkably complex at the level of equations: for example,
fully accounting for the binding and posttranslational mod-
ifications underlying activation of growth factor receptors can
require thousands of equations that are tedious to generate,
hard to error-check and difficult to understand (Hlavacek et al,
2006). The need for frequent updates is also a challenge
because even a simple modification of a biochemical cascade
can require dozens of small changes in the corresponding
equations. When operating at the level of equations, it is also
difficult to reuse the work of others directly. For example, in the
field of apoptosis, Howells et al (2010) described a conceptual

Molecular Systems Biology 9; Article number 646; doi:10.1038/msb.2013.1
Citation: Molecular Systems Biology 9:646
www.molecularsystemsbiology.com

& 2013 EMBO and Macmillan Publishers Limited Molecular Systems Biology 2013 1

mailto:peter_sorger@hms.harvard.edu
http://dx.doi.org/10.1038/msb.2013.1
http://www.molecularsystemsbiology.com

extension of a previously published model of Bcl-2 proteins
(which control mitochondrial outer-membrane permeabiliza-
tion (MOMP), Box 1) (Chen et al, 2007a) by adding the BH3-
only Bcl-2 family member Bad. Interactions among the core set
of Bcl-2 proteins were identical between the two models, but
Howells et al (2010) rewrote the original set of ODEs simply to
add a few new reactions. Manually rebuilding earlier models is
not only time-consuming but also error-prone: as described in
detail below, the practice has introduced errors and unin-
tended changes in another pair of related apoptosis models.
Moreover, the tendency to make numerous trivial changes in
duplicated elements (e.g., by renaming species) makes it
difficult to focus on key differences, frustrating later attempts
at model comparison (Mallavarapu et al, 2008).

Several projects are underway to address the problems of
model proliferation and complexity using formalisms that aim
for abstraction, transparency and reusability. Chief among
these is rule-based modeling (Hlavacek et al, 2006; Bachman
and Sorger, 2011) in which models are created using
specialized languages such as BioNetGen language (BNGL)
(Faeder et al, 2009) or Kappa (Danos et al, 2007b). These
languages describe local interaction rules between specific
domains or ‘sites’ on molecules (e.g., enzymes and their
substrates) and are easier to understand and reuse than

equations (Danos, 2007). Rule-based approaches enable
modeling of otherwise intractably complex systems in which
posttranslational modification and the formation of multi-
protein signaling complexes give rise to large numbers of
distinct species (Blinov et al, 2006; Sneddon et al, 2010; Deeds
et al, 2012). Rules can also be subjected to formal analysis
(Danos et al, 2008; Feret et al, 2009) and used to generate both
deterministic and agent-based simulations (Danos et al, 2007a;
Sneddon et al, 2010).

Although powerful, rule-based languages such as BNGL and
Kappa do not exploit ‘higher-order’ patterns in biochemical
systems such as multi-step catalysis, scaffold assembly,
polymerization, receptor internalization, etc. These patterns
often recur several times in a single model and also are
frequently encountered in models of different molecular
networks. Currently, it is necessary to regenerate the rule sets
for biochemical patterns each time the patterns arise. The
creation of models having related but variant topologies
presents an important special case of a higher-order pattern,
particularly when a core process remains the same across all
models and modifications focus on specific reactions. In both
rule- and ODE-based models, it is necessary to implement the
change for each model in the set, a laborious process when
the number of models is large. Modeling tools that leverage

Box 1 TRAIL-mediated apoptosis and the Bcl-2 protein family

C8 Bid Bax

Bax*mito Bcl-2

Pore

DISC

TRAILTNF

XIAP

Ub_C3*

C6

C3

cPARP

Smac

CyC

C9

Apaf

Apoptosome

CyC

DISC module

PARP module

MOMP module

TRAIL is a prototypical pro-death ligand that binds transmembrane DR4 and DR5 receptors and leads to formation of the intracellular, multi-component death-
inducing signaling complex (DISC). Autocatalytic processing of initiator procaspases-8 and -10 at the DISC allows the enzymes to cleave procaspase-3 but caspase-
3 activity is held in check by XIAP, an E3 ubiquitin ligase that blocks the caspase-3 active site and targets the enzyme for ubiquitin-mediated degradation. In most cell
types, activation of caspase-3 and consequent cell killing requires MOMP. MOMP allows translocation of cytochrome c and Smac into the cytosol where Smac binds
and inactivates XIAP and cytochrome c activates pro-caspase-9, two reactions that generate cleaved, active caspase-3.

MOMP is regulated by a family of B20 Bcl-2 proteins (Youle and Strasser, 2008) having three functions: pro-apoptotic effectors Bax and Bak assemble into
pores, anti-apoptotic Bcl-2, Bcl-XL, Mcl-1, Bcl-W, and A1 proteins block pore formation, and the ‘BH3-only proteins’ such as Bid, Bim, and Puma activate the effectors
and inhibit the anti-apoptotics. Bid, the most important BH3-only protein for extrinsic cell death, is a direct substrate of caspases 8/10 and its active form (tBid) binds
to and activates Bax and Bak via a recently elucidated structural transition (Kim et al, 2009; Gavathiotis et al, 2010). The overall pathway can be roughly divided into a
‘receptor to Bid’ module (yellow in the figure), a ‘pore to PARP’ module (blue), and a MOMP module (orange).

Structural and cellular studies of Bcl-2 proteins are consistent with a variety of different mechanisms for MOMP. A direct model posits that effectors form pores only
when activated by proteins such as tBid (Letai et al, 2002; Kim et al, 2006; Ren et al, 2010). The indirect model proposes that Bax and Bak are constitutively able to
form pores but are held in check by anti-apoptotic Bcl-2 proteins (Willis et al, 2007). Recent studies support a combination of both direct and indirect mechanisms
(Mérino et al, 2009; Leber et al, 2010; Llambi et al, 2011). The ‘embedded together’ model emphasizes the active role of membranes in determining the
conformational states and activity of Bcl-2 proteins and that the anti-apoptotic Bcl-2 proteins possess all of the same functional interactions as the effectors except
pore formation and therefore function as dominant-negatives (Billen et al, 2008; Leber et al, 2010). Controversy about MOMP mechanisms reflects the large number
of Bcl-2 proteins involved, the role of protein compartmentalization and localization in activity, the diversity of apoptosis inducers, and the fact that different cell types
express different Bcl-2 proteins at very different levels. Detailed mechanistic models of MOMP are nonetheless important for rationalizing the selectivity of anti-Bcl-2/
Bcl-XL drugs, such as ABT-263, understanding the oncogenic potential of proteins, such as Mcl-1 and Bcl-2, and elucidating the precise mechanisms of action of pro-
apoptotic chemotherapeutics.

PySB: programming biological models
CF Lopez et al

2 Molecular Systems Biology 2013 & 2013 EMBO and Macmillan Publishers Limited

approaches from software engineering are one way to increase
reusability and reduce duplication (Mallavarapu et al, 2008;
Pedersen and Plotkin, 2008; Danos et al, 2009; Mirschel et al,
2009; Gnad et al, 2012). In particular, LISP frameworks such as
little b (Mallavarapu et al, 2008) and ProMot (Mirschel et al,
2009) have demonstrated the value of programmatic
approaches. However, ProMot does not use rules, limiting its
effectiveness for combinatorially complex systems; little b,
while implementing rules internally, does not interoperate with
tools and languages from the broader rule-based modeling
community and is no longer in development (the similarities
and differences between the little b and ProMot approaches
have been described previously (Mallavarapu et al, 2008)).
Combining the strengths of rule-based and programmatic
approaches to modeling is a key goal of the work described here.

A benefit of modeling biological systems using contemporary
approaches from computer science and open-source software
engineering is the ready availability of tools and best practices
for managing and testing complex code. Good software
engineering practice promotes abstraction, composition and
modularity (Mallavarapu et al, 2008; Mirschel et al, 2009).
Through abstraction, the core features of a concept or process
are separated from the particulars: for example, a pattern of
biochemical reactions (e.g., phosphorylation–dephosphorylation
of a substrate) is described once in a generic form as a
subroutine and then instantiated for specific models simply by
specifying the arguments (e.g., species such as Raf, PP2A, and
MEK). In programming, abstraction is achieved through the
use of parameterizable functions or macros that are written
once and then invoked as needed. Functions can be built up
from other functions, a process known as composition.
Abstraction and composition can occur at all levels of
complexity: just as complex functions can be built from simple
functions, large programs can be built up from smaller
subsystems that are documented and tested individually.
When these subsystems have well-defined input–output
interfaces, they can be used as libraries that make it possible
to write new programs using a simple vocabulary of well-
tested concepts (e.g., a library of biochemical actions or core
pathways such as the MAPK cascade) (Pedersen and Plotkin,
2008). The decomposition of complex biological models in this
fashion facilitates extensibility and transparency, because
well-developed mechanisms can be reused and changes can
be localized to the subsystem that needs revision.

Contemporary software engineering has much to teach us
about the difficult task of developing and documenting models
in a distributed setting. Software engineers ‘publish’ their
findings using robust programming tools that support code
annotation, documentation, and verification, all significant
challenges in biological modeling (Hlavacek, 2009). The
open-source software community also provides a valuable
socio-cultural framework for managing large, collaborative
projects in the public domain. Version control tools such as Git
and Subversion, along with ‘social coding’ websites such as
GitHub, have facilitated the collaborative development of
software as complex as the kernel of the Linux operating
system (http://github.com). It would be highly desirable to
exploit such social and technical innovation in solving the
problems of incremental model development and reuse in
biology.

In this paper, we describe PySB, an open-source program-
ming framework written in Python that allows concepts and
methodologies from contemporary software engineering to be
applied to the construction of transparent, extensible and
reusable biological models (http://python.org; Oliphant,
2007). A critical feature of modeling with PySB is that models
are Python programs, and tools for documentation, testing,
and version control (e.g., Git) can be used to help manage
model development. Strictly speaking, a PySB ‘model’ is a
Python program, that, when executed, produces another
program (the underlying reaction rules) that can be analyzed
or used to create equations for simulation. The PySB frame-
work provides a high-level action-oriented vocabulary con-
gruent with our intuitive understanding of biochemistry
(A phosphorylates B, C translocates to the nucleus, etc.).
PySB is closely integrated with Python numerical tools for
simulation and parameter estimation and graphical tools that
enable plotting of model trajectories and topologies. We
demonstrate the use of PySB to re-instantiate 12 previously
published ODE-based models of the Bcl-2 family proteins that
regulate apoptosis (Chen et al, 2007a; 2007b; Cui et al, 2008;
Albeck et al, 2008b; Howells et al, 2010). We show how PySB
can be used to decompose models into reusable macros that
can be independently tested, and we generate composite
models that combine a prior model from our lab describing
extrinsic apoptosis (Albeck et al, 2008b; 2008a) with alter-
native hypotheses about Bcl-2 family interactions from other
investigators. Finally, we develop and calibrate an expanded
cell-death model that spans the diversity of the multi-protein
Bcl-2 family and draws on findings from leading biochemists
in the field, depicting a unified, ‘embedded together’ mechan-
ism for mitochondrial membrane permeabilization (Leber
et al, 2010; Llambi et al, 2011). All models in this paper, along
with the PySB source code and documentation, are available
for sharing and further development at GitHub and the PySB
website (http://pysb.org; Materials and methods).

Results

We chose Python as the language for PySB because of its
widespread use in the computational biology community,
support for object-oriented and functional programming, and
rich ecosystem of mathematical and scientific libraries. At the
outset, we determined that PySB should interoperate seam-
lessly with BioNetGen (Faeder et al, 2009) and Kappa (Danos
et al, 2007b), and thereby build on substantial investments in
rule-based modeling. A PySB model consists of instances
of a core set of classes: Model, Monomer, Parameter,
Compartment, Rule, Initial and Observable, closely
mirroring the form of BNGL and Kappa models. However, in
PySB, the component declarations return software objects
inside Python, allowing model elements to be manipulated
programmatically. To simplify the process of writing rules and
to maximize the syntactic match with BNGL, PySB redefines
(overloads) some of the mathematical operators in Python to
create a shorthand that resembles chemistry notation (Box 2).
For example, in the context of a PySB rule definition, the ‘þ ’
operator (which in other contexts represents mathematical
addition) is used to enumerate a list of reactants or products. It

PySB: programming biological models
CF Lopez et al

& 2013 EMBO and Macmillan Publishers Limited Molecular Systems Biology 2013 3

http://github.com
http://python.org
http://pysb.org

is not necessary to use overloaded PySB operators but it makes
the models easier to write and understand (see ‘PySB syntax’
in the Materials and methods and the Supplementary
Materials).

By way of illustration, consider a ‘Hello World’ program in
PySB involving reversible binding of proteins L and R, each of
which contains a single binding site s. A PySB program for this
simple reaction has high overhead relative to the equivalent
set of ODEs but serves to introduce the basic PySB syntax and
show how it interoperates with other software such as BNG,
the VODE integrator (Brown et al, 1989), and the Matplotlib
plotting library (Hunter, 2007). In the first block of the program
(Figure 1A; block 1), a declaration of molecule types
(‘monomers’ in PySB) is followed by the forward and reverse
rate parameters, kf and kr, and initial conditions for unbound
L and R. The syntax for the reversible binding rule (which will
be familiar to users of rule-based languages) reads as follows:
when the proteins L and R both have empty binding sites s
(e.g., L(s¼None)), they reversibly bind to form a complex
that shares a single ‘bond’ (e.g., L(s¼1) % R(s¼1)), at
rates kf and kr. This approach to naming binding sites (and
calling interactions ‘bonds,’ without implying covalent mod-
ification) is drawn from rule-based languages and makes it
possible to describe molecules having multiple sites of
interaction with different specificities, modifications, and
occupancy states (e.g., the distinct binding sites on the TRAIL
receptor for ligand and death-inducing signaling complex
(DISC) adaptor proteins). The ‘Hello World’ model concludes
by designating an observable of interest, the complex LR. (For
additional details on the syntax used in this model, see Box 2
and the ‘PySB syntax’ section of the Supplementary Materials;
a unified modeling language (UML) class diagram of the core
PySB classes is also provided in Supplementary Figure S3.)

The second block of code in Figure 1A defines a time range and
calls the PySB function odesolve, which performs determi-
nistic model simulation by invoking BNG (to generate the
reaction network) and the numerical integrator VODE (see also
Figure 1B). Simulation results are returned as a matrix that is
graphed using the plot command from Matplotlib (Figures
1A, block 3 and B).

Using macros to model recurrent biochemical
actions

The benefits of PySB become apparent only with more complex
and interesting models in which programming constructs such
as conditionals, loops, functions, classes, and modules are used
to define reusable elements. The complexity of these elements
can vary from a few species to multi-component cascades.
Macros, reusable Python functions that are programmatically
expanded into rules and reactions, define low-level biochem-
ical actions such as ‘catalyze,’ ‘bind,’ or ‘assemble,’ mirroring
the way we describe biological processes verbally. PySB
currently contains 13 general-purpose macros covering rever-
sible binding, catalytic modification, synthesis, degradation,
and pore assembly. Users can generate other model-specific
macros to implement new or uncommon mechanisms, thereby
creating libraries of biochemical actions for subsequent
modeling projects (we are currently adding new macros
ourselves); phosphorylation/dephosphorylation cascades and
loops are obvious candidates for such a library.

As an example, the catalyze macro implements a mass
action model of an enzyme-mediated biochemical transforma-
tion (Figure 2A) based on six user-specified arguments: the
enzyme and its binding site for substrate, the substrate and its
binding site for enzyme, the product, and a list of forward,
reverse, and catalytic rate constants. Figure 2A illustrates the
application of catalyze to a reaction in which caspase-8
cleaves Bid to form truncated Bid (tBid; see Box 1 for a
description of the relevant biology). Improved transparency is
an important benefit of using macros in that they explicitly
describe how elementary reactions are implemented. For
example, catalyze invokes a two-step model of catalysis in
which an enzyme–substrate complex is formed as an inter-
mediate step: Eþ S 2ES-Eþ P. Some published models of
apoptosis (Chen et al, 2007a; 2007b; Cui et al, 2008; Howells
et al, 2010) use a pseudo-first-order, one-step approximation
Eþ S-Eþ P that has the merit of fewer parameters. However,
depending on time scales and parameter values, there is a
profound difference in the dynamics of one- and two-step
catalysis: the one-step model, for example, makes the strict
assumption that the enzyme always operates in its linear range
and cannot be saturated. These differences are not apparent
from the visual or existing verbal descriptions of the ODEs but
instead require careful retrospective analysis. In contrast,
PySB allows exploration of mechanistic differences simply by
calling an alternative catalysis macro, catalyze_one_step
(Supplementary Figure S1B). The benefit of macros is not only
that the model is more concise (the catalyze macro call
replaces two rules and four ODEs) but also that the difference
between one- and two-step catalytic schemes is clearly declared
and need not be inferred retrospectively. Because macros are
tested programmatically, they also ensure correct instantiation

Box 2. PySB embeds a biological modeling language within Python.

Existing computer languages developed for biological modeling (e.g.,
BNGL or SBML) use a specialized syntax to concisely encode the
detailed specifications of biological models. However, such domain-
specific languages (DSLs) lack many features found in general-purpose
programming languages (functions, classes, loops, etc) that can be used
for organizing complex code and making it more human-readable. They
also often lack ancillary tools commonly found in general-purpose
programming languages, such as testing frameworks or documentation
generation support. Models written using PySB are programs in the
Python programming language—they are not specialized file formats
interpreted by modeling programs. When executed, a PySB model
programmatically ‘builds up’ the elements of a rule-based model
(molecule types, rules, parameters, etc) until the specification is
complete; the Python model object that results can then be subjected
to further analysis. Relative to a DSL, a traditional, object-oriented
approach to building up a model in this way would require many extra
lines of code to create and track objects. PySB streamlines the process
of programmatically building models by overloading several Python
operators (þ , 44, o4, (), %) to allow biological rules to be
expressed in a chemistry-like syntax based on BNGL. In addition, the
SelfExporter helper class allows models to be built up declaratively in
BNGL-like fashion, further minimizing the required code. The overall
result is a specialized language for biological modeling ‘contained within’
Python and implemented using Python operators (the Python package
SymPy for symbolic mathematics uses a similar approach). Although this
‘syntactic sugar’ streamlines the most common modeling use cases, in
some advanced modeling scenarios, a more traditional programming
syntax may be preferred; the streamlined syntax is thus entirely optional.
The PySB syntax is described in detail in the Supplementary Materials.

PySB: programming biological models
CF Lopez et al

4 Molecular Systems Biology 2013 & 2013 EMBO and Macmillan Publishers Limited

of forward, reverse, and catalytic reactions, an important
benefit because failure to implement these processes correctly
is remarkably common (see below and Supplementary Note).

The power of macros is most evident with complex
biochemical actions. For example, the assemble_pore_
sequential macro (Figure 2B) implements sequential assem-
bly of a membrane-associated pore from multiple identical
subunits. It was written to explore how Bax and Bak associate in
the mitochondrial outer membrane to form the pore that
translocates cytochrome c and Smac into the cytosol during
MOMP (Youle and Strasser, 2008). The arguments to assem-
ble_pore_sequential are the identity of the pore-forming
protein and its two binding sites, the maximum number of
proteins in a pore and a table containing rate constants for each
assembly step. In vitro experiments suggest that Bax and Bak
assemble by sequential addition of subunits (Martinez-Caballero
et al, 2009), but the precise size of an active MOMP pore is
unknown. Exploring the effects of changing the number n of
subunits in a pore requires creation and modification of n–1
BNGL rules or n ODEs but only one value in the PySB
assemble_pore_sequential macro.

Many biochemical processes are controlled by families of
proteins that have overlapping binding specificities. In
apoptosis, MOMP is regulated by B20 pro- and anti-apoptotic
Bcl-2 family proteins that have a range of affinities for each
other and bind in various arrangements (Box 1). Modeling the
binding of any two Bcl-2 proteins is simple, but managing
equations or rules for all possible binding reactions is much
harder. The bind_table macro uses a simple tabular
representation to model interactions among members of

multi-protein families (Figure 2C). The first argument to the
macro is a table (a list of lists in Python) in which row and
column headers identify pairs of interacting proteins and each
table entry contains binding constants or the value None to
indicate that there is no measurable interaction. The second
and third arguments specify the binding site names for row and
column species, respectively. In addition to being concise (a
single bind_table call for the Bcl-2 proteins generates 28
rules and 41 ODEs), the tabular format highlights relationships
between proteins by grouping them into functional classes;
new family members can be introduced simply by adding rows
and columns. A bind_table is therefore a simple compu-
table representation of the ‘binding codes’ that have been
created by others to summarize structural and biochemistry
studies on Bcl-2 family members (Chen et al, 2005; Kuwana
et al, 2005; Certo et al, 2006). By changing the first argument in
the bind_table call, it is straightforward to explicitly
substitute one set of binding data for another, a useful feature
for exploring differences in published binding codes or for
modeling the behavior of mutant proteins (Fire et al, 2010;
Debartolo et al, 2012). Models that use macros such as
bind_table naturally acquire a ‘self-documenting’ character
that minimizes the need for additional explanatory description
(see Figures 4B and 5A for examples of bind_table in the
context of models of MOMP initiation).

Modules and model reuse

Macros abstract biochemical reactions at a fairly low level of
detail involving a few proteins, but Python also supports a

from pysb import *
from pysb.integrate import odesolve
from pylab import plot, linspace

Model()

Declare the monomers
Monomer('L', ['s'])
Monomer('R', ['s'])

Declare the parameters
Parameter('kf', 1e-3)
Parameter('kr', 1e-3)

Declare the initial conditions
Initial(L(s=None), Parameter('L_0', 100))
Initial(R(s=None), Parameter('R_0', 200))

Declare the binding rule
Rule('L_binds_R',
 L(s=None) + R(s=None) <> L(s=1) % R(s=1),
 kf, kr)

Observe the complex
Observable('LR', L(s=1) % R(s=1))

Simulate the model
time = linspace(0, 40)
x = odesolve(model, time)
plot(time, x['LR'])

PySB
declarations

Make BNGL

Rule(’L_binds_R’,
 L(s=None) + R(s=None) <>
 L(s=1) % R(s=1), kf, kr)

Build Rxn Net
(BNG)

User PySB External Tools

Integrate
(VODE)

Result

1

2

Make ODEs

L(s) + R(s) <-> L(s!1).R(s!1)
 kf, kr

dL/dt = -kf*L*R + kr*LR
dR/dt = -kf*L*R + kr*LR
dLR/dt = kf*L*R - kr*LR

odesolve(...)

plot(...)
Plot

(Matplotlib)3

begin reactions
 1 1,2 3 kf #L_binds_R
 2 3 1,2 kr #L_binds_R(reverse)
end reactions

Data matrix

1

2

3

Figure 1 Creation and simulation of a ‘Hello World’ model in PySB. (A) Creation and deterministic simulation of a model using PySB. The call to Model() creates
the pysb.core.Model object to which all subsequently declared components are added. The first block of code declares the molecule types, parameters, initial
conditions, reversible reaction rule, and observable necessary for modeling and simulating the reversible binding of proteins L and R. The second block of code calls the
odesolve function from the pysb.integrate module to generate and integrate the ODEs. The third block plots the simulated time course using the Matplotlib
plot command. Numbers associated with the code blocks identify the correspondences between the code and the control flow shown in B. (B) Control flow for an ODE
simulation of a PySB model. The columns ‘User,’ ‘PySB’, and ‘External Tools’ indicate the locus of control of each step in the process (boxes). The ‘Result’ column shows
the result of each individual step: the gray box indicates results of steps that are internal to the call to odesolve, whereas the other results are visible to the user at the
top level. After declaring the model elements as in A, the user calls odesolve, which generates the corresponding BNGL for the model, invokes BNG externally on the
generated BNGL code to create the reaction network, parses the reaction network to generate the corresponding set of ODEs, and calls an external integrator (VODE) to
generate the trajectories. The trajectories are returned to the user as a NumPy record array, where they are visualized with a call to the plot function from Matplotlib.

PySB: programming biological models
CF Lopez et al

& 2013 EMBO and Macmillan Publishers Limited Molecular Systems Biology 2013 5

catalyze(C8, 'bf', Bid(state='U'), 'bf', Bid(state='T'), klist)

Example macro call

Implementation

BNGL rules

ODEs

C8(bf) + Bid(bf,state~U) <-> C8(bf!1).Bid(bf!1,state~U) kf, kr
C8(bf!1).Bid(bf!1,state~U) -> C8(bf) + Bid(bf,state~T) kc

C8: ds0/dt = kc*s2 - kf*s0*s1 + kr*s2
Bid: ds1/dt = -kf*s0*s1 + kr*s2
C8_Bid: ds2/dt = -kc*s2 + kf*s0*s1 - kr*s2
tBid: ds3/dt = kc*s2

assemble_pore_sequential(Bax, 's1', 's2', 6, ktable)

5 Rules

6 ODEs

Example macro call

BNGL rules

ODEs

28 Rules

41 ODEs

bind_table([[Bcl2, BclXL, BclW, Mcl1, Bfl1],
 [Bid, 66, 12, 10, 10, 53],
 [Bim, 10, 10, 38, 10, 73],
 [Bad, 11, 10, 60, None, None],
 [Bik, 151, 10, 17, 109, None],
 [Noxa, None, None, None, 19, None],
 [Hrk, None, 92, None, None, None],
 [Puma, 18, 10, 25, 10, 59],
 [Bmf, 24, 10, 11, 23, None]],
 'bf', 'bf', kf=1e-3]]

Example macro call

BNGL rules

ODEs

Supplementary Figure S1A

1: Enzyme (Caspase-8)
2: Enzyme-binding site name
3: Substrate (full length, cytosolic Bid)

4: Substrate-binding site name
5: Product (T for truncated, cytosolic Bid)
6: List of rate parameters

Macro Arguments

1 2 3 4 5 6

1: Subunit name
2, 3: Sites for binding neighboring subunits

4: Maximum number of subunits in pore
5: Table of rate parameters

Macro Arguments
 1 2 3 4 5

Macro Arguments

1: Bind table data (molecules and rates)
2: Binding site for row-group proteins

3: Binding site for column-group proteins
4: Default association rate

1

2 3 4

Figure 2 Three examples of mechanistic abstractions using macros. Full implementation of all macros can be found in the macros.py file in the PySB source code
online (Materials and methods). (A) catalyze. The example call shows how the catalyze macro is called to add a catalytic reaction in which active caspase-8
(C8) binds to untruncated Bid (Bid(state¼‘U’)) to yield tBid (Bid(state¼‘T’)). Rate parameters (forward, reverse, and catalytic) are provided in
the list ‘klist’. The ‘Basic implementation’ in Supplementary Figure S1A shows the Python source code for a simplified version of the catalyze macro.
Execution of the catalyze macro leads to the creation and addition of two rules to the model, which, when converted into BNGL, take the form shown below.
Generation of the reaction network via BNG then results in the system of four ODEs shown at bottom. (B) assemble_pore_sequential models the assembly
of a pore in a sequential fashion in which monomers bind to form dimers, dimers bind monomers to form trimers, trimers bind monomers to form tetramers, etc. Pores of
size three (trimers) and above have a closed, ring-shaped topology, reflecting the variable structure and stoichiometry for the Bax pore suggested by recent in vitro
experiments (Martinez-Caballero et al, 2009). The maximal size of the pore is given by the fourth argument to the macro (i.e., 6). With the parameters shown in the
example, the execution of the macro results in five rules (for binding of monomers to monomers, monomers to dimers, monomers to trimers, etc) and six species and
ODEs (monomers through hexamers). Pores with greater stoichiometry can be modeled simply by changing the pore size argument in the macro call. (C)
bind_table is used to concisely represent combinatorial binding among two related groups of molecules. In the example call, the species in the column headers are
the five known anti-apoptotic Bcl-2 proteins, whereas the row headers are various pro-apoptotic BH3-only proteins. The table entries represent the dissociation constants
for binding between each pair of proteins drawn from in vitro measurements, given in units of nanomolar (Willis et al, 2005; Certo et al, 2006); the Python constant None
indicates that no binding occurs. (In place of a dissociation constant, a table cell may alternatively contain a pair of explicit association and dissociation rates.) The names
of the binding sites for the row-group and column-group proteins (i.e., ‘bf’) are given as the second and third arguments. The final argument (i.e., kf¼1e-3)
specifies a default association rate to be applied to all reactions, given in units of nM� 1 s� 1. The execution of the bind_table call results in the instantiation of 28
reversible binding rules, each with the given association rate and a dissociation rate calculated from the dissociation constant provided in the table entries; this further
expands to 41 ODEs.

PySB: programming biological models
CF Lopez et al

6 Molecular Systems Biology 2013 & 2013 EMBO and Macmillan Publishers Limited

wide variety of methods for reusing more complex model
elements. We have found three to be particularly useful:
(1) Instance Reuse, for making small changes to an existing
model; (2) Module Reuse, for programmatically composing a
model from reusable pieces or modules; and (3) Class Reuse,
for models involving combinatorial variation of several
independent features. Of these, Instance Reuse is the simplest,
entailing programmatic duplication of a previous model and
explicit specification of new and modified elements. Instance
Reuse proved to be an appropriate way to update the PySB
version of EARM 1.0 (Albeck et al, 2008a) to include synthesis
and degradation reactions (Figure 3A). This approach replaces
conventional ‘cut-and-paste’ copying and editing of ODEs or
BNGL rules. Reuse is achieved by cloning the old model into a
new model and then explicitly declaring the elements that are
added or modified, making the changes easy to understand
and track.

Module Reuse involves the separation of a model into
independent elements (‘motifs’ or ‘modules’; see also
Figure 7) that are written as callable subroutines in Python.
It is not necessary for a biological process to be modular in a
functional sense for modularization in PySB to be advanta-
geous. Building a model from subroutines enables a ‘mix-and-
match’ approach in which a subset of the interactions in a
model is subjected to revision or re-examination, whereas the
rest remain the same. For example, we divided EARM 1.0 into
three modules each involving self-contained blocks of PySB
code for: (1) reactions from ligand–death receptor association
to binding of DISC components; (2) interactions among Bcl-2
family members controlling MOMP; and (3) the cascade of
reactions involving initiator and effector caspases and their
immediate regulators (Figure 3B; Box 1). A series of papers
examining alternative models of MOMP have been published
by multiple groups (Chen et al, 2007a, b; Cui et al, 2008;
Howells et al, 2010), but MOMP has most commonly been
studied in isolation from reactions occurring upstream and
downstream. However, it has been shown that multi-protein
cascades do not exhibit the same behavior in isolation as when
they are part of larger networks (Del Vecchio et al, 2008; Chen
et al, 2009). One of the primary aims of modeling signal
transduction is to contextualize molecular mechanisms by
embedding them in a network context. Thus, studies of
extrinsic apoptosis would benefit from models in which
alternative hypotheses for MOMP regulation are embedded
in a more complete reaction pathway. Using conventional
modeling tools, it is challenging to add MOMP ‘mini-models’
to upstream and downstream reactions (Albeck et al, 2008b).
In contrast, in PySB, this type of composition is simple: we
have written a PySB program in which any of 15 models of
MOMP are called up, along with common rec_to_bid and
pore_to_parpmodules to create 15 fully functioning hybrid
models of extrinsic apoptosis (Figure 3B). The upstream and
downstream reactions have also been modeled in several
different ways by others (Rehm et al, 2006; O’Connor et al,
2008; Fricker et al, 2010; Neumann et al, 2010; Schleich et al,
2012), and it would be straightforward to use Module Reuse to
combine different proposals for rec_to_bid and pore_
to_parp with different MOMP modules.

Class Reuse is a third and more sophisticated approach that
exploits the class inheritance mechanism in Python. Common

model features are coded in a base class, and model variants
are written as ‘child’ classes of the base class, able to inherit
code from the base class directly with or without program-
matic modification. Code from multiple variants can then be
combined by further inheritance from more than one of these
classes. For example, we used Class Reuse to model the effects
of reaction compartmentalization on interactions among pro-
apoptotic Bcl-2 proteins at the mitochondrial membrane
(Figure 3C). In one case, we assumed that reactions took
place in two well-mixed reaction compartments corresponding
to cytosol and membrane (Figure 3C, TwoCpt), and in the
second, we assumed that each mitochondrion constituted a
distinct reaction compartment (MultiCpt). In addition, we
independently explored different reaction topologies involving
the Bcl-2 proteins tBid and Bax. Both topologies (Topo1 and
Topo2) include the translocation of tBid and Bax to
membranes but only the second topology (Topo2) incorpo-
rates activation of Bax by tBid. We used inheritance to
automate creation of four different models having different
compartmentalization schemes and reaction topologies (e.g.,
TwoCpt_Topo1). The notable feature of Class Reuse is that
model variants are created and combined over multiple
independent ‘axes’—in this example, compartmentalization
and protein-interaction topology—transparently and with no
duplicated code.

Integration with the Python ecosystem
and external modeling tools

The iterative process of model development is dramatically
accelerated when tools for model creation, simulation,
analysis, and visualization are integrated. Many commercial
and academic software packages, including Mathematica
(Wolfram Research, Inc., 2010) and MATLAB (Mathworks,
2012), provide integrated tools for equation-based models but
are unwieldy to use with rule-based or programmatic
approaches because models must be exported and imported
using SBML (Hoops et al, 2006; Maiwald and Timmer, 2008).
At the same time, rule-based model editors such as RuleBender
for BNGL (Smith et al, 2012) and RuleStudio for Kappa
(https://github.com/kappamodeler/rulestudio) facilitate
development of rule-based models but do not incorporate
tools for data analysis, parameter fitting, and symbolic math.
Simply by virtue of being written in Python, PySB interacts
natively with a large and growing library of open-source
scientific software such as NumPy, SciPy, SymPy, and
Matplotlib (Table I). Models written using PySB can also
exploit Python tools for documentation generation (sphinx)
and for unit testing (unittest, nose, and doctest), both
of which we used extensively in creating the models of
extrinsic apoptosis described below.

To interface PySB with BNG and Kappa, which are not
implemented in Python, we wrote Python ‘wrapper’ libraries,
providing access to agent-based simulation, static analysis,
and visualization. The wrappers also manage the syntactic
differences between BNGL and Kappa, allowing either to be
used for the same PySB model. Models can be trivially
exported in BNGL format for use with established ‘all-in-one’
tools that support BNGL, such as V-Cell (Moraru et al, 2002).

PySB: programming biological models
CF Lopez et al

& 2013 EMBO and Macmillan Publishers Limited Molecular Systems Biology 2013 7

https://github.com/kappamodeler/rulestudio

earm_modules.py

twocpt_topo1.py

import earm_1_0

Model(base=earm_1_0.model)

Add/modify components
synthesize_degrade_table([...])

import earm_modules

Model()

earm_modules.rec_to_bid()

Implement variant MOMP model
<Components, macros, etc.>

earm_modules.pore_to_parp()

Model()

<Components, macros, etc.>

earm_1_0.py

def rec_to_bid():
 # Upstream module
 <Components, macros, etc.>

def pore_to_parp():
 # Downstream module
 <Components, macros, etc.>

compartment_classes.py

model_variant.py

earm_1_3.py

R
eu

se

topology_classes.py

R
eu

se

from compartment_classes import TwoCpt
from topology_classes import Topo1

TwoCpt_Topo1 = type('TwoCpt_Topo1',
 (TwoCpt, Topo1), {})
model_builder = TwoCpt_Topo1()
model_builder.build_model()

earm_1_0 earm_1_3

rec_to_bid

pore_to_parp

CptBase

Topo2Topo1

model_variant

TwoCpt MultiCpt

Compartmentalization Interaction topology

R
eu

se

R
eu

se

TwoCpt

Topo1

class CptBase(object):
 def tBid_activates_Bax(self):
 # Default implementation
 <Components, macros, etc.>

class TwoCpt(CptBase):
 def translocate_tBid_Bax(self):
 # Specific implementation
 <Components, macros, etc.>

class MultiCpt(CptBase):
 def translocate_tBid_Bax(self):
 # Specific implementation
 <Components, macros, etc.>

class Topo1(object):
 def build_model(self):
 self.translocate_tBid_Bax()

class Topo2(object):
 def build_model(self):
 self.translocate_tBid_Bax()
 self.tBid_activates_Bax()

B

A C

Figure 3 Three approaches to model reuse. Boxes with gray tabs represent Python modules/files. Statements marked ‘Reuse’ identify the point of reuse of previously
created model code. Background highlighting indicates correspondence between elements in the reuse schematic and the PySB code. (A) Direct reuse and subsequent
modification of pre-existing model code. A pre-existing model is declared in its own Python file (earm_1_0.py). The extending model in the file earm_1_3.py
(representing a later version) imports and duplicates the model object from earm_1_0.py and subsequently adds a list of synthesis and degradation reactions. (B)
Reuse of modules using macros. Macros instantiating the components for the upstream (rec_to_bid) and downstream (pore_to_parp) portions of the
extrinsic apoptosis pathway are placed in a Python file, earm_modules.py. Variant models differing only in the reaction topology for MOMP initiation (e.g.,
model_variant.py) are then created by invoking these macros for the shared upstream and downstream elements. (C) Reuse and recombination of model
elements through class inheritance. A shared implementation of the compartmentalization-independent reactions for Bax activation (i.e., tBid_activates_Bax)
is contained within the base class CptBase. Alternative compartmentalization strategies are implemented in the child classes TwoCpt and MultiCpt, which
separately implement the compartmentalization-dependent reactions for tBid and Bax translocation (i.e., translocate_tBid_Bax). Because these classes
inherit from CptBase, they acquire the implementation of tBid_activates_Bax, representing a point of reuse. Alternative protein-interaction topologies are
implemented within the build_model function in the two classes Topo1 and Topo2. Models with either of the compartmentalization implementations (e.g.,
TwoCpt) and either of the interaction topologies (e.g., Topo1) can then be created dynamically by inheriting from the appropriate classes, representing an additional
point of reuse. Readers familiar with the concept of polymorphism from object-oriented programming will note that calling the build_model method on any of the
hybrid classes will polymorphically refer to the correct implementations in the parent classes.

PySB: programming biological models
CF Lopez et al

8 Molecular Systems Biology 2013 & 2013 EMBO and Macmillan Publishers Limited

def chen_febs_direct(do_pore_assembly=True):
 # One-step "hit-and-run" activation of Bax by tBid
 catalyze_one_step_reversible(
 Bid(state='T', bf=None),
 Bax(bf=None, **inactive_monomer),
 Bax(bf=None, **active_monomer),
 [1e-3, 1e-3])

 # Bcl2 binds tBid and Bad (a sensitizer) but not Bax
 bind_table([[Bcl2],
 [Bid(state='T'), (1e-4, 1e-3)],
 [Bad(state='M'), (1e-4, 1e-3)]])

 if do_pore_assembly:
 assemble_pore_spontaneous(Bax(state='A', bf=None),
 [4e-3, 1e-3])

Albeck 11b

Albeck 11c

Albeck 11d

Albeck 11e

Albeck 11f

Chen Biophys. J.

Howells

Chen FEBS “Indirect”

Chen FEBS “Direct”

Cui “Direct”

Cui “Direct 1”

Cui “Direct 2”

Lopez “Indirect” Lopez “Direct” Lopez “Embedded”

Lopez Group

Albeck Group Shen/Howells group

def cui_direct():
 # Build on the direct model from Chen et al. (2007)
 # FEBS Lett. (excluding pore assembly) by:
 chen_febs_direct(do_pore_assembly=False)

 # 1. Overriding some parameter values,
 one_step_BidT_BaxC_to_BidT_BaxA_kf.value = 0.0005
 bind_BidT_Bcl2_kf.value = 0.001

 # 2. Adding a Bad-for-Bid displacement reaction,
 displace_reversibly(Bad(state='M'), Bid(state='T'), Bcl2,
 [0.0001, 0.001])

 # 3. Adding simplified MAC formation (Bax dimerization)
 assemble_pore_sequential(Bax(state='A', bf=None), 2,
 [[0.0002, 0.02]])

 # 4. Adding synthesis and degradation reactions
 Bax2 = Bax(s1=1, s2=None) % Bax(s1=None, s2=1)
 synthesize_degrade_table(
 [[Bax(bf=None, **inactive_monomer), 0.06, 0.001],
 [Bax(bf=None, **active_monomer), None, 0.001],
 [Bid(state='T', bf=None), 0.001, 0.001],
 [Bcl2(bf=None), 0.03, 0.001],
 [Bid(state='T', bf=1) % Bcl2(bf=1), None, 0.005],
 [Bad(state='M', bf=None, serine='U'), 0.001, 0.001],
 [Bad(bf=1) % Bcl2(bf=1), None, 0.005],
 [Bax2, None, 0.0005]])

A B

DC

Figure 4 Refactoring of published models into PySB. (A) Relationships between the models examined in this paper. The ‘Albeck Group’ incorporates a series of
incrementally expanded models shown in Figure 11 of Albeck et al (2008b); the ‘Shen/Howells Group’ incorporates models from three papers from the research group of
Shen and colleagues (Chen et al, 2007a; 2007b; Cui et al, 2008) and a derivative model from Howells et al (2010); the ‘Lopez group’ includes three expanded models
introduced in this paper. The arrows indicate that one model has been derived or extended from a prior model and point in the direction Base Model - Derivative Model.
(B) The ‘Direct’ model from Chen et al (2007b) in its original ODE-based representation. (C) Conversion of the Chen ‘Direct’ model to a PySB module. The execution of
the chen_febs_direct function results in rules that exactly reproduce the ODEs shown above (the molecule type Bad in the PySB function corresponds to the
generic enabler species Ena in the original equations; Bid corresponds to the generic activator Act). The macro catalyze_one_step_reversible
implements the two-reaction scheme EþS-Eþ P, P-S; assemble_pore_spontaneous implements the order-4 reaction 4� subunit $ pore. The
bind_table macro is illustrated in Figure 2C. (D) Model extension in PySB. Module Reuse (Figure 3B) was used to implement the ‘Direct’ model from Cui et al
(2008) as an extension of the prior ‘Direct’ model from Chen et al (2007b) shown in Figure 4C. Invocation of the PySB function chen_febs_direct incorporates
the elements of the original Chen et al (2007b) model; subsequent statements specify the modifications and additions required to yield the derived model from
Cui et al (2008).

Table I Integration with external modeling tools

Tool Reference Interface Description (relevance to PySB)

NumPy Oliphant, 2007 Python Efficient array and matrix operations
SciPy Oliphant, 2007 Python Scientific algorithms, e.g., ODE integration, statistics, and optimization
SymPy SymPy Development Team, 2012 Python Symbolic manipulation of mathematical expressions
Matplotlib Hunter, 2007 Python Plotting and other data visualizations
Graphviz Gansner and North, 2000 Python Layout and rendering of node-edge graphs
BNG Faeder et al, 2009 Wrapper Translation of rules to a reaction network; stochastic simulation
Kappa Danos et al, 2007b Wrapper Stochastic simulation; visualization and analysis of rules models
SBML Hucka, 2003 Export Compatibility with SBML tools
Mathematica Wolfram Research, Inc., 2010 Export General-purpose scientific computing
MATLAB Mathworks, Inc., 2012 Export General-purpose scientific computing

PySB: programming biological models
CF Lopez et al

& 2013 EMBO and Macmillan Publishers Limited Molecular Systems Biology 2013 9

PySB can export models as systems of ODEs in formats for
SBML (Hucka, 2003), MATLAB, Mathematica, or Potters-
Wheel (Maiwald and Timmer, 2008). Finally, to facilitate
unique identification of model components, we added a light-
weight annotation capability that allows any model element
(including macros and modules) to be tagged with identifiers
from external databases using subject–object–predicate triples
compatible with MIRIAM (Le Novère et al, 2005). The net
result is a software environment that combines the flexibility
of a general-purpose scientific computing package with
programmatic and rule-based modeling tools and an open-
source code base.

EARM version 2.0: a family of models of extrinsic
apoptosis and MOMP

To explore the ability of PySB to model the latest molecular
data on apoptosis while also building on previous work, we
used macros and Module Reuse to construct a family of cell-
death models involving 15 different modules for MOMP
regulation. Seven of the MOMP modules were previously
published by the research group of Shen and colleagues (Chen
et al, 2007a, b; Cui et al, 2008), one module extends a Shen
group model (Howells et al, 2010), five modules are from the
work of Albeck et al (2008b), and three modules are entirely
new and incorporate more complete sets of interactions among
Bcl-2 proteins (Figure 4A). The three new modules are derived
from word models in recent studies from Green and Andrews
that unify previously competing mechanisms of pore forma-
tion (Billen et al, 2008; Leber et al, 2010; Llambi et al, 2011).
Each of the 15 modules was instantiated in PySB as a distinct
subroutine that can be called and analyzed in the context of a
receptor-to-caspase pathway. The set of 15 MOMP modules is
by no means complete, and several noteworthy models of
extrinsic apoptosis and MOMP (Bentele et al, 2004; Bagci et al,
2006; Legewie et al, 2006; Rehm et al, 2009; Düssmann et al,
2010) have not yet been coded in PySB. However, because our
objective is to explore model reuse and composition using

PySB, we limited ourselves to the 15 MOMP-focused examples
described above. We collectively denote the resulting set of 30
variant models (15 models only of MOMP plus 15 models of
extrinsic apoptosis incorporating the MOMP modules) as
Extrinsic Apoptosis Reaction Model version 2.0 (EARM 2.0);
the models are summarized in Table II and are available as a
Python package with source code downloadable from GitHub
(Materials and methods).

While porting existing models into PySB, we observed that
several published ODE networks contained one or more errors
relative to their verbal or graphical descriptions in the original
paper (Cui et al, 2008) (see Supplementary Note). We were
unable to discern whether the errors in the published ODE
networks represent genuine mathematical errors or merely
transcription errors made in the process of converting
computer models to text. Even when we used the ODE
networks as published, we found cases in which we were
unable to reproduce the results described in the figures. Our
own previous work was not entirely free of this problem: we
could not reproduce the simulation results in Figure 11 of
Albeck et al (2008b) without access to MATLAB source code
that was inadvertently omitted from the original publication.
Our aim is not to criticize these papers but instead to
emphasize that the current practice of maintaining different
forms of a model for the purpose of simulation, illustration,
and publication is highly problematic. The lists of equations
included as supplementary materials in most modeling papers
are particularly troublesome because they exist independently
of the simulation model and the two tend to deviate. These
problems can be addressed by using electronic formats for
model exchange with a single master from which all other
versions are derived (Hucka et al, 2003; Waltemath et al, 2011).
As an electronic format for models, PySB complements XML-
based formats such as SBML in that macros, modules, and
other high-level abstractions make model structure more
intelligible than SBML alone. In addition, modeling biochem-
ical processes by reusing previously validated macros elim-
inates ‘bookkeeping’ errors such as those we identified in
published MOMP models. To ensure that the reinstantiated

Table II Summary of models in EARM 2.0

Model namea ID (full/MOMP) Reference MOMP-only (Mnb)b Full apoptosis (Mna)c

Rules ODEs Parameters Rules ODEs Parameters

Lopez Embedded M1a/b This paper 39 40 78 66 76 133
Lopez Direct M2a/b This paper 27 32 58 54 68 113
Lopez Indirect M3a/b This paper 29 34 64 56 70 119
Albeck 11b M4a/b Albeck et al, 2008b 7 13 17 34 48 71
Albeck 11c M5a/b Albeck et al, 2008b 11 17 25 38 52 79
Albeck 11d M6a/b Albeck et al, 2008b 12 18 27 39 53 81
Albeck 11e M7a/b Albeck et al, 2008b 14 21 31 41 56 85
Albeck 11f M8a/b Albeck et al, 2008b 14 21 31 41 56 85
Chen 2007 Biophys J M9a/b Chen et al, 2007a 6 7 12 37 49 75
Chen 2007 FEBS Direct M10a/b Chen et al, 2007b 5 8 12 36 48 74
Chen 2007 FEBS Indirect M11a/b Chen et al, 2007b 3 6 9 34 48 72
Cui Direct M12a/b Cui et al, 2008 18 10 26 49 52 89
Cui Direct 1 M13a/b Cui et al, 2008 22 11 33 53 53 96
Cui Direct 2 M14a/b Cui et al, 2008 23 11 34 54 53 97
Howells M15a/b Howells et al, 2010 14 12 22 45 49 84

aModel names are drawn from the first author of the paper in which the mathematical model was published.
bMOMP-only variants are identified as Mnb, e.g., M1b for the MOMP-only variant of ‘Lopez Embedded’.
cFull apoptosis variants are identified as Mna, e.g., M1a for the full-apoptosis version of ‘Lopez Embedded’.

PySB: programming biological models
CF Lopez et al

10 Molecular Systems Biology 2013 & 2013 EMBO and Macmillan Publishers Limited

models reproduced the behavior of the originally published
versions, we wrote a series of unit tests using the Python
modules unittest and nose. The tests guarantee that the
reinstantiated models reproduce validated states, despite
translation into PySB. Further details on our approach to unit
testing can be found in the online documentation (Materials
and methods).

The structure and origin of the MOMP models are easier to
understand using PySB than the underlying sets of ODEs. This
can most easily be seen by comparing the ODE and PySB
versions of a model from Chen et al (2007b) (Figures 4B and
4C). The original model is relatively simple (only seven ODEs),
but understanding the precise mechanism for MOMP requires
careful inspection of each equation. By comparison, the PySB
model exploits macros to make the mechanisms transparent:
single-step catalysis, combinatorial binding, and pore assem-
bly. Many of the 15 MOMP models in EARM 2.0 represent
incremental extensions of earlier models (this is particularly
true of the models from Howells et al (2010) and Chen et al
(2007a, b), as well as the five models from Albeck et al (2008a,
b); Figure 4A). The authors of these models proceeded by
duplicating ODEs from previous models or papers and then
adding new species or reactions as required: e.g., the three
models of Cui et al (2008) are derived directly from the ‘direct’
model of Chen et al (2007b), whereas the model of Howells
et al (2010) is based on an earlier model from Chen et al
(2007a). However, the process of renaming species and
variables in the derived models makes it difficult to verify
that each variant correctly recapitulates the structure of the
original model as claimed. For example, in Cui et al (2008), the
authors stated simply that the ‘direct model’ was ‘mainly
based’ on the earlier work of Chen et al (2007b), but we found
that there were several important additions and modifications
in the derived model, including addition of displacement,
synthesis and degradation reactions, and a change in the
MOMP pore from a Bax tetramer to a Bax dimer. Inspection of
the PySB source code for the direct model of Cui et al (2008)
(Figure 4D) makes these differences explicit by calling a
subroutine for the earlier chen_febs_direct model
(Figure 4C) and adding only the new reactions.

PySB Module Reuse facilitated the process of embedding
each of the 15 models of MOMP within the context of receptor–
proximate reactions (ligand binding to Bid cleavage) and
downstream reactions creating ‘Full Apoptosis’ and ‘MOMP-
only’ versions (summarized in Table II; see also Materials and
methods). We are currently developing additional apoptosis
modules (e.g., alternative topologies for receptor activation
and DISC formation) that will soon be part of the EARM
repository; other researchers can also ‘fork’ the code on
GitHub and contribute their own additions. This should allow
a cumulative and distributed approach to model development
and comparison.

Embedded together: an updated and expanded
MOMP model

The EARM 2.0 extrinsic apoptosis model incorporating the
‘Lopez Embedded’ MOMP module variant, denoted EARM 2.0-
M1a for short (Table II), implements a mathematical

interpretation of recent experimental findings from Andrews
(Billen et al, 2008; Leber et al, 2010) and Green (Llambi et al,
2011) and differs significantly from previously published
models of MOMP (Figure 5). Interactions among Bcl-2 family
members occur at the mitochondrial membrane rather than in
the cytosol (Lovell et al, 2008), and anti-apoptotic proteins are
able to bind both the pore-forming proteins, such as Bax and
Bak, and a larger family of BH3-only Bcl-2 family members,
thus serving as dominant-negative effectors (Billen et al, 2008;
Leber et al, 2010). This is also consistent with a recent ‘Unified
Model’ by Green and coworkers demonstrating both ‘direct’
and ‘indirect’ modes of action by the anti-apoptotic Bcl-2
proteins (Llambi et al, 2011) (Box 1). The overlapping binding
specificities implied by this model are summarized in a
bind_table call that includes the key effector for extrinsic
apoptosis (Bid), two BH3-only sensitizers (Bad and Noxa), two
pore-forming effectors (Bax and Bak), and three anti-apoptotic
proteins (Bcl-2, Bcl-XL, and Mcl-1), along with affinity data
obtained from in vitro experiments (Willis et al, 2005; Certo
et al, 2006) (Figure 5A). There is some doubt about whether
peptide-based affinity measurements are directly relevant to
protein–protein interactions occurring on the membranes of
living cells, and the bind_table macro makes it straightfor-
ward to experiment with different values (Figure 2C). EARM
2.0-M1a also assumes auto-activation of Bax (and Bak), which
has been demonstrated in multiple experimental contexts
(Tan et al, 2006; Gavathiotis et al, 2010).

Our previously published EARM 1.0–1.4 models (Albeck
et al, 2008a, b; Spencer et al, 2009; Aldridge et al, 2011; Gaudet
et al, 2012) assumed that the all-or-none quality of MOMP
arose from the ability of Bcl-2 to bind Bax monomers, dimers,
and tetramers (Albeck et al, 2008b). However, subsequent
immunoprecipitation experiments failed to support the exis-
tence of such higher-order hetero-oligomers (Kim et al, 2009).
To determine whether the updated reaction topology in EARM
2.0-M1a can reproduce MOMP dynamics measured in single
TRAIL-treated HeLa cells using Förster resonance energy
transfer reporter proteins (Spencer et al, 2009), we fitted it to
data using the simulated annealing algorithm in SciPy
(Materials and methods). We found that EARM 2.0-M1a had
as good a fit to data as previous models (Figure 6), and we
therefore judge it to be superior to our earlier EARM 1.0 model
based simply on better correspondence with prior knowledge.
The fitting exercise also demonstrated that Python numerical
tools can efficiently simulate and calibrate PySB models
(parameter estimation functions are included in the EARM
2.0 Python package).

Discussion

In this paper, we describe the development and use of PySB, a
framework for creating, managing, and analyzing biological
models in which models are full-fledged Python programs.
PySB modules and macros generate BNGL or Kappa rules,
which can be converted into mathematical equations. This
hierarchical process is analogous to the way in which
programs are written in a high-level language such as Cþ þ
and converted into microprocessor code by the compiler. This
complexity is hidden from PySB users who work with macro

PySB: programming biological models
CF Lopez et al

& 2013 EMBO and Macmillan Publishers Limited Molecular Systems Biology 2013 11

libraries encoding biochemical actions such as ‘catalyze,’
‘bind,’ ‘assemble,’ etc. The advantages of a high-level abstrac-
tion layer include greater transparency and intelligibility, a
reduction in implementation errors and a dramatic increase in
the ability to compare and reuse previous work. Each level of
representation remains accessible for analysis and there are no
explicitly black-box steps: the Python model code reveals
model ontogeny, structure, and approach to mechanism; the
BNGL or Kappa rules generated by PySB support agent-based
simulation and static analysis; and equations enable numer-
ical integration, sensitivity analysis, steady-state analysis, etc.
Use of familiar but powerful programming concepts in PySB
models such as abstraction, composition, modularity, inheri-
tance, and polymorphism make it possible to create variant
models from pre-existing models across several axes of
variation and build new models from previously tested
elements. We expect these features of PySB to facilitate
collaborative model development and evaluation.

PySB draws on well-established practices in the open-source
programming community for model documentation and

sharing. Because PySB models are programs, they can be
tracked and shared using the powerful tools developed for
distributed, open-source software development (e.g., all the
models in this paper are available, with documentation, at
GitHub; see Materials and methods). It is simple to update
models online, highlight differences with previous work and
divide development among multiple individuals and research
teams. Finally, PySB can be used as a general-purpose
modeling tool because it interoperates with diverse scientific
applications written in Python (e.g., NumPy, SciPy, SymPy,
and Matplotlib). Unlike conventional all-in-one programs,
PySB itself tackles only certain steps in the modeling process,
relying on interoperability with programs developed and
maintained by others to create a full-fledged solution. A
benefit of this approach is that improvements in any of these
programs accrue directly to users of PySB.

The power of PySB derives, in part, from its ability to encode
recurrent biochemical patterns in reusable macros (Figure 2)
and to divide complex networks into modules that are defined
once and called when needed (Figures 3B and 4C). By

Bak

BaxBax Bax*

Bak*

Bcl-2

Mcl-1

Bcl-xL

Bad

Noxa

tBidtBid

PORE

Bcl-xL

BclxL

bf

state

Noxa

bfstate

Mcl1

bf

state

Bid

bf state

Bcl2

bf

Bax

bf

s1 s2

state

Bak

bf

s1 s2

state

Bad

bfstate

tBid/Bax/BclxL translocation tBid activates effectors Bcl-2 family binding Bax/Bak autoactivation Pore assembly

Bax_C

r1

r15

Bax_M

Bak_M

r16r6

Bcl2 r18

r7

r3

Bax_A:Bcl2

Bcl2:Bid_M

Bad_M:Bcl2

BclxL_C r2

BclxL_M

Mcl1 r21

r9

r4

Bak_A:Mcl1

Bid_M:Mcl1

Mcl1:Noxa

Bid_T r0

Bid_M

Noxa

Bad_M

r11

Bad_M:BclxL_M

r5

r8

BclxL_M:Bid_M

r20

r19

Bak_A:BclxL_M

Bax_A:BclxL_M

Bax_A

Bak_A

r27

r29

r22

Bax*3

Bax*4

Bax*2

r28

r30

r23

Bak*3

Bak*4

Bak*2

equilibrate(Bid(bf=None, state='T'), Bid(bf=None, state='M'), [1e-1, 1e-3])
equilibrate(free_Bax(state='C'), free_Bax(state='M'), transloc_rates)
equilibrate(BclxL(bf=None, state='C'), BclxL(bf=None, state='M'), transloc_rates)
catalyze(Bid(state='M'), Bax(state='M'), Bax(state='A'), activation_rates)
catalyze(Bid(state='M'), Bak(state='M'), Bak(state='A'), activation_rates)
bind_table([[Bcl2, BclxL(state='M'), Mcl1(state='M')],
 [Bid(state='M'), 66, 12, 10],
 [Bad(state='M'), 11, 10, None],
 [Noxa(state='M'), None, None, 19],
 [Bax(active_monomer), 10, 10, None],
 [Bak(active_monomer) None, 50, 10]],
 kf=1e-3)
catalyze(Bax(active_monomer), Bax(state='M'), Bax(state='A'), activation_rates)
catalyze(Bak(active_monomer), Bak(state='M'), Bak(state='A'), activation_rates)
assemble_pore_sequential(Bax(bf=None, state='A'), 4, pore_rates)
assemble_pore_sequential(Bak(bf=None, state='A'), 4, pore_rates)

Figure 5 Representations of the Bcl-2 interaction topology in the EARM 2.0-M1b (‘Lopez Embedded’) model. The Bcl-2 interaction model consists of five basic
mechanistic elements or ‘motifs’—tBid/Bax/Bcl-xL translocation, activation of Bax and Bak by tBid, Bcl-2 family binding, Bax/Bak auto-activation, and pore assembly—
that are highlighted in A, B, and C according to the colors in the legend. (A) PySB source code for the model, edited for brevity. (B) Simplified, manually drawn
representation. (C) The full reaction network, generated from the PySB model using the PySB render_reactions tool. Rectangles represent species, circles
represent reactions, lines represent reactions with the solid arrowhead representing the nominal forward direction, and the empty arrowhead (for reversible reactions
only) representing the reverse direction. Catalytic reactions are depicted with a boxed arrow pointing from the catalyst to the reaction circle (species for enzyme–
substrate complexes are omitted for clarity). (D) Kappa contact map, which shows the superset of all possible bonds between monomers calculated by static analysis
(Danos et al, 2008). The contact map was computed using Kappa’s complx tool accessed through the PySB Kappa wrapper library. Rectangles represent monomers,
circles represent sites, and lines represent bonds.

PySB: programming biological models
CF Lopez et al

12 Molecular Systems Biology 2013 & 2013 EMBO and Macmillan Publishers Limited

eliminating re-implementation, macros and modules separate
fundamental mechanistic concepts from implementation
details, and thereby make clear the purpose and origins of
specific model features (Mallavarapu et al, 2008; Pedersen and
Plotkin, 2008; Mirschel et al, 2009; Gnad et al, 2012). The
ability of real biological networks to be meaningfully decom-
posed into functional modules is highly context dependent and
a matter of controversy (Del Vecchio et al, 2008), but there is
no requirement that modules in PySB correspond to modules
in a biological or ‘black-box’ engineering sense: the full
reaction network is always accessible without simplification.
Instead, PySB modules are defined according to flexible and
convenient organizational boundaries, keeping open the
possibility for cross-talk and emergent interactions with other
modules. This style of modularity follows the open-ended
approach of little b (Mallavarapu et al, 2008) and differs from

ProMoT, in which modules interact only through previously
designated molecular species (Mirschel et al, 2009). In general,
choosing the right boundaries for a module, whether a
software program or a biological model, is a matter of art
and practical experience. In the models of extrinsic apoptosis
analyzed in this paper, reactions governing MOMP are a good
candidate for modularization because they largely take place
in a discrete compartment (the mitochondrial membrane) and
focus on reactions among Bcl-2 proteins.

We have found that PySB naturally supports a hierarchy of
modeling concepts (Figure 7A). At the top of this hierarchy are
the models themselves, which represent a specific hypothesis
about the topology and activity of a biological system or
network; at the bottom of the hierarchy are specific mathema-
tical equations (e.g., ODEs). Typical approaches to modeling
proceed by directly rendering the hypothesis in equations,
making it difficult to discern the assumptions implicit in the
process of mathematical translation (Figure 7B). Rule-based
approaches represent an intermediate level of abstraction in that
they enumerate local interactions between proteins in a way that
is less explicit than equations (Figure 7C). PySB adds an
additional layer of abstraction in that the user works with macros
and functions (Figure 7A; see also Figure 2). Sets of macros are
then grouped into reusable subroutines that implement small
mechanistic ‘motifs’ corresponding roughly to a sentence in a
word model, such as ‘tBid activates Bax and Bak.’ Such ‘motifs’
are then composed into modules, and modules into models.
Constructed in this fashion, a set of variant models forms a ‘web’
of intertwined elements that is largely self-documenting.

PySB as a second-generation approach

PySB is not the first attempt to create a high-level language for
modeling biochemistry and was inspired by ProMoTand little
b, both of which represent models as LISP programs
(Mallavarapu et al, 2008; Mirschel et al, 2009). However, as
described above, these tools had limited or no support for rule-
based modeling. PySB is based on the much more familiar
Python language and is interoperable with BNGL and Kappa.

The rule-based modeling community is also developing
tools for managing complex models. For example, MetaKappa
targets redundancy in models having related molecular
species and partially overlapping functional characteristics
(e.g., a set of mutants or isoforms of a single protein) (Danos
et al, 2009). The Language for Biological Systems (LBS) is
another approach in which rules are combined with methods
for constructing parameterized modules (Pedersen and
Plotkin, 2008). MetaKappa and LBS are examples of
domain-specific languages (DSL) for high-level biological
modeling, whereas PySB supports high-level modeling
through the structured programming features of Python
(Box 2). Through Python, PySB provides substantial flex-
ibility in organizing models. A potential drawback of this
flexibility is that static analysis of models may be more
challenging to implement than for DSLs such as MetaKappa or
LBS. For the time being, available static analysis algorithms
can be applied to the rules generated from PySB models
(Danos et al, 2008; Feret et al, 2009). We expect the strengths
and weaknesses of these different approaches to become

experimental data

simulation with nominal parameter values

simulation with fitted parameter values

Time (s)

F
ra

ct
io

n
of

cl
ea

ve
d

IC
-R

P
 /

B
id

0 5000 10 000 15 000 20 000

Time (s)

T
D
 /

F
ra

ct
io

n
of

 r
el

ea
se

d
S

m
ac

0 5000 10 000 15 000 20 000

Time (s)

F
ra

ct
io

n
of

cl
ea

ve
d

E
C

-R
P

 /
P

A
R

P

0 5000 10 000 15 000 20 000

0.0

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

Figure 6 Simulated annealing fits for EARM 2.0-M1a for three experimentally
measured protein signals IC-RP/tBid (A), IMS-RP/Smac release (B), and EC-RP/
PARP cleavage (C). Gray lines indicate the experimental data with error bars
indicating the s.d. In the case of B, the gray line denotes the mean time of death
TD

Exp, used to align the trajectories (Materials and methods). The purple curves
show the simulated trajectories using nominal parameter values; the orange
curves show the simulated trajectories after model fitting. The objective function
for fitting is described in the Materials and methods.

PySB: programming biological models
CF Lopez et al

& 2013 EMBO and Macmillan Publishers Limited Molecular Systems Biology 2013 13

clearer as high-level languages are more widely adopted by
the modeling community.

Graphical tools represent an alternative approach to making
biological models easier to understand. CellDesigner (Kitano
et al, 2005) and BioUML (Kutumova et al, 2012) employ visual
interfaces and graphical languages for model creation, inter-
pretation, and revision. Our experience has been that purely
visual approaches to model creation do not scale well with
model size and are ambiguous with respect to the underlying
biochemical mechanisms. This parallels experience in the
software engineering community with UML diagrams: dia-
grams are a helpful adjunct to programmatic abstractions but
they are not a replacement. This implies that visualizations
should be created from an underlying computable representa-
tion and not the other way around; this is the approach taken
by the rxncon software, which uses specialized tables to
describe reactions in a way that specifically supports multiple
visualizations (Tiger et al, 2012). However, to be most useful,
the computable representation must be made as transparent as
possible: approaches that rely on generated visualizations for
transparency are hard to modify, because changes must be
made to the underlying (non-transparent) representation.
Although visualization remains important for communicating
and describing models (Chylek et al, 2011), PySB follows the
common software engineering paradigm in which program-
matic abstraction serves as the principal tool for managing
complexity and visualization serves to illustrate specific
properties of a system (Danos et al, 2008). By way of
illustration, we show how a reaction network (Figure 5C)
and a Kappa contact map (Figure 5D) can be generated from
EARM 2.0-M1b (the MOMP-module-only variant of M1a) and
a species graph can be generated for the full EARM 2.0-M1a
model (Supplementary Figure S2). These visualizations
proved useful in debugging models during the preparation of
this manuscript, but it was the PySB model code that
supported straightforward revisions (Figure 5A). The code
not only contains more information than the visualizations,
but with only 10 macro calls falling into 5 ‘motifs’ (color-coded
regions), it compares favorably with even a simplified,

hand-drawn ‘cartoon’ representation (Figure 5B) in terms of
intelligibility.

The advantages of using programmatic methods for modeling
biological pathways are not necessarily evident from simple
examples in which the underlying equations are self-explanatory
(e.g., the ‘Hello World’ model in Figure 1A). This has led some to
dispute the value of such methods and to argue that direct
modeling in equations is superior. However, as models become
more realistic and complex, equations rapidly become difficult
to understand and errors creep in, a problem that was evident
with the published MOMP models we reinstantiated (Figure 4).
The advantages of programmatic abstraction also become more
evident when a model must be revised or shared, particularly if
the original developers have moved on to something new. This
paper shows how PySB, in combination with BNGL and Kappa,
goes a long way toward addressing this problem.

The EARM 2.0 models of extrinsic cell death

One aim of this paper was to create a new model of extrinsic
apoptosis that incorporated the latest thinking on the
biochemistry of MOMP while facilitating comparison with
previously published models. EARM 2.0 includes 15 different
models for the reactions controlling MOMP, 12 of which were
previously published in five papers and three of which are
novel. In general, previously published models of MOMP do
not explore Bcl-2 biochemistry in the context of a complete
receptor-to-effector caspase network. Such models also
simplify the biology of Bcl-2 proteins, representing only a
subset of the family members. We overcame these limitations
by modularizing the extrinsic apoptosis pathway and using
composition to embed different MOMP modules within a
larger network. Use of the bind_table macro (for modeling
interactions among members of a multi-protein family) made
it possible to efficiently encode the differential binding
affinities of many Bcl-2 proteins for each other. Although the
molecular interactions included in our EARM 2.0 models are
not comprehensive, the extensible nature of the PySB

tBid:Bax >> tBid + aBax Bax + Bcl2 <> Bax:Bcl2

catalyze bind

tBid_activates_effectors sensitizers_bind_antiapoptotics antiapoptotics_bind_ef fectors

rec_to_bid indirect

Models
Mechanistic hypotheses

Modules
Self-contained pathways in a model;

paragraphs in a word model

Motifs
Small mechanistic elements;
sentences in a word model

Rules
Protein-protein interactions

Mathematical representation
Equations

EARM 2.0-M2a EARM 2.0-M3a

direct

tBid + Bax <> tBid:Bax

x10x10x2

ODE Model X Rule Model YA B C

Macros
Common biochemical processes;

verbs in a word model

Figure 7 A conceptual hierarchy for model building with PySB. (A) Simplified hierarchy for EARM 2.0-M2a and M3a. Models can be decomposed into a small number
of separable modules; modules can in turn be decomposed into smaller recurrent mechanistic elements or motifs. Motifs are collections of macro calls (e.g., the motif
‘tBid activates effectors’ consists of two catalyze calls; Figure 5A). Each macro expands into multiple rules (Figure 2) and rules generate equations (Figure 1B). The
gray box highlights the intermediate abstraction layers afforded by PySB. (B) ODE-based approaches to model construction proceed directly from a complex biological
system to its mathematical representation, whereas (C) rule-based approaches provide one abstraction layer above ODEs.

PySB: programming biological models
CF Lopez et al

14 Molecular Systems Biology 2013 & 2013 EMBO and Macmillan Publishers Limited

representation makes it simple to add additional mechanistic
details and species in future work.

One important feature of apoptosis is that MOMP pores do
not form until a pro-death stimulus has been applied at a
sufficient concentration for several hours; however, once pores
form cells die quickly (Goldstein et al, 2000; Rehm et al, 2002;
Albeck et al, 2008b). Our original explanation for the all-or-
none regulation of MOMP was that an anti-apoptotic protein
such as Bcl-2 or Bcl-XL binds to successively larger Bax and
Bak oligomers, thereby creating a cooperative inverse relation-
ship between Bcl-2 and pore levels. This idea has not been
borne out by experiments and instead it appears that the
kinetic properties of MOMP must arise from the dual affinity of
anti-apoptotic proteins for both BH3-only proteins and pore-
forming effectors (Billen et al, 2008; Llambi et al, 2011). We
find that an ‘embedded together’ model (EARM 2.0-M1a)
incorporating this revised thinking about Bcl-2 family proteins
(Leber et al, 2010) can reproduce the dynamics of MOMP as
measured in single cells using live-cell imaging (Spencer et al,
2009). An additional round of experimental and computa-
tional ‘model discrimination’ studies is needed to show
whether EARM 2.0-M1a is indeed superior to previous models,
but we prefer it simply on the basis of its faithful recapitulation
of current knowledge.

PySB as a means to incremental and collaborative
model development

One of the key aims for PySB, and also for BNGL, Kappa and
related meta-languages, is to promote distributed, incremen-
tal, and collaborative approaches to modeling. There are both
technical and conceptual challenges that must be addressed
for this to be successful. A significant technical hurdle in
model integration and reuse is the need for a standard
nomenclature for model species. The SBML community’s
MIRIAM standard is an essential resource in this regard (Le
Novère et al, 2005), but the way in which rule-based models
represent species and complexes will demand a modified
approach to annotation. As a first step, we have implemented a
basic annotation capability in PySB (see Supplementary Figure
S3) based on MIRIAM-style subject–object–predicate triples
that should help resolve naming ambiguities.

However, the fundamental challenge for integrating and
reusing models of disparate biological processes remains the
fact that biological models remain ‘fit-to-purpose,’ focused on
addressing specific biological problems or contexts (Krakauer
et al, 2011). PySB does not prescribe ‘universal’ approaches to
representing biological components or processes but instead
makes fit-to-purpose modeling more transparent and manage-
able through the use of both hierarchical abstractions
(Figure 7) and tools for documenting, testing, and tracking
models drawn from software engineering. In the short-term,
these features should allow communities of biologists working
on related biological problems to work in parallel toward
shared goals; in the longer-term, real-world experimentation
with approaches for collaborative modeling should yield best
practices for building broadly reusable models.

The fact that PySB models are programs allows us to exploit
the tools and social conventions of the open-source software

development community for distributed model development.
In open-source software, derivative or variant branches of a
source tree can be spun off and then merged into the principal
source tree if desired. Version control systems such as Git
allow this process to be managed and visualized. PySB
models shared via GitHub can have both private and public
branches that preserve the integrity of ongoing model
development while allowing for external contributions. Multi-
ple groups can develop derivative models with confidence that
the relationships among variants can be tracked and managed.
SBML versions of PySB models can also be deposited
in the BioModels repository, supporting current procedures
for indexing, citation, and search. Software tests can be written
to ensure that models and modules behave as documented. As
models get larger and the scope of the underlying biology
exceeds the expertise of a single modeling team, tools such as
PySB will be needed to create reusable, shareable, and
transparent biological models in a distributed manner—a
major goal of a systems-level program of biological discovery.

Materials and methods

PySB code and documentation

PySB is freely available under an open-source BSD license. Links to the
GitHub source code repository as well as documentation and other
didactic materials are available at http://pysb.org. The EARM 2.0
models and associated documentation are available along with the
data used for model calibration at http://sorgerlab.github.com/earm.
An SBML version of the EARM 2.0-M1a model is included in the
Supplementary Materials of the paper.

PySB syntax

PySB implements a syntax for rules based on that of BNGL using
classes and overloaded operators from the Python language, lever-
aging Python as the language parser. Rule definitions are built up using
patterns (represented internally as instances of the classes Mono-
merPattern, ComplexPattern, and ReactionPattern) that
specify both a rule’s preconditions and its effects. Site and state
conditions for monomers are specified using an overloaded
__call__ method for the Monomer class, which takes site and state
conditions as keyword arguments. For example, if L is an instance of
Monomer, L(s¼’P’) specifies L with site s having state P. This use
of the __call__ method, along with the overloaded operators þ , %,
44, and o4, allow rules to be specified using a syntax that parallels
that of BNGL and Kappa (Figure 1A). See also the ‘PySB syntax’ section
of the Supplementary Materials.

Component self-export

By default, when a model component is constructed, it is added to the
current instance of the Model class; a variable referring to the newly
created component (with a name matching the name passed to the
component constructor) is also inserted into the global namespace.
This eliminates the need to retain references to newly created objects
and explicitly add them to the model. This ‘self-export’ functionality is
managed by the PySB core class SelfExporter, which identifies the
module in which the current Model instance was declared and adds
global variables for components to that namespace. If alternative
approaches to component and model management are desired, the
self-export feature can be disabled by adding the keyword argument
_export¼False to each component constructor. See also the ‘PySB
syntax’ section of the Supplementary Materials.

PySB: programming biological models
CF Lopez et al

& 2013 EMBO and Macmillan Publishers Limited Molecular Systems Biology 2013 15

http://pysb.org
http://sorgerlab.github.com/earm

ODE integration

PySB generates the reaction network through an external call to
BioNetGen and extracts the network graph by parsing the resulting
.net file. The network graph is then used to build up the right-hand
sides of the ODEs as SymPy symbolic math expressions containing the
appropriate rate constants, mass action terms, and stoichiometric
coefficients. If a C compiler is available, the right-hand side function is
implemented in C using scipy.weave.inline; otherwise, the
right-hand side function is evaluated as a Python expression.
A reference to the right-hand side function is passed to scipy.
integrate.ode, a generic wrapper library for ODE integration
routines; for this work, we used the FORTRAN integrator VODE
(Brown et al, 1989).

Conversion of published models to PySB

For the models lacking an electronic version (Chen et al, 2007a, b; Cui
et al, 2008; Howells et al, 2010), the ODEs generated by the PySB
versions were manually validated against the ODEs listed in the
original publications. In the case of the three models with errors in the
published ODEs (Cui et al, 2008) (see Supplementary Note), the PySB
version was written to generate the ODEs corresponding to the
described reaction scheme without these errors. For the models for
which we had access to the original MATLAB code (Albeck et al,
2008b), the PySB versions were also programmatically validated
against the output from the published versions.

Modularization of MOMP models

Each MOMP-only model (Table II) was written to have the addition of
tBid as its most upstream event, and the release of cytochrome c and
Smac as its most downstream event. In some cases, these default
boundaries did not match the boundaries for the MOMP module in the
original publications: Albeck et al (2008b) had the addition of active
caspase-8 as the most upstream event, whereas the Shen/Howells
group models had Bax oligomerization (rather than Smac release) as
the most downstream event (Chen et al, 2007a, b; Cui et al, 2008;
Howells et al, 2010). In these cases, the networks of the original models
were modified to achieve consistent boundaries across modules. The
boundaries of the original models can nevertheless be reproduced
through the use of optional arguments to the module subroutines that
add or remove reactions as appropriate.

Simulation and parameter estimation

Simulations of EARM 2.0-M1a were carried out using the VODE
integrator via the SciPy library using Newton’s method for root
evaluations and the backward differentiation formula integration
method. Absolute and relative tolerances were set to 10� 5. Parameter
estimation was performed using the simulated annealing routine
implemented in scipy.optimize.anneal with an appropriately
defined objective function (described below). Nominal values for rate
constants for the DISC and PARP modules were set to their published
values in EARM 1.0; rate constants for the MOMP module were drawn
from Certo et al (2006), Willis et al (2005), or set to values from similar
rates from EARM 1.0. During the annealing process, all rate constants
were allowed to vary two orders of magnitude above and below their
nominal values (i.e., 0.01X—100X); initial protein concentrations were
held fixed and not estimated.

Trajectories for the initiator caspase reporter protein (IC-RP),
mitochondrial inter-membrane space reporter protein (IMS-RP), and
effector caspase reporter protein (EC-RP) were used from previously
published data (Spencer et al, 2009). In the model, tBid, cytosolic
Smac, and cleaved PARP were fit to the data for IC-RP, IMS-RP, and EC-
RP, respectively. IMS-RP data from 10 cells indicated an average MOMP
time of 9810±2690 s after the exposure of the cells to ligand. The IC-RP
and EC-RP signals were normalized and aligned to this MOMP time to
yield an average trajectory for each. The objective function used to
calculate model fit was the sum of component functions for each of the

experimental observables as follows:

ObjTotal ð k
*
Þ¼ObjICRP ð k

*
ÞþObjIMSRP ð k

*
Þ

þObjECRP ð k
*
Þ

where k
*
¼ k1; k2; :::; kn are the rate parameters for the system of ODEs,

and ObjICRPð k
*
Þ, ObjIMSRPð k

*
Þ, and ObjECRPð k

*
Þ are the objective

functions for corresponding observables. These objective functions
were defined as follows:

ObjICRPð k
*
Þ¼ 1

N

XN
t¼ 1

tBidtð k
*
Þ

Bid0
�hICRPti

� �2

2 � VarðICRPtÞ

where N¼ 112 is the number of experimental time points, tBidtð k
*
Þ is

the simulated value of tBid at time t (with the given parameters, k
*
Þ,

Bid0 is the total amount of Bid in the simulation, and ICRPt is the
distribution of MOMP-aligned experimental IC-RP trajectories at time
t. The objective function for EC-RP was defined similarly, but with
cleaved PARP in place of tBid and EC-RP in place of IC-RP:

ObjECRPð k
*
Þ¼ 1

N

XN
t¼ 1

cPARPtð k
*
Þ

PARP0
�hECRPti

� �2

2 � VarðECRPtÞ
Data from previous experiments showed that release of IMS-RP from

mitochondria due to MOMP is both rapid and complete under all tested
experimental conditions, typically reaching completion within
1–3 min (Albeck et al, 2008a). To ensure that the model could
reproduce these kinetics, we used an alternative objective function for
the cSmac/IMS-RP signal to consider the onset (TD) and duration (TS)
of MOMP:

ObjIMSRPð k
*
Þ¼ 1

3

�
TSim

D �hTExp
D i

� �

2 � Var TExp
D

� �
2

þ
TSim

S �hTExp
S i

� �

2 � Var TExp
S

� �
2

þ
cSmacN

Smac0
� 1

� �
2 � 10� 6

2
0
B@

1
CA

TExp
D is the experimental ‘death time,’ recorded as the time of MOMP as

measured by IMS-RP release; TS
Exp is the experimental ‘switching time,’

defined as the time required for IMS-RP to be released, estimated to
have a mean value of 180 s and a variance of 3600 s2. The
corresponding simulated values were defined as

TSim
D ¼ T90 þT10

2

TSim
S ¼T90�T10

where T90 and T10 are the times taken by the simulation to reach 90%
and 10% of maximum Smac release, respectively. The final term in

ObjIMSRPð k
*
Þ constrains the simulated Smac trajectory to achieve

approximately 100% release: cSmacN is the final simulated value of
cytosolic Smac, and Smac0 is total Smac.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).

Acknowledgements
We thank A Keating and E Fire for their assistance in the early stages of
this project and W Fontana, J Gunawardena, and A Mallavarapu for
their help and advice. This work was supported by NIH grants P50-
GM68762 and P01- CA139980. CFL was supported by The Harold
Whitworth Pierce Charitable Trust (through The Medical Foundation)
and NIH Transition to Independence grant K22-CA151918.

PySB: programming biological models
CF Lopez et al

16 Molecular Systems Biology 2013 & 2013 EMBO and Macmillan Publishers Limited

www.nature.com/msb

Author contributions: CFL, JLM and JAB co-wrote the PySB and
EARM 2.0 code, and along with PKS conceived the overall approach
and wrote the paper.

Conflict of Interest
The authors declare that they have no conflict of interest.

References

Albeck JG, Burke JM, Aldridge BB, Zhang M, Lauffenburger DA, Sorger
PK (2008a) Quantitative analysis of pathways controlling extrinsic
apoptosis in single cells. Mol Cell 30: 11–25

Albeck JG, Burke JM, Spencer SL, Lauffenburger DA, Sorger PK
(2008b) Modeling a snap-action, variable-delay switch controlling
extrinsic cell death. PLoS Biol 6: 2831–2852

Aldridge BB, Gaudet S, Lauffenburger DA, Sorger PK (2011) Lyapunov
exponents and phase diagrams reveal multi-factorial control over
TRAIL-induced apoptosis. Mol Syst Biol 7: 553

Bachman JA, Sorger P (2011) New approaches to modeling complex
biochemistry. Nat Meth 8: 130–131

Bagci E, Vodovotz Y, Billiar T, Ermentrout G, Bahar I (2006) Bistability
in apoptosis: roles of bax, bcl-2, and mitochondrial permeability
transition pores. Biophys J 90: 1546–1559

Batchelor E, Mock CS, Bhan I, Loewer A, Lahav G (2008) Recurrent
initiation: a mechanism for triggering p53 pulses in response to
DNA damage. Mol Cell 30: 277–289

Bentele M, Lavrik I, Ulrich M, Stösser S, Heermann DW, Kalthoff H,
Krammer PH, Eils R (2004) Mathematical modeling reveals threshold
mechanism in CD95-induced apoptosis. J Cell Biol 166: 839–851

Billen LP, Kokoski CL, Lovell JF, Leber B, Andrews DW (2008) Bcl-XL
inhibits membrane permeabilization by competing with Bax. PLoS
Biol 6: e147

Blinov ML, Faeder JR, Goldstein B, Hlavacek WS (2006) A network
model of early events in epidermal growth factor receptor signaling
that accounts for combinatorial complexity. BioSystems 83: 136–151

Brown P, Hindmarsh A, Byrne G (1989) VODE: a variable coefficient
ODE solver.. SIAM J Sci Stat Comput 10: 1038–1051

Certo M, Del Gaizo Moore V, Nishino M, Wei G, Korsmeyer S,
Armstrong SA, Letai A (2006) Mitochondria primed by death
signals determine cellular addiction to antiapoptotic BCL-2 family
members. Cancer Cell 9: 351–365

Chen C, Cui J, Lu H, Wang R, Zhang S, Shen P (2007a) Modeling of the
role of a Bax-activation switch in the mitochondrial apoptosis
decision. Biophys J 92: 4304–4315

Chen C, Cui J, Zhang W, Shen P (2007b) Robustness analysis identifies
the plausible model of the Bcl-2 apoptotic switch. FEBS Lett 581:
5143–5150

Chen L, Willis SN, Wei A, Smith BJ, Fletcher JI, Hinds MG, Colman PM,
Day CL, Adams JM, Huang DCS (2005) Differential targeting of
prosurvival Bcl-2 proteins by their BH3-only ligands allows
complementary apoptotic function. Mol Cell 17: 393–403

Chen WW, Schoeberl B, Jasper PJ, Niepel M, Nielsen UB,
Lauffenburger DA, Sorger PK (2009) Input-output behavior of
ErbB signaling pathways as revealed by a mass action model
trained against dynamic data. Mol Syst Biol 5: 239

Chylek LA, Hu B, Blinov ML, Emonet T, Faeder JR, Goldstein B,
Gutenkunst RN, Haugh JM, Lipniacki T, Posner RG, Yang J,
Hlavacek WS (2011) Guidelines for visualizing and annotating rule-
based models. Mol Biosyst 7: 2779–2795

Cui J, Chen C, Lu H, Sun T, Shen P (2008) Two independent positive
feedbacks and bistability in the Bcl-2 apoptotic switch. PLoS ONE 3:
e1469

Danos V (2007) Agile modelling of cellular signalling. AIP Conference
Proceedings 963: 611–614

Danos V, Feret J, Fontana W, Harmer R, Krivine J (2007b) Rule-based
modelling of cellular signalling. Lect Notes Comput Sci 4703: 17–41

Danos V, Feret J, Fontana W, Harmer R, Krivine J (2009) Rule-based
modelling and model perturbation. Lect Notes Comput Sci 5750:
116–137

Danos V, Feret J, Fontana W, Krivine J (2007a) Scalable simulation of
cellular signaling networks. Lect Notes Comput Sci 4807: 139–157

Danos V, Feret J, Fontana W, Krivine J (2008) Abstract interpretation of
cellular signalling networks. Lect Notes Comput Sci 4905: 83–97

Debartolo J, Dutta S, Reich L, Keating AE (2012) Predictive bcl-2 family
binding models rooted in experiment or structure. J Mol Biol 422:
124–144

Deeds EJ, Krivine J, Feret J, Danos V, Fontana W (2012) Combinatorial
complexity and compositional drift in protein interaction networks.
PLoS ONE 7: e32032

Del Vecchio D, Ninfa AJ, Sontag ED (2008) Modular cell biology:
retroactivity and insulation. Mol Syst Biol 4: 161

Düssmann H, Rehm M, Concannon CG, Anguissola S, Würstle M,
Kacmar S, Völler P, Huber HJ, Prehn JHM (2010) Single-cell
quantification of Bax activation and mathematical modelling
suggest pore formation on minimal mitochondrial Bax
accumulation. Cell Death Differ 17: 278–290

Faeder JR, Blinov ML, Hlavacek WS (2009) Rule-based modeling of
biochemical systems with BioNetGen. Methods Mol Biol 500:
113–167

Feret J, Danos V, Krivine J, Harmer R, Fontana W (2009) Internal
coarse-graining of molecular systems. Proc Natl Acad Sci USA 106:
6453–6458

Fire E, Gullá SV, Grant RA, Keating AE (2010) Mcl-1-Bim complexes
accommodate surprising point mutations via minor structural
changes. Prot Sci 19: 507–519

Fricker N, Beaudouin J, Richter P, Eils R, Krammer PH, Lavrik IN
(2010) Model-based dissection of CD95 signaling dynamics reveals
both a pro- and antiapoptotic role of c-FLIPL. J Cell Biol 190:
377–389

Gansner ER, North SC (2000) An open graph visualization system and
its applications to software engineering. Software: Practice and
Experience 30: 1203–1233

Gaudet S, Spencer SL, Chen WW, Sorger PK (2012) Exploring the
contextual sensitivity of factors that determine cell-to-cell
variability in receptor-mediated apoptosis. PLoS Comput Biol 8:
e1002482

Gavathiotis E, Reyna DE, Davis ML, Bird GH, Walensky LD (2010) BH3-
triggered structural reorganization drives the activation of
proapoptotic BAX. Mol Cell 40: 481–492

Gnad F, Estrada J, Gunawardena J (2012) Proteus: a web-based,
context-specific modelling tool for molecular networks.
Bioinformatics 28: 1284–1286

Goldstein JC, Kluck RM, Green DR (2000) A single cell analysis of
apoptosis. Ordering the apoptotic phenotype. Ann N YAcad Sci 926:
132–141

Hlavacek W, Faeder J, Blinov M, Posner R (2006) Rules for modeling
signal-transduction systems. Sci STKE 2006: re6

Hlavacek WS (2009) How to deal with large models? Mol Syst Biol 5:
240

Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N, Singhal M, Xu L,
Mendes P, Kummer U (2006) COPASI—a COmplex PAthway
SImulator. Bioinformatics 22: 3067–3074

Howells CC, Baumann WT, Samuels DC, Finkielstein CV (2010) The
Bcl-2-associated death promoter (BAD) lowers the threshold at
which the Bcl-2-interacting domain death agonist (BID) triggers
mitochondria disintegration. J Theor Biol 271: 114–123

Huber HJ, Dussmann H, Kilbride SM, Rehm M, Prehn JHM (2011)
Glucose metabolism determines resistance of cancer cells to
bioenergetic crisis after cytochrome-c release. Mol Syst Biol 7:
470

Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, Arkin
AP, Bornstein BJ, Bray D, Cornish-Bowden A, Cuellar AA, Dronov
S, Gilles ED, Ginkel M, Gor V, Goryanin II, Hedley WJ, Hodgman
TC, Hofmeyr JH, Hunter PJ et al (2003) The systems biology
markup language (SBML): a medium for representation and

PySB: programming biological models
CF Lopez et al

& 2013 EMBO and Macmillan Publishers Limited Molecular Systems Biology 2013 17

exchange of biochemical network models. Bioinformatics 19:
524–531

Hunter JD (2007) Matplotlib: A 2D graphics environment. Comput Sci
Eng 9: 90–95

Kim H, Rafiuddin-Shah M, Tu H-C, Jeffers JR, Zambetti GP, Hsieh JJ-D,
Cheng EH-Y (2006) Hierarchical regulation of mitochondrion-
dependent apoptosis by BCL-2 subfamilies. Nat Cell Biol 8:
1348–1358

Kim H, Tu H-C, Ren D, Takeuchi O, Jeffers JR, Zambetti GP, Hsieh JJ-D,
Cheng EH-Y (2009) Stepwise activation of BAX and BAK by tBID,
BIM, and PUMA initiates mitochondrial apoptosis. Mol Cell 36:
487–499

Kitano H, Funahashi A, Matsuoka Y, Oda K (2005) Using process
diagrams for the graphical representation of biological networks.
Nat Biotechnol 23: 961–966

Kleiman LB, Maiwald T, Conzelmann H, Lauffenburger DA, Sorger PK
(2011) Rapid phospho-turnover by receptor tyrosine kinases impacts
downstream signaling and drug binding. Mol Cell 43: 723–737

Krakauer DC, Collins JP, Erwin D, Flack JC, Fontana W, Laubichler MD,
Prohaska SJ, West GB, Stadler PF (2011) The challenges and scope
of theoretical biology. J Theor Biol 276: 269–276

Kutumova EO, Kiselev IN, Sharipov RN, Lavrik IN, Kolpakov FA (2012)
A modular model of the apoptosis machinery. Adv Exp Med Biol
736: 235–245

Kuwana T, Bouchier-Hayes L, Chipuk JE, Bonzon C, Sullivan BA,
Green DR, Newmeyer DD (2005) BH3 domains of BH3-only
proteins differentially regulate Bax-mediated mitochondrial
membrane permeabilization both directly and indirectly. Mol Cell
17: 525–535

Le Novère N, Finney A, Hucka M, Bhalla US, Campagne F, Collado-
Vides J, Crampin EJ, Halstead M, Klipp E, Mendes P, Nielsen P,
Sauro H, Shapiro B, Snoep JL, Spence HD, Wanner BL (2005)
Minimum information requested in the annotation of biochemical
models (MIRIAM). Nat Biotechnol 23: 1509–1515

Leber B, Lin J, Andrews DW (2010) Still embedded together binding to
membranes regulates Bcl-2 protein interactions. Oncogene 29:
5221–5230

Legewie S, Blüthgen N, Herzel H (2006) Mathematical modeling
identifies inhibitors of apoptosis as mediators of positive feedback
and bistability. PLoS Comput Biol 2: e120

Letai A, Bassik MC, Walensky LD, Sorcinelli MD, Weiler S, Korsmeyer
SJ (2002) Distinct BH3 domains either sensitize or activate
mitochondrial apoptosis, serving as prototype cancer
therapeutics. Cancer Cell 2: 183–192

Llambi F, Moldoveanu T, Tait SWG, Bouchier-Hayes L, Temirov J,
Mccormick LL, Dillon CP, Green DR (2011) A unified model of
mammalian BCL-2 protein family interactions at the mitochondria.
Mol Cell 44: 517–531

Lovell JF, Billen LP, Bindner S, Shamas-Din A, Fradin C, Leber B,
Andrews DW (2008) Membrane binding by tBid initiates an ordered
series of events culminating in membrane permeabilization by Bax.
Cell 135: 1074–1084

Maiwald T, Timmer J (2008) Dynamical modeling and multi-
experiment fitting with PottersWheel. Bioinformatics 24: 2037–2043

Mallavarapu A, Thomson M, Ullian B, Gunawardena J (2008)
Programming with models: modularity and abstraction provide
powerful capabilities for systems biology. J R Soc Interface 6: 257–270

Martinez-Caballero S, Dejean LM, Kinnally MS, Oh KJ, Mannella CA,
Kinnally KW (2009) Assembly of the mitochondrial apoptosis-
induced channel, MAC. J Biol Chem 284: 12235–12245

Mathworks, Inc. (2012) MATLAB release 2012b. The Mathworks, Inc.:
Natick, Massachusetts

Mirschel S, Steinmetz K, Rempel M, Ginkel M, Gilles ED (2009)
PROMOT: modular modeling for systems biology. Bioinformatics
25: 687–689

Moraru II, Schaff JC, Slepchenko BM, Loew LM (2002) The virtual cell:
an integrated modeling environment for experimental and
computational cell biology. Ann N YAcad Sci 971: 595–596

Muzzey D, Gómez-Uribe CA, Mettetal JT, van Oudenaarden A (2009) A
systems-level analysis of perfect adaptation in yeast
osmoregulation. Cell 138: 160–171

Mérino D, Giam M, Hughes PD, Siggs OM, Heger K, O’Reilly LA,
Adams JM, Strasser A, Lee EF, Fairlie WD, Bouillet P (2009) The role
of BH3-only protein Bim extends beyond inhibiting Bcl-2-like
prosurvival proteins. J Cell Biol 186: 355–362

Neumann L, Pforr C, Beaudouin J, Pappa A, Fricker N, Krammer PH,
Lavrik IN, Eils R (2010) Dynamics within the CD95 death-
inducing signaling complex decide life and death of cells. Mol
Syst Biol 6: 352

O’Connor CL, Anguissola S, Huber HJ, Dussmann H, Prehn JHM,
Rehm M (2008) Intracellular signaling dynamics during
apoptosis execution in the presence or absence of X-linked-
inhibitor-of-apoptosis-protein. Biochim Biophys Acta 1783:
1903–1913

Oliphant TE (2007) Python for Scientific Computing. Comput. Sci. Eng
9: 10–20

Pedersen M, Plotkin G (2008) A language for biochemical systems.
Lecture Notes in Computer Science 5307: 63–82

Rehm M, Dussmann H, Janicke RU, Tavare JM, Kogel D, Prehn JHM
(2002) Single-cell fluorescence resonance energy transfer analysis
demonstrates that caspase activation during apoptosis is a rapid
process. Role of caspase-3. J Biol Chem 277: 24506–24514

Rehm M, Huber HJ, Dussmann H, Prehn JHM (2006) Systems analysis
of effector caspase activation and its control by X-linked inhibitor of
apoptosis protein. EMBO J 25: 4338–4349

Rehm M, Huber HJ, Hellwig CT, Anguissola S, Dussmann H,
Prehn JHM (2009) Dynamics of outer mitochondrial membrane
permeabilization during apoptosis. Cell Death Differ 16:
613–623

Ren D, Tu H-C, Kim H, Wang GX, Bean GR, Takeuchi O, Jeffers JR,
Zambetti GP, Hsieh JJ-D, Cheng EH-Y (2010) BID, BIM, and PUMA
are essential for activation of the BAX- and BAK-dependent cell
death program. Science 330: 1390–1393

Schleich K, Warnken U, Fricker N, Öztürk S, Richter P, Kammerer K,
Schnölzer M, Krammer PH, Lavrik IN (2012) Stoichiometry of the
CD95 death-inducing signaling complex: experimental and
modeling evidence for a death effector domain chain model. Mol
Cell 47: 306–319

Smith AM, Xu W, Sun Y, Faeder JR, Marai GE (2012) RuleBender:
integrated modeling, simulation and visualization for rule-based
intracellular biochemistry. BMC Bioinformatics 13(Suppl 8): S3

Sneddon MW, Faeder JR, Emonet T (2010) Efficient modeling,
simulation and coarse-graining of biological complexity with
NFsim. Nat Meth 8: 177–183

Spencer SL, Gaudet S, Albeck JG, Burke JM, Sorger PK (2009) Non-
genetic origins of cell-to-cell variability in TRAIL-induced
apoptosis. Nature 459: 428–432

SymPy Development Team (2012) SymPy: Python library for symbolic
mathematics. Available at http://www.sympy.org

Tan C, Dlugosz PJ, Peng J, Zhang Z, Lapolla SM, Plafker SM, Andrews
DW, Lin J (2006) Auto-activation of the apoptosis protein Bax
increases mitochondrial membrane permeability and is inhibited
by Bcl-2. J Biol Chem 281: 14764–14775

Tiger C-F, Krause F, Cedersund G, Palmér R, Klipp E, Hohmann S,
Kitano H, Krantz M (2012) A framework for mapping, visualisation
and automatic model creation of signal-transduction networks. Mol
Syst Biol 8: 578

Waltemath D, Adams R, Bergmann FT, Hucka M, Kolpakov F, Miller
AK, Moraru II, Nickerson D, Sahle S, Snoep JL, Le Novère N (2011)
Reproducible computational biology experiments with SED-ML-the
simulation experiment description markup language. BMC Syst Biol
5: 198

Willis SN, Chen L, Dewson G, Wei A, Naik E, Fletcher JI, Adams JM,
Huang DCS (2005) Proapoptotic Bak is sequestered by Mcl-1 and
Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins. Genes
Dev 19: 1294–1305

PySB: programming biological models
CF Lopez et al

18 Molecular Systems Biology 2013 & 2013 EMBO and Macmillan Publishers Limited

http://www.sympy.org

Willis SN, Fletcher JI, Kaufmann T, van Delft MF, Chen L, Czabotar PE,
Ierino H, Lee EF, Fairlie WD, Bouillet P, Strasser A, Kluck RM,
Adams JM, Huang DCS (2007) Apoptosis initiated when BH3
ligands engage multiple Bcl-2 homologs, not Bax or Bak. Science
315: 856–859

Wolfram Research, Inc. (2010) Mathematica. 8th edn. Wolfram
Research, Inc.: Champaign, Illinois

Xu T-R, Vyshemirsky V, Gormand A, Kriegsheim von A, Girolami
MBaillie GS, Ketley D, Dunlop AJ, Milligan G, Houslay MD, Kolch W
(2010) Inferring signaling pathway topologies from multiple perturbation
measurements of specific biochemical species. Sci Signal 3: ra20

Youle RJ, Strasser A (2008) The BCL-2 protein family: opposing
activities that mediate cell death. Nat Rev Mol Cell Biol 9: 47–59

Molecular Systems Biology is an open-access
journal published by the European Molecular

BiologyOrganizationandNaturePublishingGroup. Thiswork
is licensed under a Creative Commons Attribution-Noncom-
mercial-Share Alike 3.0 Unported License. To view a copy of
this licence visit http://creativecommons.org/licenses/
by-nc-sa/3.0/.

PySB: programming biological models
CF Lopez et al

& 2013 EMBO and Macmillan Publishers Limited Molecular Systems Biology 2013 19

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/

	title_link
	Introduction
	fig_bkfigbox1
	Results
	Using macros to model recurrent biochemical actions

	fig_bkfigbox2
	Modules and model reuse

	Figure™1Creation and simulation of a ’Hello WorldCloseCurlyQuote model in PySB. (A) Creation and deterministic simulation of a model using PySB. The call to Model() creates the pysb.core.Model object to which all subsequently declared components are added
	Figure™2Three examples of mechanistic abstractions using macros. Full implementation of all macros can be found in the macros.py file in the PySB source code online (Materials and methods). (A) catalyze. The example call shows how the catalyze macro is ca
	Integration with the Python ecosystem and external modeling tools

	Figure™3Three approaches to model reuse. Boxes with gray tabs represent Python modulessolfiles. Statements marked ’ReuseCloseCurlyQuote identify the point of reuse of previously created model code. Background highlighting indicates correspondence between
	Figure™4Refactoring of published models into PySB. (A) Relationships between the models examined in this paper. The ’Albeck GroupCloseCurlyQuote incorporates a series of incrementally expanded models shown in Figure™11 of Albeck et™al (2008b); the ’Shenso
	Table I
	EARM version 2.0: a family of models of extrinsic apoptosis and MOMP

	Table II
	Embedded together: an updated and expanded MOMP model

	Discussion
	Figure™5Representations of the Bcl-2 interaction topology in the EARM 2.0-M1b (’Lopez EmbeddedCloseCurlyQuote) model. The Bcl-2 interaction model consists of five basic mechanistic elements or ’motifsCloseCurlyQuote--tBidsolBaxsolBcl-xL translocation, act
	PySB as a second-generation approach

	Figure™6Simulated annealing fits for EARM 2.0-M1a for three experimentally measured protein signals IC-RPsoltBid (A), IMS-RPsolSmac release (B), and EC-RPsolPARP cleavage (C). Gray lines indicate the experimental data with error bars indicating the s.d. I
	The EARM 2.0 models of extrinsic cell death

	Figure™7A conceptual hierarchy for model building with PySB. (A) Simplified hierarchy for EARM 2.0-M2a and M3a. Models can be decomposed into a small number of separable modules; modules can in turn be decomposed into smaller recurrent mechanistic element
	PySB as a means to incremental and collaborative model development

	Materials and methods
	PySB code and documentation
	PySB syntax
	Component self-export
	ODE integration
	Conversion of published models to PySB
	Modularization of MOMP models
	Simulation and parameter estimation

	A5
	Supplementary informationSupplementary information is available at the Molecular Systems Biology website (www.nature.com/msb).We thank A Keating and E Fire for their assistance in the early stages of this project and W Fontana, J Gunawardena, and A Mallav

	ACKNOWLEDGEMENTS
	A6

