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Abstract

A hallmark of smooth muscle cells is their ability to adapt their functions to meet temporal and chronic 
fluctuations in their demands. These functions include force development and growth. Understanding the 
mechanisms underlying the functional plasticity of smooth muscles, the major constituent of organ walls, is 
fundamental to elucidating pathophysiological rationales of failures of organ functions. Also, the knowledge 
is expected to facilitate devising innovative strategies that more precisely monitor and normalize organ func-
tions by targeting individual smooth muscles. Evidence has established a current paradigm that the myosin 
light chain phosphatase (MLCP) is a master regulator of smooth muscle responsiveness to stimuli. Cellular 
MLCP activity is negatively and positively regulated in response to G-protein activation and cAMP/cGMP 
production, respectively, through the MYPT1 regulatory subunit and an endogenous inhibitor protein named 
CPI-17. In this article we review the outcomes from two decade of research on the CPI-17 signaling and discuss 
emerging paradoxes in the view of signaling pathways regulating smooth muscle functions through MLCP.
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Introduction

Almost every hollow organ wall is lined with smooth muscle cells that regulate organ functions by gov-
erning the motility and altering the thickness and elasticity. Unlike skeletal or cardiac muscle, smooth muscle 
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possesses extensive functional diversity depending on the specific demands of different organs. The diversity 
of smooth muscle responsiveness is attributed to differences in electro-mechanical couplings (graded depo-
larization vs. action potentials) and pharmaco-mechanical couplings (variation in receptors and G-protein 
coupling) (1). In addition, accumulating lines of evidence suggest that every smooth muscle cell is capable of 
adapting the extent of the force development and the proliferation to meet functional demands. Plus, patho-
logical cues, such as physical and chemical stresses, can trigger reprogramming of gene regulation in smooth 
muscle cells and lead to functional changes.

A better understanding of the mechanisms underlying the diversity and on-demand plasticity in smooth 
muscle functions is expected to facilitate the development of strategies for precision medicine, including more 
accurate diagnosis and effective treatment of diseases. Differences in the expression and functions of cyto-
skeletal proteins and many regulatory proteins, including ion channels, receptors, kinases, and phosphatases, 
help to further define smooth muscle characteristics. Accumulating lines of evidence strongly suggest that the 
myosin light chain phosphatase (MLCP) signaling contributes to regulating smooth muscle responsiveness. 
In this review paper, we summarize evidence that led to the current paradigm and discuss pathophysiologi-
cal roles of the MLCP signaling based on our two-decade study of CPI-17, the master regulator of MLCP in 
smooth muscles.

Paradigms and Paradoxes in Ca2+-Sensitization Research

Discovery of Ca2+ sensitization/desensitization of smooth muscle contraction
Early studies on myosin regulatory light chain (MLC20) phosphorylation and smooth muscle contrac-

tion revealed a principal pathway for smooth muscle contraction–when Ca2+ binds to calmodulin, the MLC20 
kinase (MLCK) phosphorylates MLC20 and induces smooth muscle contraction (1–5). Recent studies using 
MLCK knockout mouse support this MLCK paradigm, even though many kinases are reported to phosphory-
late MLC20 (6, 7). These non-MLCK-type kinases possibly contribute to pathological dual phosphorylation 
of MLC20 (8–10).

Additional studies revealed that this excitation-contraction coupling is modified through the MLCP (11–
15). In the earlier study, an augmentation in the Ca2+-induced force was detected in intact smooth muscle 
strips, in which aequorin was injected as an ectopic Ca2+ indicator (16). Studies using the membrane per-
meabilization technique with staphylococcus aureus α-toxin had broken through a barrier preventing access 
to the excitation-contraction coupling in smooth muscle and contributed to the precise determination of the 
Ca2+-force relationship. Since small molecules less than 1,000 Da, such as ions and nucleotides, can permeate 
though pores formed by the α-toxins, the intracellular [Ca2+] can be controlled without losing receptor-G-
protein coupling and the downstream signaling proteins (17, 18). The outcomes revealed fluctuations in the 
Ca2+-force relationship in response to G-protein activation.

When G-protein-coupled receptors (GPCRs) or G-proteins in α-toxin-permeabilized smooth muscle strips 
were stimulated with agonist or GTP, the muscle strips contracted at a given submaximum [Ca2+] (17, 18). This 
G-protein-mediated force development causes an increase in MLC20 phosphorylation without changing the 
relationships between MLC20 phosphorylation and force in both phasic and tonic smooth muscles (19). The 
phenomenon, called Ca2+ sensitization, was also confirmed in intact smooth muscle strips from the transgenic 
mouse expressing a MLCK biosensor (20, 21). Ca2+ sensitization is a common feature of multiple types of 
smooth muscles, including artery, vein, urinary bladder and ileum. Notably, the extent of unhydrolyzable GTP 
(GTPγS)-induced Ca2+ sensitization is greater in tonic muscles compared to phasic muscles, whereas maxi-
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mum contraction with high [Ca2+] is further enhanced by GTPγS in phasic but not in tonic muscle. Thus, the 
GTP signaling may be a factor that defines smooth muscle characteristics (19). The GPCR-induced Ca2+ sensi-
tization occurs through MLCP inhibition but not MLCK activation (22). Mediators between GPCR activation 
and MLCP inhibition are thought to be PKC and RhoA/ROCK (1, 11–13), however the contribution of PKC to 
the Ca2+ sensitization was controversial due to mixed results from multiple smooth muscle cell types treated 
by different permeabilization techniques (23–27). For example, PKC more strongly contributes to G-protein-
mediated Ca2+ sensitization in the order of femoral artery, portal vein, urinary bladder, and ileum (26, 28). 
Thus, the balance between PKC and ROCK can be a determinant of smooth muscle responsiveness.

In addition to Ca2+ sensitization, cGMP induces a decrease in the Ca2+ sensitivity of MLC20 phosphory-
lation in parallel with the relaxation (29, 30). Importantly, the Ca2+ desensitization occurs without changes in 
the relationship between MLC20 phosphorylation and force (30). This occurs when MLCP activity further 
activated and/or dis-inhibited (30). Thus, evidence clearly suggests that MLCP mediates multiple pathways 
into MLC20 phosphorylation and modulates the responsiveness of smooth muscle contraction.

It is also noteworthy that phasic, but not tonic, smooth muscle tissues have a unique function, Ca2+-
induced Ca2+ desensitization–a stepwise increase in [Ca2+] triggers a burst of MLC phosphorylation and con-
traction, which is followed by spontaneous declines (31, 32). The data suggest that the Ca2+-induced Ca2+ de-
sensitization occurs beyond a threshold of [Ca2+], although underlying mechanisms have yet to be understood.

The myosin light chain phosphatase (MLCP) in Ca2+ sensitization/desensitization
Multiple types of Ser/Thr phosphatases are expressed in smooth muscle. Pato et al. classified the Ser/Thr 

phosphatases in smooth muscle homogenates into four types, SMP-I to IV (33), with the dominant MLCP as 
SMP-IV. SMP-IV was later characterized as a heterotrimeric holoenzyme, consisting of a protein phospha-
tase-1 (PP1) catalytic subunit δ / β isoform associated with the regulatory subunit complex of MYPT1 (MYosin 
Phosphatase Target subunit 1), and M20 (an accessory subunit bound to MYPT1) (34) (Fig. 1, top left). Roles of 
other SMPs in smooth muscle functions have yet to be fully understood; these SMPs likely consist of PP2A/4/6 
and PP2C (33).

Because MYPT1 confers substrate specificity to PP1 through the allosteric interaction and compartmen-
talization to myosin filaments (35–38), it has drawn a major attention among researchers (13, 14). In 1995, 
Trinkle-Mulcahy et al. showed that stimulating permeabilized smooth muscle strips with GTPγS induces 
phosphorylation of MYPT1 in parallel with the force development and MLCP inhibition (39). Ichikawa et al. 
showed that the activity of MLCP purified from smooth muscle is reduced when MYPT1 at Thr696 is phos-
phorylated by a protein kinase copurified with MLCP (40). This MLCP associated kinase was later identified 
as a variant of ZIPK (Fig. 1) (41).

Independently, Kimura et al. reported that RhoA/ROCK induces MYPT1 phosphorylation and MLCP 
inhibition (42). Indeed, the purified ROCK phosphorylates MYPT1 at Thr696 and Thr853 (Fig. 1) (43). Unlike 
Thr696, ROCK is the only kinase that is reported to phosphorylate Thr853, and the Thr853 phosphorylation 
now serves as an indicator of cellular ROCK activity (14). These lines of evidence are the foundations for the 
current paradigm that the ROCK-MYPT1 signaling axis plays a critical role in the Ca2+ sensitization of smooth 
muscle and regulation of cell motility in other cell types.

An update on the MYPT1 phosphorylation paradigm
A large volume of studies have been conducted to improve understanding of MYPT1 phosphorylation at 

Thr696 and Thr853 in smooth muscles. The majority of reports agree that Thr696 phosphorylation is sponta-
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neously high in resting smooth muscle tissues and is barely elevated in response to ROCK activation by any 
agonist stimuli (44–46). Therefore, it is unlikely that phosphorylation of MYPT1 at Thr696 is responsible for 
G-protein-mediated Ca2+ sensitization force of smooth muscle.

By contrast, Thr853 phosphorylation is significantly increased in response to agonist stimuli and de-
creased in response to treatment with ROCK antagonists (44–46). Thr853 phosphorylation of purified MLCP 
reduces affinity to myosin filaments (43), supporting the paradigm of the ROCK-MYPT1-mediated MLCP 
inhibition.

Further study using the reconstituted recombinant MLCP complex (47, 48) defined the roles of each 
phosphorylation of MYPT1 at Thr696 and Thr853 on MLCP activity. The recombinant MLCP activity is 
reduced to approximately 20% when it is phosphorylated with purified ROCK. When MYPT1 at Thr696 is 
substituted with Ala (T696A version), the ROCK phosphorylation no longer reduced the MLCP activity, indi-
cating that Thr696 phosphorylation is necessary for the inhibition (Fig. 1, bottom, left). The phospho-Thr696 
residue directly docks at the active site of PP1, causing autoinhibition (Fig. 1, bottom left) (48, 49). When the 
peptide mimicking MYPT1 Thr696 site is added to permeabilized smooth muscle strips, it is spontaneously 
phosphorylated in the tissues and inhibits the endogenous MLCP (49). In ileum, the phospho-Thr696-mediated 
MLCP autoinhibition is eliminated in response to cGMP treatment (49), possibly due to inference by telokin 
(Fig. 1, bottom left) (50). On the other hand, ROCK phosphorylation inhibits the activity of the recombinant 
MLCP with the MYPT1 T853A version and with the wild type MYPT1 (Fig. 1, bottom right) (47, 48). These 
data clearly show that, when MYPT1 is phosphorylated at Thr853, the effects on the MLCP activity are neg-
ligible (47, 48).

The phenotype of the transgenic mice agreed with the biochemical data of the recombinant MLCP (48, 

Fig. 1. The molecular basis of the regulation of MLCP through phosphorylation of MYPT1 and CPI-17. 
Phosphorylation of MYPT1 at Thr696 spontaneously occurs and causes autoinhibition of MLCP 
by direct contact to the active site. Thr853 phosphorylation is elevated in response to ROCK ac-
tivation, but it has no little effects on MLCP activity. In response to GPCR stimulation, PKC and 
ROCK phosphorylate CPI-17 at Thr38, and the phospho-Thr38 directly docks at the active site of 
MLCP and inhibits the activity. MYPT1, myosin phosphatase target subunit-1; M20, an accessory 
subunit of MLCP; CPI-17, PKC-activated PP1 inhibitor protein with Mr of 17 kDa; 8xAkn, 8 an-
kyrin repeats; PP1, type-1 Ser/Thr phosphatase catalytic subunit.
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51). When the MYPT1 T696A protein (lacking Thr696) in smooth muscle was replaced with the endogenous 
protein, the tonic component of force development and MLC phosphorylation was reduced, suggesting that 
loss of the spontaneous autoinhibition elevates MLCP activity. The expression of the MYPT1 T853A version 
does not cause noticeable changes of agonist-induced MLC phosphorylation and force development in bladder 
and ileum smooth muscles (51, 52). Therefore, MYPT1 Thr853 phosphorylation seems to be dispensable for the 
agonist-induced Ca2+ sensitization of smooth muscle, although it is elevated in response to ROCK activation.

Other pathways may regulate MLCP through MYPT1. Multiple MYPT1 residues, including the adjacent 
Ser695 and Ser852 residues, are phosphorylated in smooth muscle (53), some of which potentially play a role in 
MLCP regulation. PKG, MRIP and Par4 are also reported to bind to MYPT1 and regulate MLCP (54–58). Ad-
ditionally, alternative splicing of MYPT1 has been linked to Ca2+ sensitization and PKG pathways and likely 
plays a role in the regulatory circuit (59, 60).

Importantly, conditional smooth muscle-specific ablation of MYPT1 gene augmented the sustained force 
of mesenteric artery strips, which is associated with higher blood pressure reading (61). MYPT1-knockout 
also caused the sustained force development of bladder and ileum strips (52, 62). Remarkably, sensitivity to 
PKC and ROCK inhibitors varies among smooth muscles. For example, both ROCK and PKC inhibitors can 
inhibit agonist-induced contraction and MLC20 phosphorylation in MYPT1-null artery strips, suggesting that 
both kinases can inhibit the endogenous phosphatase(s) for MLC20 even though MYPT1 is not expressed 
(61). Furthermore, NO-induced relaxation of the mesenteric artery strips from MYPT1-knockout mouse was 
not significantly different from control (61), suggesting alternative pathways that mediate cGMP elevation 
and smooth muscle relaxation. It appears that MYPT1 is dispensable in terms of both Ca2+-sensitization and 
desensitization of arterial smooth muscle. On the other hand, when MYPT1 gene was deleted, ileum strips 
became insensitive to PKC or ROCK inhibitor (52). A ROCK inhibitor, and to a lesser extent a PKC inhibitor, 
suppressed the contraction of MYPT1-null bladder strips (62). These data suggest that physiological contribu-
tions of MYPT1 to the regulation of contraction depend on the type of tissues, likely due to their demands. 
The whole picture of the ROCK-MYPT1 signaling pathways that regulate smooth muscle contraction remains 
unfinished and need to be re-evaluated.

Discovery and characterization of an endogenous inhibitor protein for MLCP
Another player that mediates G-protein activation into MLCP inhibition is CPI-17, a PKC-activated Phos-

phatase Inhibitor protein with a molecular weight of 17 kDa. CPI-17 was first identified in 1995 in pig aorta 
smooth muscle homogenates as an endogenous MLCP inhibitor protein that exhibits elevated potency upon 
phosphorylation, along with the endogenous kinase (63, 64). Later, PKC α and PKC δ were identified as the 
dominant kinases for CPI-17 in pig aorta homogenates (65). Phosphorylation and thio-phosphorylation of CPI-
17 at Thr38 is sufficient and necessary to convert it into a potent inhibitor (P-T38 (phosphorylated) vs. T38 
(unphosphorylated) in Fig. 2). By contrast, Asp substitution (D38 in Fig. 2) is insufficient to mimic the phos-
phorylation-dependent activation of CPI-17 (66). Meanwhile, Glu-substitution causes distortions in the struc-
ture due to instability of recombinant protein (66). Substitution with oxidized Cys (sulfinyl- or sulfonyl-Cys) 
also fails to fully potentiate CPI-17 (C38-ox in Fig. 2). The conformational change and the binding of CPI-17 to 
MLCP seem to rely on phospho-ester at Thr residue, in addition to negative charges.

Although MYPT1 is ubiquitously expressed (67), the expression of CPI-17 is highly restricted in smooth 
muscles and neurons (28, 64, 68). The CPI-17 gene (PPP1R14A) is detected in most vertebrates (69), although 
it remains unknown whether the physiological roles are conserved among species. It has three homologues: 
PHI-1, KEPI, and GBPI (70–72). The primary structure around the inhibitory phosphorylation site of CPI-17 
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at Thr38 is highly conserved among the CPI-17 family, although CPI-17 and GBPI are more potent to MLCP 
than PHI-1 and KEPI (73). Compared with CPI-17, our knowledge of other family members is limited. The 
CPI-17 structure, which is likely conserved among the CPI-17 family based on the sequence similarity, con-
sists of a four-helix bundle with intrinsically disordered N-terminal and C-terminal tail domains (66, 74, 75). 
Curiously, other PP1 inhibitors, such as inhibitor-1, inhibitor-2, DARPP32, and NIPP1, plus p21, p27, and other 
endogenous kinase inhibitors, are generally classified into intrinsically disordered proteins with molecular 
weight of around 20 kDa (76).

Selective regulation of cellular MLCP by CPI-17
Lines of evidence clearly show that CPI-17 is a master regulator of MLCP in smooth muscles (72, 76). 

When CPI-17 is phosphorylated, the phospho-Thr38 selectively docks at the active site of PP1 associated with 
MYPT1, with a Kd value at sub nM range, causing a potent inhibition (63, 77). The data of the in silico simula-
tion and the in vitro binding assay suggest that phospho-CPI-17 directly contact a part of MYPT1 (75). Once 
phospho-CPI-17 binds to MLCP, it is slowly dephosphorylated and recycled (78, 79). Williams et al. found this 
type of inhibitory mechanism in PP2A-P-endosulphine system and named it “unfair competition inhibition” 
(80). The unfair competition model may also explain the autoinhibition of MLCP by Thr696 phosphorylation, 
because it is slowly auto-dephosphorylated (48).

In addition to MLCP, more than 100 other PP1 holoenzymes are predicted to exist in mammalian cells, 
and they efficiently dephosphorylate and inactivate CPI-17 (79). Recombinant CPI-17 effectively induces Ca2+ 
sensitization of MLC20 phosphorylation and force in permeabilized smooth muscle strips and cell culture, 
indicating that MLCP is inhibited in smooth muscle tissues (81). Thus, upon CPI-17 phosphorylation, MLCP is 
selectively regulated in smooth muscle cells (79).

The extent of Ca2+ sensitization force, defined as a force development at a constant [Ca2+], depends on the 
extent of CPI-17 in tissues. When the endogenous CPI-17 is washed away by the permeabilization with Triton-
X100, phorbol ester-induced Ca2+ sensitization force is eliminated (82). Addition of recombinant CPI-17 to the 
CPI-17-null skinned tissues restores the Ca2+-sensitization force (82, 83). Ectopic expression of CPI-17 in intact 

Fig. 2. Inhibition of MLCP by CPI-17 with oxidized Cys. MLCP assay was conducted in the presence of recombinant 
CPI-17 proteins as listed. The activity without CPI-17 was set as 100%, and the relative activity is shown. T38, 
unphosphorylated wild type; P-T38, phosphorylated at Thr38; D38, Asp substitution at the 38 position; C38-ox, 
oxidized Cys at the 38th position.
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cells or smooth muscles augments MLC phosphorylation and contraction and elevates blood pressure readings 
(84). Clearly, CPI-17 targets cellular MLCP and regulates smooth muscle contraction in smooth muscles.

Signaling pathways regulating CPI-17 phosphorylation and smooth muscle contraction/relaxation
A large number of agonists induce CPI-17 phosphorylation in various smooth muscle tissues, according to 

published reports. Histamine-induced CPI-17 phosphorylation in rabbit femoral artery is partially reduced by 
treatment with GF109203x or Y27632, suggesting that both PKC and ROCK contribute to CPI-17 phosphoryla-
tion (85). Multi-parametric time-resolving analysis revealed that PKC and ROCK play distinguishable roles 
in Ca2+ sensitization signaling (Fig. 3). In artery, α1-adrenergic receptor (AR) activation triggers quick and 
sustained MLC phosphorylation and force development. When PKC is inhibited, phosphorylation of CPI-17 
and MLC20 at initial phase is eliminated, resulting in a delayed force development (86). On the other hand, 
when ROCK is inhibited, phosphorylation of CPI-17 and MLC20 at the sustained phase is effectively reduced, 
causing phasic response (86). These results suggest that GPCR stimulus triggers a sequential activation of PKC 
and ROCK, each of which is responsible for the quick and sustained elevation of CPI-17 phosphorylation and 
Ca2+ sensitization.

Dephosphorylation of CPI-17 occurs with nitric oxide (NO) release and an increase in cAMP/cGMP (87–

Fig. 3. On-demand regulation of smooth muscle responsiveness through the CPI-17-MLCP signaling. Sponta-
neous phosphorylation of MYPT1 at Thr696 sets the basal MLCP activity. GPCR stimulation induces 
a sequential activation of PKC followed by ROCK, resulting in a bi-phasic phosphorylation of CPI-17. 
Production of cAMP and cGMP causes inactivation of PKC and ROCK and consequent CPI-17 dephos-
phorylation. Stress-induced activation of JNK and p38MAPK augments CPI-17 expression through Sp1 at 
the gene promoter. The CPI-17 promoter is suppressed in response to growth factor stimulus, attenuating 
the Ca2+ sensitization signaling. PKC and ROCK are capable of activating CPI-17 expression, suggesting 
that chronic excitation of smooth muscle augments the responsiveness through the CPI-17 upregulation. 
Sp1: transcription factor specific protein 1, E: transcription enhancer(s).
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89). NO production triggers a rapid decline of CPI-17 phosphorylation in parallel with MLC dephosphoryla-
tion, preceding the relaxation. PKC activation with phorbol ester sustains CPI-17 phosphorylation and attenu-
ates NO-induced relaxation of smooth muscle (89). Thus, NO-induced PKC inactivation followed by CPI-17 
dephosphorylation is necessary for the quick relaxation of smooth muscle. In a possible cause for the PKC 
inactivation, NO production quickly reduces cytoplasmic Ca2+. This reduction in Ca2+ is followed by a slow 
ROCK inactivation, suggesting that PKC is a quick regulator of CPI-17 phosphorylation and dephosphoryla-
tion, and ROCK is a sustained regulator of CPI-17 phosphorylation and dephosphorylation (86, 89). The ratio 
of PKC and ROCK may partly define the responsiveness of each smooth muscle, and the contribution depends 
on the size of arteries (see below) (90). Notably, the bi-phasic action of PKC and ROCK potentially biases the 
way pharmacological data are interpreted, since inhibition of PKC is effective to initial phases upon stimulus 
while ROCK is effective to sustained phases upon stimulus.

Importantly, CPI-17 phosphorylation occurs prior to or at least in parallel with MLC20 phosphorylation 
(86). Also, CPI-17 dephosphorylation precedes a decrease in MLC20 phosphorylation upon NO production 
(89). Therefore, the CPI-17 phosphorylation signaling can satisfy a requirement being an upstream regulator 
of MLC20 phosphorylation (86, 89). In contrast, any changes in ROCK-induced MYPT1 phosphorylation are 
much slower than that of MLC phosphorylation in either case of α1-AR agonist or NO stimulation, suggesting 
that MYPT1 phosphorylation may contribute to the chronic regulation of MLC20 phosphorylation (86, 89).

In addition to PKC and ROCK, multiple kinases, such as ZIPK, ILK, and PAK, are capable of phosphory-
lating recombinant CPI-17 at Thr38 (91–93). Roles of these potential kinases in phosphorylation of CPI-17 in 
smooth muscles remains to be fully understood, although the contributions of ZIPK to CPI-17 phosphorylation 
may be limited (94, 95).

CPI-17 is a determinant of the smooth muscle responsiveness to agonist stimulation
The expression level of CPI-17 in smooth muscles is linked to individual contractile characteristics. It is 

higher in tonic muscles, such as artery and trachea, and lower in phasic muscles, such as urinary bladder and 
vas deferens (28).

CPI-17 expression also positively correlates with the extent of phorbol ester-induced Ca2+ sensitization 
force (28). We also learned about this correlation when we found that CPI-17 is not expressed in smooth 
muscles in farm chickens (83). In chicken mesenteric artery strips that do not express CPI-17, but the levels of 
RhoA, ROCK, PKC and MYPT1 are comparable with those in rabbit artery (83). Stimulation with agonists, 
such as endothelin-1, phenylephrine, and phorbol ester, induces a subtle Ca2+ sensitization force, but in rab-
bit and pigeon arteries that do express CPI-17, these agonists induce a robust contraction (83). The higher 
Ca2+ sensitivity of chicken smooth muscle compared to rabbit and pigeon smooth muscle suggests that the 
loss of CPI-17 is compensated through unidentified mechanisms (83). Notably, GTPγS induces a partial Ca2+ 
sensitization of chicken smooth muscle, suggesting minor pathways independent from CPI-17; it is unclear 
whether MYPT1 Thr696 phosphorylation is involved in the GTPγS-induced Ca2+ sensitization of chicken 
smooth muscle (83). Interestingly, a recent database search revealed that a CPI-17 gene is not detected in fowls, 
a phylogenetic group of birds, that includes chicken, turkey, and duck, and it remains unclear how this loss of 
CPI-17 impacts on the biological characteristics of these birds.

In each smooth muscle cell, CPI-17 expression fluctuates depending on physiological and pathological 
conditions (reviewed in (76)). In artery, CPI-17 expression is upregulated during embryonic development and 
downregulated in response to pathological dedifferentiation due to vascular injury (96). Up- and down-regula-
tions of CPI-17 levels have been linked to hyper- and hypo-responsiveness of smooth muscle contraction, such 
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as pulmonary hypertension, asthma, inflammatory bowel disease, urinary incontinence, and sepsis (76, 97). 
Clearly CPI-17 is a functional marker of smooth muscle contraction/relaxation.

Myocardin, a transcriptional co-factor activating the serum response factor, has been identified as a driver 
of smooth muscle-specific gene expression (98, 99), although it plays negligible roles in CPI-17 gene expression 
(100). Instead, the CPI-17 gene promoter is governed by Sp1 binding to multiple GC boxes at the 5′-flanking 
region; these boxes are assisted by adjacent GATA binding (Fig. 3) (100). The Sp1 binding is regulated through 
multiple kinase pathways. Augmentation and attenuation of the Sp1 binding occurs in response to the activa-
tion of PKC/ROCK/p38MAPK/JNK, leading to up-regulation of CPI-17, and to the activation of ERK, leading 
to down-regulation of CPI-17 (Fig. 3) (100). Of particular note, the PKC/ROCK-induced upregulation of CPI-
17 expression may contribute to augmentation of the Ca2+ sensitization force under high demand for smooth 
muscles (Fig. 3) (100).

The view of regulatory circuits for CPI-17 expression is not yet complete, because mechanisms selectively 
activating CPI-17 promoter in smooth muscle by a ubiquitous Sp1 transcription factor remains to be estab-
lished. Genetic analyses predict additional regulatory elements at distal regions and in introns (69, 101), which 
may contribute to the pathophysiological regulation of CPI-17 gene.

Roles of the CPI-17-MLCP signaling axis in the sympathetic regulation of vascular tones
CPI-17 expression depends on the location of arteries: expression is higher in smaller resistance vessels 

compared with larger ones, such as aorta (90, 102). On the other hand, there is no significant difference in 
PKCα expression between mesenteric artery and aorta (90). Importantly, sensitivity of CPI-17 phosphorylation 
to α1-AR agonist stimulus depends on the size of arteries; phenylephrine stimulation induces greater CPI-17 
phosphorylation in mesenteric artery compared to aorta smooth muscle (90). CPI-17 phosphorylation responds 
to α1A-AR stimulation that is dominant in mesentery artery (90), which is highly innervated with sympathetic 
nerves. PKC inhibitors potently suppress α1A-AR-induced contraction of mesenteric artery and phosphoryla-
tion of MLC20 and CPI-17, whereas ROCK plays a lesser role (90). On the other hand, α1D-AR stimulation is 
dominant in aorta smooth muscle, where α1-AR agonist stimulates an increase in [Ca2+] through Ca2+ release 
and Ca2+ influx but not the PKC-CPI-17 signaling pathway (90). Although almost all regulatory proteins are 
expressed in any sizes of arteries, the responsiveness of these smooth muscle are clearly distinguishable. The 
heterogeneity in the CPI-17 signaling pathways warrants further investigation.

Another note: there is a bias in Ca2+ signaling that induces CPI-17 phosphorylation (86, 90). In arteries, 
the Ca2+ release from SR plays a major role in the rapid increase in CPI-17 phosphorylation in response to α1-
AR stimulation (86, 90). The depletion of the SR Ca2+ store using ryanodine, to a lesser extent the inhibition of 
Ca2+ influx, suppressed phenylephrine-induced CPI-17 phosphorylation (86, 90). These results revealed a se-
quence of the signaling pathways in small arteries; the α1-AR stimulation induces 1) Ca2+ release from the SR 
through IP3 production, 2) a rapid activation of Ca2+-dependent PKC, 3) CPI-17 phosphorylation and 4) MLCP 
inhibition, which occurs in parallel with Ca2+-induced MLCK activation. We propose this Ca2+ sensitization 
pathway; “Ca2+-dependent Ca2+ sensitization” of MLC phosphorylation and contraction. The Ca2+-induced 
Ca2+ sensitization pathway augments the initial force development in small arteries. Additional pathways, 
such as ROCK-mediated Ca2+-independent Ca2+ sensitization, maintain the tonic force (86). Strangely, Ca2+-
induced Ca2+ sensitization is not operated in large aorta smooth muscle, although agonist-induced SR Ca2+ 
release exists (90). We must continue to characterize each pathway for fully elucidating the mechanisms that 
regulate organ motility and functions, such as the regulatory systems for circulation.

The α1A-AR-induced Ca2+-induced Ca2+ sensitization pathway is likely responsible for the sympathetic 
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regulation of the blood pressure. The concept is supported by findings that blood pressure in the transgenic 
mouse elevates in response to the ectopic expression of CPI-17 via the smooth-muscle actin promoter (84). 
Recent data suggest that pathological orthostatic hypotension, in which α1A-AR-induced CPI-17 phosphoryla-
tion is diminished, occurs in response to a deficiency in the CPI-17-MLCP signaling pathway (Kitazawa & 
Kitazawa, manuscript in preparation).

New dimensions in the CPI-17-MLCP signaling axis regulating smooth muscle functions
CPI-17 functions are governed not only by phosphorylation and expression, but also by cellular distribu-

tion (Fig. 4). CPI-17 is a 17-kDa soluble protein and is distributed in the cytoplasm of mature smooth muscle. 
In a rat vascular injury model and in human atherosclerotic plaques, on the other hand, it accumulates in nuclei 
of neointimal cells (Fig. 5) (103). CPI-17 consistently concentrates in nuclei of the smooth muscle cell culture 
under growth conditions (103). In addition, CPI-17 is expressed in a subset of cancer cells, and accumulates 
into the nucleus (103).

An unconventional nuclear localization signal exists at the N-terminal tail of CPI-17 (103). Ser12 within 
the domain can be phosphorylated (63). Phospho-mimetic Asp-substitution at Ser12 interferes the nuclear ac-
cumulation of CPI-17 (103). Consistently, immunostaining revealed a mild exclusion of phospho-Ser12-CPI-17 
out of the nucleus, suggesting that Ser12 phosphorylation plays a role in the subcellular distribution of CPI-17 
(103).

What is the function(s) of the nuclear CPI-17? An active nuclear localization signal also exists in MYPT1, 

Fig. 4. Functional pleiotropy of CPI-17 due to subcellular distribution. CPI-17 is accumulated in the 
nucleus of proliferating smooth muscle and cancer cells. The nuclear CPI-17 regulates phos-
phorylation of histone(s) and MEF2C, but not canonical MLCP substrates, such as myosin 
light chain and ezrin/moecin/radixin. A nuclear localization signal exists at the N-terminal 
tail of CPI-17. Phosphorylation of CPI-17 at Ser12 interferes the nuclear accumulation.



Ca2+ sensitization of smooth muscles

— 11 — 

although PP1 binding inactivates it and interferes with MLCP nuclear accumulation (104, 105). CPI-17 gene 
silencing resulted in elevations in phosphorylation of histone(s) and MEF2C, but not the substrates of MLCP 
(103, 106). Clearly, nuclear CPI-17 inhibits a group of PP1 responsible for histone phosphorylation, but not 
MLCP, and likely regulates chromatin functions (Fig. 4). CPI-17 knockdown suppressed the proliferation of 
cancer cells (103). Based on these results, it appears that pathological cues redistribute CPI-17 into nuclei and 
positively regulates cell proliferation, independently from the MLCP signaling (Fig. 4). On the other hand, 
there are lines of evidence that CPI-17 activates Ras GTPase through MLCP inhibition and consequent merlin 
phosphorylation in cancer cells (107, 108). A remnant fraction of the cytoplasmic CPI-17 may suffice to aug-
ment Ras signaling. CPI-17 pathways in cancer cells need further investigation.

The functional pleiotropy of CPI-17 may explain why CPI-17 signaling is silenced in the larger arteries, 
smooth muscle from genetically hypertensive rats and from other organs and models (90, 109–112). The multi-
functionality may be a common feature of the endogenous regulator proteins for kinases/phosphatases, such as 
DARPP32, phosphatase inhibitor-1, inhibitor-2, a Raf kinase inhibitor protein (RKIP), and cyclin-dependent 
kinase inhibitors (p21CIP/WAF, p27KIP1, and p57) (113–123). For example, a CDK inhibitor p27KIP1 is ca-
pable of inhibiting RhoA and p21CIP/WAF is capable of inhibiting ROCK; both functions link the cell cycle 
signaling and the cytoskeletal reorganization (123–127). DARPP32 is a cytoplasmic phosphatase inhibitor 
enriched in neurons, and it also inhibits PKA depending on the phosphorylation state (113). Further study is 
needed for establish the pathological pleiotropy of CPI-17 in smooth muscles and beyond.

Conclusion

“If you cannot explain it simply, you do not understand it well enough.”–Albert Einstein
Our accumulated knowledge about the molecular basis of Ca2+ sensitization signaling has helped resolve 

mysteries in the excitation-contraction coupling of smooth muscle. It becomes evident that wide diversity ex-
ists in the signaling pathways regulating Ca2+ sensitivity of MLC20 phosphorylation. The discovery of CPI-
17 has provided new insights into the mechanisms underlying the pharmaco-mechanical coupling in smooth 
muscle contraction. In particular, we now know that differences in CPI-17 expression depend on the location 

Fig. 5. CPI-17 is accumulated in nuclei of neointimal cells at atherosclerotic plaques. Paraffin-embedded human 
atherosclerotic arterial sections (OriGene #CS808380) were subjected to indirect fluorescence immunos-
taining using anti-CPI-17 antibody, followed by confocal microscopy. Left: haematoxylin and eosin stain; 
middle: anti-CPI-17 stain; right: overlay of anti-CPI-17 stain and Hoechst stain. Arrowheads indicate 
nuclear accumulation of CPI-17.
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and types of smooth muscle and on species. These differences in expression likely contribute to different con-
tributions of PKC to the excitation-contraction coupling, helping settled controversy over the role of PKC in 
smooth muscle.

As we gain deeper insights into the Ca2+ sensitization signaling, new mysteries emerge. For example; what 
is the mechanisms underlying ROCK-induced MLCP inhibition? Also, how and why does CPI-17 signaling 
appear to be disconnected from G-protein activation in some types of smooth muscles or under specific condi-
tions? Before closing the discussion of the smooth muscle signaling pathways, we have to highlight a potential 
caveat–that our current knowledge fully relies on our trust in the specificity of antibodies. To better understand 
smooth muscle regulation, we must devise new technology and methodology that quantitatively determine 
real-time phosphorylation and localization of proteins in cells. By understanding the diversity and plasticity of 
the signaling pathways regulating smooth muscle functions, we will be able to reach to a true form of precision 
medicine, in which each smooth muscle disorder will be treated effectively and specifically.
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