Zhao et al. BMC Bioinformatics (2020) 21:412

https://doi.org/10.1186/512859-020-03744-7 B M C BIOI nfo rm atlcs

RESEARCH ARTICLE Open Access

Keeping up with the genomes: efficient @
learning of our increasing knowledge of the
tree of life

Zhenggiao Zhao', Alexandru Cristian? and Gail Rosen'”

updates

*Correspondence: glr26@drexel.edu

"Ecological and Evolutionary Abstract

Signal-process and Informatics Background: It is a computational challenge for current metagenomic classifiers to
(EESI) Lab, Department of Electrical keep up with the pace of training data generated from genome sequencing projects,
and Computer Engineering, Drexel K X R

University, Market Street, such as the exponentially-growing NCBI RefSeq bacterial genome database. When new
Philadelphia, US reference sequences are added to training data, statically trained classifiers must be

Full list of author information is

available at the end of the article rerun on all data, resulting in a highly inefficient process. The rich literature of

“incremental learning” addresses the need to update an existing classifier to
accommodate new data without sacrificing much accuracy compared to retraining the
classifier with all data.

Results: We demonstrate how classification improves over time by incrementally
training a classifier on progressive RefSeq snapshots and testing it on: (a) all known
current genomes (as a ground truth set) and (b) a real experimental metagenomic gut
sample. We demonstrate that as a classifier model’s knowledge of genomes grows,
classification accuracy increases. The proof-of-concept naive Bayes implementation,
when updated yearly, now runs in 1/4" of the non-incremental time with no accuracy
loss.

Conclusions: [t is evident that classification improves by having the most current
knowledge at its disposal. Therefore, it is of utmost importance to make classifiers
computationally tractable to keep up with the data deluge. The incremental learning
classifier can be efficiently updated without the cost of reprocessing nor the access to
the existing database and therefore save storage as well as computation resources.

Keywords: Incremental learning, Naive Bayes taxanomic classifier, RefSeq,
Metagenomics

Background

Recent advances in genomics have resulted in exponential increases in the rate at which
data is collected. Inspired by Zynda [1], we visualize the growth of National Center
for Biotechnology Information (NCBI) Reference Sequence (RefSeq) bacterial genome
database [2, 3] in Fig. 1. Figure la shows the total number of complete genomes

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,

which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative
Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made
available in this article, unless otherwise stated in a credit line to the data.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-020-03744-7&domain=pdf
http://orcid.org/0000-0003-1763-5750
mailto: glr26@drexel.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Zhao et al. BMC Bioinformatics (2020) 21:412 Page 2 of 23

>
e

w 12K 0

3 23k
© ©

2 2

> 9K D

£ £

g gZK
0 6K Q

U] U]

Y u=

o o

- = 1K
3 3 |
£ £

= =

2 2

o
o

O N I 0 = T N O N I 0 = <& N

O © © 0 H = = O © © 06 H = =

& © © © ©6 © © ® O © © ©6 06 ©

- N N N N N N - N N N N N N
Year Year

Fig. 1 Number of updates in the NCBI bacterial genomes from the RefSeq database a Accumulative number
of genome updates per year; b compared with previous year, the number of new updates per year

added/updated in the database in yearly increments until March 2nd 2019!, and Fig. 1b
shows the number of new and updated completed genomes every year. As shown in Fig. 1,
there are now thousands of genomes being sequenced per year, providing vital informa-
tion for understanding prokaryotic species diversity, with major efforts like the Genome
Encyclopedia of Bacteria and Archaea contributing to this expansion [4].

Moreover, driven by advances in technology and significant reductions in the cost of
analysis, microbiome research has unlocked a wealth of data in recent years [5]. In fact,
the cost of sequencing DNA is reducing at a rate that is outpacing Moore’s law [6]. In
other words, the increase of computational power cannot keep up with the growth of the
number of genomes (as well as metagenomes) being added.

One of the main challenges in metagenomics is to answer, “Who is there?”: identify-
ing the microorganisms in the sample. Taxonomic classification — classifying the reads in
metagenome sequencing data — uses aligners, read mappers, classifiers and other “base
techniques” to solve this problem [7-11]. Taxonomic classification is usually one of the
first steps in a metagenomic pipeline [12]. Once these organisms are identified, they are
then used in downstream analyses, such as alpha/beta diversity measures, ordination,
feature selection, phenotype classification, etc.

However, while many methods have been proposed for taxonomic classification [13,
14], the accuracy of these methods using different training databases has not been fully
tested. This is an important issue - because as new genome data is generated, train-
ing data sets, such as the commonly used NCBI Reference Sequence Database (RefSeq),
will change over time. Consistency between databases and completeness of genomes is
already an issue plaguing these databases [15]. Loeffler et al. highlight the cost of com-

putational power and storage requirements of maintaining a master reference sequence

Lftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/bacteria/assembly_summary.txt

ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/bacteria/assembly_summary.txt

Zhao et al. BMC Bioinformatics (2020) 21:412 Page 3 of 23

database, with a proposed solution of a “continuous assembly approach” (supported by
the institution’s infrastructure and the scientific community supplying the data sources)
[15]. From a classifier perspective, Nasko et al. recently demonstrated that more reads
are classified (as opposed to be assigned to an unclassified/unknown class) by the Kraken
classifier with newer database versions [16]. Nasko’s analysis also suggested that changes
in RefSeq over time may influence but not necessarily reduce the misclassification rate,
with genus/species false positives shown to be 1% and 8% respectively. These metrics
were, however, calculated only on a selection of 10 genomes. Accordingly, given that
there is an ongoing rapid expansion of genomic data of microbial diversity, it is impera-
tive to update taxonomic classifiers as new genomes/genes are discovered. Simply failing
to update the model will result in lower accuracy due to incomplete knowledge. In addi-
tion, the way that most researchers train their taxonomic classifiers is a static process: A
fixed number of genomes are used as training data, and when more reference genomes
are added to NCBI, the classifiers must be completely retrained to accommodate the
new data. This type of training, however, is computationally unsustainable, due to the
aforementioned fast expansion of Reference Sequence (RefSeq) database.

The traditional model of retraining of classifiers, each time training on the entire
dataset, cannot sufficiently keep pace with new discoveries. One possible course of action
would be to update the database less frequently. However, the resulting analysis will not be
as “accurate” as it could be if frequently updated with knowledge about new genomes. As
aresult, there is a need for new innovations in updating classifiers. In RefSeq database, we
can observe a new genome being added, removed and updated and its taxonomic labels
can be merged with, changed to other labels and even removed from the database. In our
work, we only focus on the cases where a new genome is added to the database. However,
our algorithm can also be extended to handle the taxonomic nodes merging scenarios
(see our discussion in “Incremental naive Bayes classifier” section).

An intuitive solution is to update the training model for new data only, instead of repro-
cessing the whole database. In this way, we can greatly reduce the amount of redundant
computations to compute more frequent updates [17]. The naive Bayes classifier (NBC)
is a natural solution, since only the columns (of the k-mer frequency table) of the classes
being updated or added need to be changed and there are studies that have success-
fully utilized incremental learning naive Bayes classifier for text classification [18-21].
We demonstrate that the incremental learning algorithm allows computers to “continu-
ally learn” new information seamlessly and alleviate the current inefficient and inadequate
retraining practices. We also show that the limitation of naive Bayes classifier: its classi-
fication results can be biased by species classes that have many genomic examples (i.e:
well-represented species). In this paper, we show that incremental learning algorithm is
a promising solution. We developed a proof-of-concept incremental implementation of
a naive Bayes classifier. We then show that the taxonomic classification task can benefit
from learning incrementally from the NCBI dataset in respect to two aspects:

e the classifier gains accuracy over the time by constantly updating the classifier with
the latest knowledge (genomes).

e the time of update can be greatly reduced by incremental learning.

While some of the results show that NBC might not be the best choice for taxo-
nomic classifier, we hypothesize that other algorithms may be afflicted by this class

Zhao et al. BMC Bioinformatics (2020) 21:412 Page 4 of 23

bias as well (see our discussion in “Case example of B. aphidicola and C. botulinum
misclassification” section). So, our work serves as a lesson.

Therefore, the main aim of this paper is to show how incremental learning can reduce
computational time and enable constant improvements in accuracy through frequent
updates over time. The paper highlights the importance of incremental learning and its
promise, rather than the NBC classifier selection itself. Much future work remains to
examine how other taxonomic classifiers can be “incrementalized”.

In this paper, “incrementalized” version of naive Bayes taxonomic classifier demon-
strates how the computational time of training is reduced while still retaining the same
accuracy as the original implementation [7]. To be specific, when a new labeled sequence
is available, we update the model to learn new information: If the new sequence is from an
existing class, then the class will be updated based on Bayes rule; otherwise, a new class
is created to accommodate this new organism. Therefore, we do not have to create a new
model from scratch and process the whole database. Instead, we only need to process the
new data to update the model. In addition, we present an implementation of NBC that
optimizes RAM and the number of cores via a smart loading scheme that is scalable for
various architectures. Our implementation of NBC is open source here: https://github.
com/EESI/Naive_Bayes. Our contribution in this paper is three-fold:

¢ show quantitative classification results that improve over time by training a classifier
on progressive RefSeq snapshots and testing the classifier on simulated reads using
5-fold cross-validation.

e qualitatively demonstrate how the classification composition of a real metagenomic
gut sample changes over time by training a classifier on RefSeq dataset in 5 different
years.

® propose a proof-of-concept incremental implementation of Naive Bayes taxonomic
classifier (NBC++), that can be efficiently updated with new information without
having to reprocess the existing database, which drastically reduces the training time
of the classifier when new data is available compared to the training time of the
non-incremental implementation.

Related work
Our work relates to both incremental learning and microbial taxonomic classifica-
tion fields. We develop and evaluate an “incrementalized” version of the naive Bayes

taxonomic classifier [7].

Related work on incremental learning

In an incremental learning setting defined by Kochurov et al,, a dataset D = {x;, yi}fi 1
is divided into T parts D = {Dy,--- ,Dr}, which arrive sequentially [22]. The goal is to
build an efficient algorithm that takes as input (a) a model, M; that has been trained on
the first ¢ units of data {Dy,-- -, Dy} and (b) new data, Ds;1, to then output an updated
model M;y;. The efficiency of the algorithm can be achieved without direct access to
the previous training data, {D1, - - - , D;}, while performance is maintained without catas-
trophically forgetting the previous model [23]. Ensemble learning algorithms can be used
to achieve incremental learning. Polikar et al. proposed an incremental learning algo-
rithm, Learn++, that ensembles “weak” classifiers during the training [24]. New classifiers

will be added to learn and explain the new and misclassified examples. Support Vector

https://github.com/EESI/Naive_Bayes
https://github.com/EESI/Naive_Bayes

Zhao et al. BMC Bioinformatics (2020) 21:412 Page 5 of 23

Machine (SVM) are “incrementalized” by many researchers [25-27]. SVM finds support
vectors and determines a decision boundary that best separates the support vectors. A
set of support vectors can be viewed as a good abstraction of training data, therefore,
the existing training database can be compressed using support vectors. When the data
is presented to the learning algorithm sequentially in batches, one can compress the data
of the previous batches to their support vectors. Then, for each new batch of data, a
SVM is trained on the new data and the support vectors from the previous learning step
[25]. Deep learning approaches have been producing state-of-the-art results yet they con-
tinue to suffer from catastrophic forgetting, a dramatic decrease in overall performance
when training with new data added incrementally [23]. Kochurov et al. utilize a Bayesian
approach to update the deep learning model with new data [22]. Castro et al. uses new
data and a small exemplar set from the old classes to update the model [23]. Both meth-
ods show improvement on performance for incremental deep learning models. The deep
neural network by Kochurov et al. works for models that have a determined number of
classes which remains the same over time [22] whereas the method proposed by Castro
et al. handles the cases that novel classes can be available when training [23]. Typically,
there are two types of incremental learning situations: 1) new training data D;1; contains
data from existing classes only; 2) new training data D;;; has samples from both novel
classes (new classes that were not known to the existing model) and existing classes [21].
In our application, since the amount of novel bacteria are continually and increasingly
being sequenced (see Additional file 1 — The number of taxonomic labels per year), our
incremental learning algorithm needs to handle the increasing amount of novel classes
being added to the database as well.

Related work on taxonomic classification

16S ribosomal RNA is useful for placing organisms on the phylogenetic tree [28], and
the widely-used Ribosomal Database project classifier [29] uses a naive Bayes classifier to
provide taxonomic assignments for microbial 16S rRNA sequences. However, 16S rRNA
amplification is often insufficient for discrimination at the species and strain levels of
classification [13] because 16S rRNA genes are too slowly evolving to reliably separate the
validly named species [30, 31]. Whole-genome shotgun sequencing provides researchers’
access to more genomic content of organisms and thus, can yield finer taxonomic reso-
lution. Therefore, in this paper, we focus on metagenomic taxonomic classification that
classifies metagenomic reads to species level taxa [7-9, 32].

The Basic local alignment search tool (Blast) [32] is one of best methods for assign-
ing a taxonomic label to an unknown sequence [8, 13]. Other Blast-based algorithms
further improve the taxonomic classification accuracy by incorporating other infor-
mation (e.g. last/lowest common ancestor) [33]. However, Blast is not designed for
high-throughput metagenomic reads classification, and its computationally expensive to
get local alignments for hundreds of thousands and millions of reads. Other alignment-
based techniques can be mapping-based — using methods like the Burrows-Wheeler
transform (BWT) or variants of hash tables [11, 34]. While enabling fast queries, mapping
tools need to spend “training time” to compress/prefilter the reference database. Comple-
mentary to alignment-based techniques, there are k-mer composition based tools. Hash
tables have proven to be successful for these alignment-free techniques as well [8, 35], and
query searches are 909 times faster than Megablast (a fast BLAST program)[8]. To achieve

Zhao et al. BMC Bioinformatics (2020) 21:412 Page 6 of 23

the fast query times, construction of such efficient hashing model can be a computa-
tional upfront cost and therefore is subject to the longer build times when the reference
database expands. While the “training” is done offline so that queries benefit from the
quick turnaround time, such training could become cumbersome if new queries must use
an old database and wait for the read mapper to be updated with new reference genomes.

In an incremental learning scenario, when new genomes are added to the reference
database, the blast database should be updated to accommodate the new genomes. Cur-
rently, Blast databases are updated daily?. However, traditionally, Blast is not designed
for high-throughput metagenomic reads classification, and its expensive to compute local
alignments for hundreds of thousands and millions of reads. Mapping and k-mer classi-
fier tools need to build BWT/hash indexes each time on a complete “set’, which will take
longer as the database size grows, and versions, that do not permit incremental updates,
have not been implemented yet. For example, Kraken [8] uses exact-match of k-mers,
rather than inexact alignment of sequences to perform taxonomic classification. The clas-
sification is based on a well organized k-mer to lowest common ancestor (LCA) mapping,
and it is very efficient to search k-mers in the database. The authors show that Kraken’s
accuracy is comparable to Blast based sequence classifiers and run faster than those com-
peting programs. When there are new genomes added to the database, Kraken needs to be
trained from scratch. Although Kraken is not designed for quick updates, it is potentially
“incrementalizable”: only a fraction of the taxonomy tree (the nodes of updated/newly
added genomes and their ancestral nodes), and the Kraken k-mer database needs to be
updated. The taxonomy tree in Kraken is used for the lowest common ancestor (LCA)
computation and keeping track of which k-mers are unique to certain clades for efficient
k-mer to taxa assignment. Thus, both the tree and which k-mers are unique to each clade
must be updated for newly added genomes. Clever ways of deciding which areas to update
need to be developed.

NBC [7] is a supervised machine learning based approach for taxonomic classification.
It uses a naive Bayes classifier (NBC) to classify all metagenomic reads to their best taxo-
nomic match and is good at estimating the number of reads of particular organisms that
are known to the classifier shown via /1-norm distance and log-modulus deviation [13].
The NBC classifier is, by nature, “incrementalizable” When new genomes are added, the
classifier can be updated with only the conditional probabilities of the new species. In
recent years, there are novel tools that incorporate deep learning techniques to perform
taxonomic classification [36—38]. However, the deep learning models can’t be quickly
updated in case of new species. The final dense layer has to be modified to accommo-
date the new species. The update speed can be improved by training the new model with
weight from the existing deep learning model. In this paper, we “incrementalize” the NBC
classifier to show that we can use less computation while retaining the same accuracy and
demonstrate the efficacy of our implementation over increasing knowledge.

Results
In this section, we use the NCBI Reference Sequence (RefSeq) bacterial genome database
to evaluate: 1) the k-mer size influence on taxonomic classification accuracy; 2) the incre-

mental taxonomic classification performance; 3) the dynamics of a classifier trained on

2https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE:BlastDocs&DOC_TYPE:Download

https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastDocs&DOC_TYPE=Download

Zhao et al. BMC Bioinformatics (2020) 21:412 Page 7 of 23

different yearly snapshots of the RefSeq bacterial database and its influence on taxo-
nomic profiling results. These results demonstrate the necessity of incremental learning
for metagenomic taxonomic classification.

It is important to note that unlike the original implementation of NBC [7], where each
read was first classified on the genome-level, each read here is classified to a species class.
All genomes’ k-mers within a species are aggregated across strain genomes and trained to
be a “species class”

Evaluating NBC on a larger dataset: k-mer size vs. accuracy

Benefiting from the incremental learning ability, we don’t need to load the entire training
dataset into memory at once. Instead, we can simply load training data in small batches
and continuously update our classifier. Therefore, NBC++ can easily use large sizes of
k-mers for training. In this experiment, we use 5-fold cross-validation to evaluate the
effects of k-mer size on taxonomic classification accuracy. Figure 2 shows the average
species level accuracy as a function of k-mer size (the standard deviation is not significant
thus removed from the visualization). We split our training and testing data on genome
level for 5-fold cross-validation, i.e., we evaluate our classifier on reads simulated from
genomes/strains that are not used in training phase. Due to cross-validation, the labels
of those genomes/strains used for testing may or may not have shown up in the training
data (see Additional file 2 — Histogram of the number of genomes per species). And there
is a chance that the testing reads are simulated from genomes that are unknown to the
classifier (the species level label is unknown to the classifier).

To obtain upper levels of taxonomic classification, the species-level of classification
results of known testing reads are “traced back” from the species label using the NCBI
taxonomic database [2]. Therefore, we do not need to train the NBC classifier at upper
levels such as genus and phylum. All classifications are done at the species level and then
“traced back” to upper levels. Figure 3 shows the average accuracy on 6 taxonomic levels:
species, genus, family, order, class and phylum, as a function of k-mer size evaluated on
known testing reads. Note that species level accuracy is around 84% and the genus level
accuracy is around 92%. As the taxonomy level of classification increases, the accuracy

1.0
0.8 =
>
P AR EN RN RN IR NN RN RN RN)
E 0.6 o PO
3
[
v
<0.4
0.2 =@+ all testing reads
=== known testing reads
0.0 ©)} N 1n © - =}
- - = N m
k-mer size
Fig. 2 The species-level NBC++ accuracy vs. k-mer size

Zhao et al. BMC Bioinformatics (2020) 21:412 Page 8 of 23

1.0

o
)

o
o

Accuracy

Species

0.4 Genus
=&= Family

0.2 @ Order
o= Class

==§= Phylum
MT- (=)} N To} (-] - (=)
(| - | N mM

k-mer size

Fig. 3 NBC++ accuracy on different taxonomic levels vs. k-mer size. Each read is classified on the species
level, and higher-level taxonomic results are calculated by “trace back” through the NCBI phylogenetic tree

increase accordingly. This indicates that although NBC++ can misclassify some testing
reads to a wrong species, it may be correct on genus/class/phylum/etc level.

NBC++ taxonomic classification performance

To evaluate NBC++ while also demonstrating it on a real dataset, we designed exper-
iments to simulate sequences being added yearly to the NCBI bacterial database. We
parsed the GCF assembly summary file as it is in March 2nd 20192 for the release date of
all latest completed genomes. Then the training genomes per year are organized accord-
ingly (see Additional file 3 — RefSeq Bacterial genomes published every year for detailed
information).

In Fig. 4, the species-level classification accuracy is calculated for reads simulated from
the early-2019 database, with new genomes being sequenced and adding/updating species
to the training database each year (the average accuracy and standard deviation per
species for 5-fold cross-validation experiment are shown in Additional file 4 — The aver-
age accuracy per species from 1999 to 2019 and Additional file 5 — The standard deviation
of the accuracy per species from 1999 to 2019). From Fig. 4, we can see a trade-off of more
knowledge improving classification (because the class is now known) as opposed to a clas-
sifier getting “confused” between classes (as more and perhaps similar classes are added).
As more data are being added, the known-species classification accuracy goes down but
reaches a stable level (yellow curve), but this loss in “known” performance is dwarfed by
the fact that overall accuracy (blue curve) is a function of classes that are “known” (green
curve). More specifically, in 2002, as more genomes are added, NBC++ begins to misclas-
sify some species since more are in the database, resulting in a drop to a little over 80%
accuracy by 2005; however, the species that it is classified to has near 90% accuracy of
being from the correct genera (see Fig. 5). This loss in performance is overshadowed when
we look at the effect of the database version when using all current taxa. The overall accu-
racy (blue curve) is a function of the amount of taxa known at that year, and as we know
more, the accuracy increases. Note that in 2019, due to cross-validation, the percentage

3ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/bacteria/assembly_summary.txt

ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/bacteria/assembly_summary.txt

Zhao et al. BMC Bioinformatics (2020) 21:412 Page 9 of 23

1.0
0.8
o
2}
80.6
c
)
o
g 0.4
0.2 =@=_Accuracy on all testing reads
Accuracy on To-date Known
== % of Testing Known To-date
0.0 - N 1n © - < N
o =] o =] - - -
o o o o =} =] =)
- N N N N N N

Year

Fig. 4 NBC++ species-level accuracy is evaluated on simulated reads from different species. The x-axis
represents each year, where the training database is only the genomes added/updated that year. We show
that the accuracy on reads from known species up-to-that-year has more than 80% accuracy and has a drop
as more closely related species are added (yellow curve). The accuracy on all testing species (blue curve)
increases as a function of the percentage of reads from to-year known species (green curve). Therefore, the
accuracy is only as good as the knowledge in our database. If for example, we only have knowledge of 3
species (which was the case in 1999), the accuracy is poor since it is testing on the thousands of species
known today (see the Additional file 1 — The number of taxonomic labels per year: Figure A)

of known testing reads is still less than 80%, since some testing reads are from species that
are not included in the training (see “Evaluating NBC on a larger dataset: k-mer size vs.
accuracy” section). As a result, the accuracy on all testing reads in 2019 is less than the
accuracy on 2019-known testing reads. To be specific, due to our 5-fold cross-validation,
there are many species with less than 5 examples of a species, and therefore, it is marked
as unknown if it is not in the training set, resulting in a little over 60% accuracy by 2018.
This shows that even if a species is known, it still doesn’t have enough examples to fully
train the diversity of that species. Overall, the incremental implementation can gain the
valuable information added per year.

Figure 5 shows the accuracy of NBC++ (assigned on the species-level) for genomes
known to the year that is classified (solid) and on all testing reads (dotted) on 6 taxonomic
levels (predictions on taxonomic levels higher than species are inferred from the species
level predictions). From the figure we can see that as more genomes are added, there is
ambiguity confusing the classifier, but this is small compared to the fact that as more data
are known, the better the classification become. For a curious exercise, we fitted these
curves and predicted when we would achieve 95% accuracy on all 2019 species/phylum,
which was 2057 for species and 2032 for phylum. However, as we know, there will be novel
genomes being added in that time, so optimistically, we hope that we could know 95% of
bacterial species in 100-200 years, while knowing all bacterial phyla is emergent.

Figure 6 shows the training time of NBC++ on the database. We compare the NBC++
incremental learning feature with the non-incremental learning setting (shown as NBC in
Fig. 6). Although the full training time of traditional NBC is over 16 hours with 15 threads
for data up to 2018, the incremental version using all new 2018 genomes to update the
existing model from 2017 would only take ~5 hours with 15 threads. In 2019, we only

Zhao et al. BMC Bioinformatics

(2020) 21:412

Testing on o =® = o e G _g =% 7%
To-date Known_s=* e __i—gﬁ
> i - ® =@
g 0.6 > ps R 2 ! L4
= 4 rd = Cl’q f -
3 4 - = s
o Y 4 3’5’* o ¢ =$= Species
< 0.4 y 7$’/' p i o & Genus
Y i & \ === Family
0.2 + I /* Tﬁsting_ on g == Order
% all testing reads o= Class
oo =
0.0 =" =@= Phylum
-] [\ n 0 - < N
o) o o - — g
) o o o) o o
- N N N N N N
Year

Fig. 5 NBC++ accuracy on all taxonomic levels is evaluated on simulated reads from different species. The
accuracy of NBC (assigned on the species-level) on genomes known to-the-year are shown in solid lines and
for the entire current set of testing reads is shown in dashed lines. As more genomes are added, there is
ambiguity confusing the classifier (most notably on the species level), but this performance loss is small
compared to the fact that as more data are known, the better the performance

have new genomes until March 2nd. Therefore, the update time is significantly smaller
for NBC++ whereas NBC has to reprocess the whole database again and results in a waste

of computation time.

Evaluation of NBC++ on a healthy gut sample taxonomic profiling results over time
Nasko et al. [16] uses various experiments to show that Kraken (and derivatives like
Bracken) are able to classify more organisms as the RefSeq database grows. Here, we show

== NBC++ J
60K{ =#= NBC++ including kmer counting i
== NBC I
i =# = NBC including kmer counting)I
o
§ 40K
(%)
@
a
o
£
£ 20K
1)
o N 1n © - < N
o o o =) - — -
) o o o) 1))
- N N N N N N
Year

Fig. 6 NBC Incremental learning classifier (NBC++) training/update time is evaluated by the same simulated
dataset. This figure shows the update time for incremental learning method (in blue) and traditional full
update (NBC) method (in black). The different components of the algorithm are shown — the time that the
core NBC algorithm takes (solid) vs. that time plus the average time per genome for Jellyfish to count k-mers
(dashed). We can see that the k-mer counting alone can start to add a significant amount of computation
when recomputing the entire training dataset

Page 10 of 23

Zhao et al. BMC Bioinformatics (2020) 21:412 Page 11 of 23

that NBC++s classification results change as the database size grows. Note that while
NBC++ does not mark anything as “unclassified” (although it has been previous explored
in [39, 40]), its classifications should get more accurate with more data. To demonstrate
how up-to-date knowledge affects results, we design real NCBI-over-time experiments to
show how the results of NBC++ can be influenced by the training data.

We demonstrate using a time-progressing NCBI training database for NBC to classify
a fixed human fecal (a.k.a. gut) sample (SRA ID: SRS105153), which is the same sample
used in Fig. 5b in Nasko et al. [16]. For comparison, the NCBI taxonomic classification
of this sample can be found online*. We also train 5 models using all RefSeq bacterial
genomes in NCBI. In Nasko et al.,, 9 versions of the RefSeq database are used, but the
exact results are not discussed — only the level of taxonomy that could be resolved and
how many reads remained unclassified. In our experiments, we use the NCBI RefSeq
bacterial genomes using 5 database divisions and show how the classifications change
over time (with NBC++ labeling everything). The first division is composed of genomes
added during 1999, the 2nd division are genomes added during 2000 to 2004 (version
2004), the 3rd division are genomes added during 2005 to 2009 (version 2009), the 4th
division are genomes added during 2010 to 2014 (version 2014), and the 5th division are
genomes added during 2015 to 2019 (version 2019), respectively. The composition change
on different taxonomic levels are evaluated for each of these divisions. Figures 7 and 8
show the predicted bacteria relative abundance of the gut sample over time on the genus
and phylum levels, respectively (with species and order levels in the appendix). Taxa with
lower than 5% relative abundance are moved to either “Others: Old” (dark blue, top of
the bar) or “Others: New” category (light blue, bottom of the bar) category depending
on whether the taxa are recently added or were added in previous years. The training
database version that contains the taxa shown in the bar plots are labeled on the bars.

As shown in Figs. 7 and 8 (see also Additional file 6 — Profiling results change over
time on species level and Additional file 7 — Profiling results change over time on order
level), the profiling results are influenced by the version of training data. For example, in
1999, there are only 4 genomes used to train the database. Therefore, the results in Fig. 8
are drastically skewed and give poor results, with Chlamydiae dominating the gut and no
representatives from Bacteroidetes/Firmicutes. As soon as these phylum are introduced
by 2004, a great portion of those previously misassigned are assigned to the newly added
phyla (and most likely better classifications). We do note that NBC++ is overassigning
to Proteobacteria (the amount of Proteobacteria is too high for a healthy gut), due to its
over-representation in the training database. However, the percentage of Proteobacteria
is steadily decreasing as the amount of training database genomes are getting better, espe-
cially with recent additions genomes from Bacteroides/Clostridium/etc. (the proportion
being assigned to Bacteroides doesn’t significantly increase until the most recent database
version, shown in Fig. 7) that are known to be prevalent in gut samples. NBC’s classi-
fications are biased by training representation, demonstrating the need for up-to-date
knowledge to get the most accurate Bacteroidetes/Firmicutes balance.

As we can see on the genus level, in Fig. 7, the amount of classifications being assigned to
newly added genera decrease (although more genera are being added now than in the past,
see Additional file 1 — The number of taxonomic labels per year: Figure H). Similar trends

*https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR514214&krona=on&dataset=0&node=0&collapse=true&color=
false&depth=10&font=11&key=true

https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR514214&krona=on&dataset=0&node=0&collapse=true&color=false&depth=10&font=11&key=true
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR514214&krona=on&dataset=0&node=0&collapse=true&color=false&depth=10&font=11&key=true

Zhao et al. BMC Bioinformatics (2020) 21:412 Page 12 of 23

Loy — mm Others: Old
Helicobacter
0.8 - Chlamydia
Haemophilus
) Aquifex
0.6 Streptococcus
)
S - mmm Bacteroides
E 0.4 mm Clostridium
S mmm Bacillus
Legionella
0.2 mmm Staphylococcus
Others: New
0.0
1999 2004 2009 2014 2019
Model version
Fig. 7 Profiling results change over time on Genus level: NBC++ classifiers trained on different years are
evaluated on a real human fecal sample (SRA ID: SRS105153) on the genus level. The figure shows that the
predicted composition of the sample changed over time and is influenced by the training data. Taxa with
lower than 5% relative abundance is moved to either “Others: New” category or “Others: Old" category
depending on whether the taxa is recently added in the past 5 years or added in previously

are seen on the species and order levels (see Additional file 6 — Profiling results change
over time on species level and Additional file 7 — Profiling results change over time on
order level). After 2009, the top three genera (Fig. 7) in the gut sample remain the same —
Bacteroides, Clostridium, and Bacillus (although not always in the same percentage rank-
ing). In fact, it is surprising that the percentage of Bacteroides significantly increases with
new knowledge from the past 5 years, demonstrating that there are Bacteroides genomes
being added that are very important to classification of this gut. Specifically, on the species
level, when Bacillus ovatus is introduced in the 2019 version (see Additional file 6 — Pro-
filing results change over time on species level), many reads get assigned to it, since it is
well-known in the gut [41]. However, as described in “Mistakes: current implementation’s
tendency to classify to well-represented species classes,” section the over-representation
of Clostridium botulinum is biasing some of the Clostridium classifications.

1.0 I B Bl | == others: Old
Proteobacteria
0.8 mmm Chlamydiae
mm Aquificae
o Bacteroidetes
20.6 Firmicutes
>
5 Others: New
(%)
0.4
-9
0.2
0.0

1999 2004 2009 2014 2019
Model version
Fig. 8 Profiling results change over time on Phylum level: NBC++ classifiers trained on different years are
evaluated on a real human fecal sample (SRA ID: SRS105153) on the phylum level. The figure shows that the
predicted composition of the sample changed over time and is influenced by the training data. Taxa with
lower than 5% relative abundance is moved to either “Others: New” category or “Others: Old" category
depending on whether the taxa is recently added or added previously

Zhao et al. BMC Bioinformatics (2020) 21:412 Page 13 of 23

To further explore how the predicted community composition evolves over time, we
calculated the Bray-Curtis dissimilarity between profiling results from consecutive mod-
els we trained in this section, i.e., the 1999 and 2004 models; 2004 and 2009 models; 2009
and 2014 models; and 2014 and 2019 models, on different taxonomic levels as shown
in Fig. 9. In this analysis, we consider all the taxonomic labels instead of grouping low
frequency ones into the “other” bin.

From this figure, we can see, in general, the dissimilarity between community composi-
tions decreases over time. However, we do observe that the dissimilarity scores increase
from 2009&2014 to 2014&2019. Take the Phylum level as an example, the 2009&2014 dis-
similarity between profiling results is 0.096 which is lower than 2014&2019 dissimilarity.
In fact, as shown in Fig. 8, the relative abundance of predicted Bacteroidetes read
(around 32% of total reads in 2019 profiling result) is 0.4% lower in 2014 than in 2009.
But in 2019, the abundance is increased by 68.9% compared with 2014. One important
bacterium found in the gut is B. ovatus, which commonly dominates Bacteroides-rich gut
samples [41]. This vital and most likely abundant species being added after 2014 has a
drastic effect on the classifications and increases most levels’ Bray-Curtis similarity. As
more key species are added to RefSeq (e.g. ones that are abundant and play important
roles), the classifier will be able to perform profiling more accurately.

Discussion
In the “Results” section, we show that an incremental learning classifier has the following
advantages over the traditional non-incremental version:

e incremental learning can help when a computer has limited memory and cannot
process an entire large training dataset at-once — by incrementally processing small
batches of the training data at a time.

o the classifier can keep up with the latest knowledge (and associated accuracy gains)
efficiently without the cost of a full retrain and therefore reduce the computation
time needed for updating the classifier.

=
o
)

/‘

=@== Species
genus

2

£ =@== order
o =@=phylum
E ‘

#0.6

k-]

0

o4

Q

>

: \ D

0.0 1999&2004 2004&2009 2009&2014 2014&2019

pair of years

Fig. 9 Bray-Curtis dissimilarity between profiling results over time We use the Bray-Curtis dissimilarity to
measure the differences between profiling results in different years on different taxonomic levels. The x-axis
represents a pair of profiling results the Bray-Curtis dissimilarity is based on. For example, 2009&2014 means
that the Bray-Curtis dissimilarity is calculated between 2009 and 2014 profiling results

Zhao et al. BMC Bioinformatics (2020) 21:412 Page 14 of 23

In this section, we discuss the cost of the classifier updates in a broader practical scenario

and the classification mistakes that the NBC classifier makes.

Monetary analysis of reduced computation in NBC++

There are two options to keep our model up-to-date that are discussed in this paper. The
first option is to train a model from scratch whenever an updated model is needed. This
option requires the users to maintain a database to store the old data or download both
new and old data from a remote database, e.g., NCBI database, because training a model
from scratch requires both old and new data. And the second option is to update the
model with new data only. This option requires the model to be stored in the system for
future updates. However, in the best case scenario for the first option, we don’t need the
access to the model between updates, therefore we don’t have to pay for the storage of the
model for option 1. Since we need to pay for the raw data storage in option 1 and for the
model storage in option 2, we can assume that the storage cost of two options are the same
(usually it is not the case because the model size is often smaller than the raw data because
model can be considered as a form of abstraction of the raw data). Then the only cost is
the computational cost for model update. According to Amazon Web Services (AWS), a
“mb5.8xlarge” EC2 computing node with 32 cores and 128GB memory costs 1.536 dollars
per hour”. If it takes 16 hours and 5 hours for option 1 and 2 to run respectively. Option
2 can save 16.896 dollars for only 1 update. If the model is updated daily, at least 6167.04
dollars can be saved without considering the increase of training time when more and
more data are added to the database.

Mistakes: current implementation’s tendency to classify to well-represented species classes
We note that this NBC implementation has certain defects — which may afflict other
classifiers as well. This NBC implementation is biased towards calling class labels that
have a large abundance of genomic examples. As a case study, we look at mistakes at
the phylum level, arguably the most serious ones, which has a 4% error rate. In the 2019
database, Proteobacteria has 6975 representative genomes while Firmicutes is the next
most-represented and has 2925 representatives. Because the algorithm classifies at the
species level and then traces up the tree to resolve upper levels, any species that has more
occurrences of a k-mer as opposed to another species will have an advantage. So, the more
genomes that represent a species (or as we sometimes say “examples of that species”), the
more likely rare k-mers may occur in this particular class (which may accommodate some
nucleotide variation).

This biasing of rare k-mers can have great impact on the misclassifications that NBC
makes, as we can see in Additional file 8 — Misclassified reads - phylum level, which is
one fold (out of 5) of the phylum level misclassified reads. In this fold (1/5 of the entire
data), there were 7285 misclassified reads on the phylum level out of 186300 reads (96%
accuracy). 2663 out of the 7285 (over 36%) misclassifications, tended to classify reads as
Clostridium botulinum (taxid:1491). This is a problem that becomes even more evident
on our test on a real sample (see “Evaluation of NBC++ on a healthy gut sample tax-
onomic profiling results over time” section). One outstanding example (in the phylum

misclassified spreadsheet) is the Buchnera aphidicola (taxid: 9) species, which had 506

Shttps://aws.amazon.com/ec2/pricing/on-demand/

https://aws.amazon.com/ec2/pricing/on-demand/

Zhao et al. BMC Bioinformatics (2020) 21:412 Page 15 of 23

sequences misclassified by NBC, 363 of them classified to C. botulinum, 93 classified to
Bacillus cereus/thurigiensis and another 30 to C. difficile, all well-represented species in
NCBI. As a reference point, there are 62 genome representatives of B. aphidicola while
there are 242 genome representatitves of C. botulinum, 295 representatives of C. difficile,
and close to similar amount of B. cereus/thurigiensis. What is apparent, is that when some
of these sequences are BLASTed (one detailed example in “Case example of B. aphidicola
and C. botulinum misclassification” section), they share identical stretches of nucleotides
up to 18 bases long with essential C. botulinum protein sequences that have similarity
to essential/fundamental proteins such as ABC transporters, two-component sensor his-
tidine kinases, etc. This shows some important protein sub-domains that are conserved
between these organisms. However, due to the single nucleotide mutations that cause
these sequences to be unique and prevalence of these subdomains across phyla, these
types of sequences are causing NBC to bias its classification towards species that have
more representation in the database. This is an important issue to be explored to improve
NBC in the future and highlights the importance of keeping up-to-date training data in
classifiers and good representation in the database.

Case example of B. aphidicola and C. botulinum misclassification
Take the following read as an example:

“>93 reference=NZ_CP011299.1 position=418509..418608
description="Buchnera aphidicola (Schlechten-
dalia chinensis) strain SC, complete genome”

attatattagtaaatatttttgaggaccatgcaatatttatcataggaattacttctaacg
tatcaaaaaaaatttctgcttccaaattactaaatatat

This sequence shares 11 15-mers with the B. aphidiciola (taxid:9) that were trained
on for the first fold (see Additional file 9 — 15-mer shared with B. aphidiciola (taxid:
9)), while it shares 18 15-mers with C. botulinum (taxid:1491) (see Additional file 10
— 15-mer shared with C. botulinum (taxid:1491)). While many of the 18 kmers in C.
botulinum had lower probability accounting for the fact that C. botulinum had 13x the
amount of nucleotides in its class than B. aphidiciola, the fact that 7 more unique k-mers
were found, was substantial enough to tip the classification towards C. botulinum. As
a comparison, the B. aphidicola Schlechtendalia chinensis sequence was blasted against
other B. aphidicola strains and also against C. botulinum. The queries match to the
B. aphidicola sequence with similarities of (~58/59% for long stretches and 80-90%
identities for short stretches), for other strains of B. aphidicola excluding strain Schlech-
tendalia chinensis in Additional file 11 — Blast result for B. aphidiciola (taxid: 9). Similar
similarities are found for the blasts of the B. aphidicola query against C. botulinum
seen in Additional file 12 — Blast result for C. botulinum (taxid:1491). (If the figures
only yield an incomplete picture for the reader, we also have search strategies (Addi-
tional file 13 — Blast search strategies for B. aphidiciola (taxid: 9), Additional file 14
— Blast search strategies for C. botulinum (taxid:1491)) available to explore this blast).
The BLAST results show that even BLAST has slight difficulty distinguishing these

sequences.

Zhao et al. BMC Bioinformatics (2020) 21:412 Page 16 of 23

Conclusion

In this paper, we show that new genomes added to the NCBI RefSeq bacterial genome
database are exponentially growing. We demonstrate that supervised classification is
drastically improving each year with updated NCBI Refseq genome data. By process-
ing simulated reads and a real metagenomic gut sample, we show that new additions to
the database change results significantly and have yet to show signs of convergence (i.e.
the training database has enough species diversity and example genomes per species to
classify samples consistently). Therefore, it is very important to keep the training model
updated and that the update process be efficient as possible. We demonstrate that we
can achieve efficiency by a proof-of-concept incremental NBC++ taxonomic classifier.
By “incrementalizing” taxonomic classifiers, we show that species can be updated/added
to the database without the cost of reprocessing the existing database. Our simulation
shows that (1) no accuracy is lost compared to the non-incremental NBC implementa-
tion and (2) over time, the classification accuracy is a function of the amount of taxa
known. Overall, the incremental implementation can gain the valuable information added
per year at a fraction of the cost — our example shows that by updating yearly, the
2018 training time would only be 1/4th of the full training time of non-incremental

version.

Methods

Experimental dataset

In our experiments, we use the NCBI Reference Sequence (RefSeq) bacterial genome
database and taxonomic tree [2]. Genomes labeled as “complete Genome” in assem-
bly_level field and “latest” in version_status field are downloaded. Genomes are labeled by
their species level label. The genomes are split into 5 folds by random. Testing reads are
then simulated from the genomes in 5 folds. 100 reads are simulated from each genome
by Grinder [42] with no error. The model will be trained on 4 out of 5 folds and tested on
the leftover fold. That is to say, we train on some strains from a species and test on other
strains from the same species. In fact, due to this 5-fold cross-validation, some species
with smaller amount of genomes will not show up in training process. Therefore, it is
marked as unknown if it is not trained on when evaluate the performance of the classi-
fier. All genomes and testing reads are processed by Jellyfish [43] to count the k-mers in
each file as naive Bayes taxonomic classifier takes the abundance of k-mers as features.
For our incremental taxonomic classification experiment, we further separate each fold
based on the genomes release year in the assembly summary. Therefore for each year,
we have 5 folds and we can train and update the model every year based on which folds
the model was originally trained on. For the dynamic of taxonomic profiling experiment,
we use all our training genomes as the training data and classify a human fecal sample
(SRA ID: SRS105153). We train 5 models in temporal order to show the profiling result
change. The initial model is trained by complete Bacteria genomes division 1 (genomes
added during 1999), then model 2 is obtained by updating model 1 with training data divi-
sion 2 (genomes added during 2000 to 2004, model 3 is updated by division 3 (genomes
added during 2005 to 2009, followed by model 4 with division 4 (genomes added dur-
ing 2010 to 2014) and finally model 5 is updated by division 5 (genomes added during
2015 to 2019) from model 4. The composition change on different taxonomic levels are
evaluated.

Zhao et al. BMC Bioinformatics (2020) 21:412 Page 17 of 23

Naive Bayes taxonomic classifier

Our method (NBC++) is based on a previous non-incremental taxonomic classifier [7].
We then expand the classifier to incrementally update itself efficiently and produce reli-
able classification results. The core of our classifier is a naive Bayes (NB) classifier. NB
classifier exploits Bayes rule to tackle classification problems which assumes independent
features. In essence, NBC’s premise is to maximize the (log)-likelihood of observations
given each potential class, P (x]y;) =]_[/K=1 p (xj|yi), where ¥; is the jth feature, and y; is
label of ith class. The NBC then computes the discriminant function Q (a function of the
posterior probability) for each class y; for each observation x as Q (y;|x) = P(y;)P (x]y;),
and chooses the class label for which Q(y;|x) is the largest. In our application, we did not
include the prior probability in final likelihood computation because we expect all species
equally likely to be observed and don’t know which environment or species prior probabil-
ities to expect. Authors now show that having prior information about species likelihood
of occurrence are useful [44]. We compute the probability of observing a k-mer given a
species via Laplacian smoothing which defined by the following formula:

S (xlyi) +1
Seuf (ilyi) + K

where f (xj]y;) is the total number of a k-mer, x;, observed in all training genomes with

P (x;ly;) = (1)

species level y;. K is the total number of unique k-mers for a given size k and K = 4X. The
Add-1 smoothing avoids P (xj|yi) = O when f (xj| yi) = 0. Then, for a testing reads, x, the
posterior probability for a species y; can be obtained by:
K
Hj:l p (ij’i)
N K
> iz pO) [Ti p (x1y:)

where x; is one of the k-mer observed in testing reads x and K is the total number of

p ilx) = (2)

unique k-mers observed in the testing reads. There are N species in the training dataset
and p (x/ | y,') is the probability of observing a k-mer given a species. The prediction is made
by taking the argmax of all posterior probabilities. In our implementation, we compute
Eq. 2 in log-space. For example, the numerator of]_[]K= 12 (jly:) in log space becomes the
sum of log-probabilities: L (x|y;) = ,K:1 log (p (xj|yi)).

Traditional NBC implementations require the entire labeled training data to update the
model each time when new data are available. Our implementation computes Eq. 1 only
for the added or updated species. The log-space version of Eq. 2 is still computed for each
“read query”.

Incremental naive Bayes classifier

The incremental implementation of naive Bayes classifier is quite straightforward. When
new sequences are available, we can compute their k-mer of frequency table. Then
P (x;ly;) is updated based on the label. For example, if a new genome is from one of the
existing classes, then, the frequency of k-mer x; is updated and P (ley,-) is updated. If
the genome is from a novel class, we create a new class in the model and the P (xj|yi)
is the frequency of x; divided by the total number of k-mers. In our implementation,
NBC++ performs incremental learning in a number of seamless features that allows it to
save on work already performed in the past. By structuring trained models into multiple
separate files for each class, new classes can be automatically added when encountered

Zhao et al. BMC Bioinformatics (2020) 21:412 Page 18 of 23

by the training crawler. In this case, updating the model by a new class is as fast as
training on that new class alone. The retraining penalty incurred by incorporating new
classes into existing models is eliminated in this way. And adding new data to exist-
ing classes is also trivial. By storing some partial data alongside pre-computed priors
in its save files, NBC++ can seamlessly expand a class in just the time it takes to train
on the number of additional reads being appended to the existing database. This elimi-
nates the need to retrain on sequences which are already part of the database, and greatly
improves performance when there is a need to frequently update our database with new
information.

Our algorithm can also be extended to allow taxonomic labels merging in the future.
For example, species A is merged to species B in NCBI RefSeq database, we can first
update the frequency of x5 by xﬂgl = { 5+ x]‘ 4 Where x;,"gl refers to the new frequency
of k-mer j of species B. And then corresponding conditional probabilities can be updated
accordingly.

Scalability of NBC++

In addition to incremental learning, NBC++ introduces a set of improvements meant
to optimally leverage the computational resources at its disposal. NBC++ supports
multi-threaded operation, making both training and classification faster by parallelizing
independent operations such as working on multiple classes or reads simultaneously. By
using a command-line parameter (-t [threads]), the user can specify the number of
threads made available to NBC++. The program will then attempt to run as many parallel
instances as threads it has available, and load training/testing data into the available mem-
ory for all the threads. The scalability of the previous naive Bayes classifier is improved.
NBC++ can now work within a pre-set memory limit. The program will automatically
adjust how many reads it loads into memory, dynamically creating multiple “batches” of
various sizes, trying to fit as many as possible in one cycle. This is a sub-optimal but nec-
essary operating mode, as dataset sizes often exceed available RAM. The performance
penalty of this process in the case of classification is derived from the repeated itera-
tions through the training database — repeated for each batch. The trade-off is to load
and unload the same training classes in/from memory multiple times, because we need
to classify multiple batches of reads. We describe the detailed implementation below.

One way in which NBC++ facilitates computational scalability is by automatically sepa-
rating reads into batches, depending on the amount of memory the user decides to use. By
using the -m [size] argument, the user can instruct NBC++ to keep all batches under
the specified memory cap, thus allowing the user to train and classify large datasets on a
variety of systems, getting optimal performance on each run without the need for users
to manually adjust batch contents. This is particularly helpful when reads in the database
have uneven sizes, which would normally make them difficult to manually add to a batch
containing a fixed number of reads.

To demonstrate this behavior, consider a scenario where the program is given 510
sequences (of greatly varying lengths) and the memory is capped to 32GBs. Figure 10
depicts how the program would handle batching in this case — the total size of the dataset
of reads is 127GBs, so NBC++ begins loading the first 160 into memory. When it detects
the next read would exceed its memory cap, the batch totaling 31.7GBs is released for
processing. Once processed, the sequences are unloaded from memory and the process

Zhao et al. BMC Bioinformatics (2020) 21:412 Page 19 of 23

510 reads, 127 GB

160 reads 50 reads 230 reads /-
= Y,

I1tbatch 2" batch 3“batch 4% batch

Fig. 10 Batch loading diagram NBC++ handle large dataset by load a batch/subset of data at a time to
process. Due to the incremental learning capability of the program, it can easily handle large dataset in both
training and testing phases

restarts, loading the next batch of sequences until the memory capacity is reached (this
time, 50 larger reads take up 31.9GBs). Note that class savefiles will also be loaded for
each thread in addition to the loaded reads, therefore the memory cap is only used to
dynamically adjust batch sizes.

An additional argument, -n [nbatch] is provided as a manual override for the num-
ber of reads to include in a batch. This argument is not compatible with the memory cap
option and should only be used if the user prefers to process a fixed number of reads at a
time, rather than trying to use all available memory optimally.

We also allow for multi-threaded computation through the -t [threads] argu-
ment, which prompts NBC++ to create worker threads that will concurrently handle
one class each. This option is independent of the memory cap, which means that users
should allow for some additional memory to be used by each thread in loading their
training class savefiles: total memory = read memory cap + n_threads x
savefile average_size.

With these two options enabled, NBC++ will first create a batch of reads that fit within
the provided memory cap. The program will then create the specified number of threads,
loading one class savefile for each and processing in parallel all reads within the batch.
When we’ve finished processing all the reads in the batch, the class savefile is unloaded
and the next class is read from disk. The thread will then begin to process reads from the
beginning. The batch is discarded when this operation has ran for all existing classes, in
which case the program will begin creating a new batch and repeating the process until
the entire dataset is processed.

Zhao et al. BMC Bioinformatics (2020) 21:412 Page 20 of 23

The multi-threaded computation along with memory cap is very useful in computing
cluster environment. We use a case study here to illustrate the usage. Suppose we allo-
cated 16 cores and a total of 64 GB memory resources to run NBC++. Then, the value
we passto -t [threads] would be 15 since we need 1 core for master process and the
rest of 15 can be used for multi-threading. The memory cap should be considered as the
memory available solely for testing reads. Given we have 16 cores and 64 GB memory,
we have 4 GB per core. If the maximum size of training class savefile (class object of a
species derived from training data) is 2 GB. Then 2 GB per core are available for testing.
To be safe, we don’t include the memory for master core for testing reads. Then the total
amount of memory for testing can be set to 2 x 15 = 30 GB. Therefore, we pass 30 GB to
-m [size] parameter. In this way, we manage to balance the loading of both save files
(training) and testing data in memory.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.1186/512859-020-03744-7.

Additional file 1: The number of taxonomic labels per year. The number of updates in the NCBI bacteria genome
database on six taxonomic levels, namely, species, genus, family, order, class and phylum. We have a figure for
“Accumulative number of updates per year” per taxonomic level (A, B, C, D, E, F) and a figure for “compared with last
year, the number of new updates per year” per taxonomic level (G, H, I, J, K, L).

Additional file 2: Histogram of the number of genomes per species. We plot the histogram of the number of
genomes per species every year. The figures show that many species have only one genome. We designed our
experiment so that we can train a model on some genomes of a species and then evaluate the model with other
genomes of the same species. Therefore, when we train on those species, we don't have a testing genome to
simulate testing reads from. And when we do simulate testing reads from those genomes, they don't exist in the
training set. To this end, we evaluate our model with two metrics: accuracy for all reads and accuracy for known reads
(reads from known species).

Additional file 3: RefSeq bacterial genomes published every year. This table shows the release year, the organism
name and taxonomic ID of completed genomes in RefSeq Bacterial assembly summary.

Additional file 4: The average accuracy per species from 1999 to 2019. The table shows the average accuracy per
species for 5-fold cross-validation.

Additional file 5: The standard deviation of the accuracy per species from 1999 to 2019. The table shows the
standard deviation of the accuracy per species for 5-fold cross-validation.

Additional file 6: Profiling results change over time on species level. The NBC incremental learning classifiers trained
on different years are evaluated on a real human fecal sample (SRA ID: SRS105153) on species level. The figure shows
that the predicted composition of the sample changed over time and is influenced by the training data. Taxa with
lower than 5% relative abundance is moved to either “Others: New" category or “Others: Old” category depending on
weather the taxa is recently added or was added in previous section.

Additional file 7: Profiling results change over time on order level. The NBC incremental learning classifiers trained
on different year are evaluated on a real human fecal sample (SRA ID: SRS105153) on order level. The figure shows
that the predicted composition of the sample changed over time and is influenced by the training data. Taxa with
lower than 5% relative abundance is moved to either “Others: New" category or “Others: Old” category depending on
weather the taxa is recently added or was added in previous section.

Additional file 8: Misclassified reads — phylum level. We trace our species classification results back to phylum level
and most of the reads are assigned to the correct phylum level taxonomic labels. This table shows the reads that got
misclassified in phylum level.

Additional file 9: 15-mer shared with B. aphidiciola (taxid: 9). 15-mer shared between the case example read in
“Case example of B. aphidicola and C. botulinum misclassification” section and fold-1 training data for B. aphidiciola
(taxid: 9).

Additional file 10: 15-mer shared with C. botulinum (taxid:1491). 15-mer shared between the case example read in
“Case example of B. aphidicola and C. botulinum misclassification” section and fold-1 training data for C. botulinum
(taxid:1491).

Additional file 11: Blast result for B. aphidiciola (taxid: 9). Blast result for the case example read in

“Case example of B. aphidicola and C. botulinum misclassification” section against B. aphidiciola (taxid: 9) exclusing
strain Schlechtendalia chinensis.

Additional file 12: Blast result for C. botulinum (taxid:1491). Blast result for the case example read in
“Case example of B. aphidicola and C. botulinum misclassification” section against C. botulinum (taxid:1491).

Additional file 13: Blast search strategies for B. aphidiciola (taxid: 9). The Blast search strategies for the case example
read in “Case example of B. aphidicola and C. botulinum misclassification” section

https://doi.org/10.1186/s12859-020-03744-7

Zhao et al. BMC Bioinformatics (2020) 21:412

against B. aphidiciola (taxid: 9) exclusing strain Schlechtendalia chinensis. The file ends in ASN and the reader can also
open it as a normal text file.

Additional file 14: Blast search strategies for C. botulinum (taxid:1491). The Blast search strategies for the case
example read in “Case example of B. aphidicola and C. botulinum misclassification” section against C. botulinum
(taxid:1491). The file ends in ASN and the reader can also open it as a normal text file.

Abbreviations
NBC: Naive Bayes classifier; NBC++: Our “incrementalized” version of naive Bayes classifier; NCBI: National center for
biotechnology information; RefSeq: The NCBI reference sequence database

Acknowledgements

This work was partially supported by the Extreme Science and Engineering Discovery Environment (XSEDE), which is
supported by National Science Foundation grant number ACI-1548562. Specifically, it used the Bridges system, which is
supported by NSF award number ACI-1445606, at the Pittsburgh Supercomputing Center (PSC) [45, 46]. This work was
partially supported by Drexel's University Research Computing Facility (URCF).

Authors’ contributions

ZZ: Formal analysis, Methodology, Supervision, Validation, Visualization, Writing — original draft & review & editing AC:
Software Development, Formal analysis, Methodology, Validation, Writing — original draft GR: Conceptualization, Funding
acquisition, Resources, Supervision, Writing — original draft & review & editing. All authors have read and approved the
manuscript.

Funding

This project is funded by an NSF I/UCRC grant #1650431 through an industry-university center, the Center for Visual and
Decision Informatics (CVDI), and NSF grant #1936791. Under CVDI, Becton, Dickinson and Company (BD) supported us for
this project. While the BD funded stipend and tuition, they had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Availability of data and materials

We use the NCBI Reference Sequence (RefSeq) bacterial genome database and taxonomic tree [2] as of March 2nd 2019.
The bacterial genome data is downloaded from the NCBI website according to the GCF assembly summary file as it is in
March 2nd 2019 download from ftp://ftp.ncbi.nim.nih.gov/genomes/refseq/bacteria/assembly_summary.txt. The
taxonomic tree is downloaded from ftp:/ftp.ncbi.nlm.nih.gov/pub/taxonomy/taxdump.tar.gz as it is in March 2nd 2019.
The real human fecal sample used in our experiment is publicly available with SRA ID: SRS105153. Our NBC++ software is
open-source and can be obtained through: https://github.com/EESI/Naive_Bayes.

Ethics approval and consent to participate
Not applicable

Consent for publication
Not applicable

Competing interests
The content of this paper is related to a pending patent application entitled “Multi-temporal Information Object
Incremental Learning Software System” filed in 2018/3/2.

Author details

1 Ecological and Evolutionary Signal-process and Informatics (EESI) Lab, Department of Electrical and Computer
Engineering, Drexel University, Market Street, Philadelphia, US. 2Department of Computer Science, Drexel University,
Market Street, Philadelphia, US.

Received: 29 February 2020 Accepted: 8 September 2020
Published online: 21 September 2020

References

1. Zynda GJ. Exponential growth of NCBI genomes. http://gregoryzynda.com/ncbi/genome/python/2014/03/31/ncbi-
genome.html. Accessed 07 June 2019.

2. Sayers EW, Barrett T, Benson DA, Bryant SH, Canese K, ChetverninV, Church DM, DiCuccio M, Edgar R, Federhen
S, Feolo M, Geer LY, Helmberg W, Kapustin'Y, Landsman D, Lipman DJ, Madden TL, Maglott DR, MillerV,
Mizrachil, Ostell J, Pruitt KD, Schuler GD, Sequeira E, Sherry ST, Shumway M, Sirotkin K, Souvorov A, Starchenko
G, Tatusova TA, Wagner L, Yaschenko E, Ye J. Database resources of the national center for biotechnology
information. Nucleic Acids Res. 2008;37(suppl_1):5-15. https://doi.org/10.1093/nar/gkn741.

3. Benson DA, Karsch-Mizrachil, Lipman DJ, Ostell J, Sayers EW. GenBank. Nucleic Acids Res. 2008;37(suppl_1):26-31.
https://doi.org/10.1093/nar/gkn723.

4. Kyrpides NC, Hugenholtz P, Eisen JA, Woyke T, Goker M, Parker CT, Amann R, Beck BJ, Chain PSG, Chun J,
Colwell RR, Danchin A, Dawyndt P, Dedeurwaerdere T, Delong EF, Detter JC, De Vos P, Donohue TJ, Dong X-Z,
Ehrlich DS, Fraser C, Gibbs R, Gilbert J, Gilna P, Glockner FO, Jansson JK, Keasling JD, KnightR, Labeda D, Lapidus
A, Lee J-S, LiW-J, MA J, Markowitz V, Moore ERB, Morrison M, Meyer F, Nelson KE, Ohkuma M, Ouzounis CA,
Pace N, Parkhill J, Qin N, Rossello-Mora R, Sikorski J, Smith D, Sogin M, Stevens R, Stingl U, Suzuki K-i., Taylor D,
Tiedje JM, Tindall B, Wagner M, Weinstock G, Weissenbach J, White O, Wang J, Zhang L, Zhou Y-G, Field D,
Whitman WB, Garrity GM, Klenk H-P. Genomic encyclopedia of bacteria and archaea: Sequencing a myriad of type
strains. PLoS Biol. 2014;12(8):1001920. https://doi.org/10.1371/journal.pbio.1001920.

Page 21 of 23

ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/bacteria/assembly_summary.txt
ftp://ftp.ncbi.nlm.nih.gov/pub/taxonomy/taxdump.tar.gz
https://github.com/EESI/Naive_Bayes
http://gregoryzynda.com/ncbi/genome/python/2014/03/31/ncbi-genome.html
http://gregoryzynda.com/ncbi/genome/python/2014/03/31/ncbi-genome.html
https://doi.org/10.1093/nar/gkn741
https://doi.org/10.1093/nar/gkn723
https://doi.org/10.1371/journal.pbio.1001920

Zhao et al. BMC Bioinformatics (2020) 21:412 Page 22 of 23

19.
20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

32.

33.

Cullen CM, Aneja KK, Beyhan S, Cho CE, Woloszynek S, Convertino M, McCoy SJ, Zhang Y, Anderson MZ,
Alvarez-Ponce D, Smirnova E, Karstens L, Dorrestein PC, LiH, Gupta AS, Cheung KKW, Powers JG, Zhao Z, Rosen
GL. Emerging priorities for microbiome research. Front Microbiol. 2020;11:136.

Wetterstrand KA. DNA sequencing costs: data from the NHGRI Genome Sequencing Program (GSP). https://www.
genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data. Accessed 07 June 2019.

Rosen GL, Reichenberger ER, Rosenfeld AM. NBC: the Naive Bayes Classification tool webserver for taxonomic
classification of metagenomic reads. Bioinformatics. 2011;27(1):127-9. https://doi.org/10.1093/bioinformatics/
btg619.

Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol.
2014;15(3):1-12. https://doi.org/10.1186/gb-2014-15-3-r46.

Ames SK, Hysom DA, Gardner SN, Lloyd GS, Gokhale MB, Allen JE. Scalable metagenomic taxonomy classification
using a reference genome database. Bioinformatics. 2013;29(18):2253-60. https://doi.org/10.1093/bioinformatics/
btt389.

Segata N, Waldron L, Ballarini A, Narasimhan V, Jousson O, Huttenhower C. Metagenomic microbial community
profiling using unique clade-specific marker genes. Nat Methods. 2012;8:811-4. https://doi.org/10.1038/nmeth.2066.
Menzel P, Ng KL, Krogh A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat Commun.
2016;7:11257.

Clarke EL, Taylor LJ, Zhao C, Connell A, Lee J-J, Fett B, Bushman FD, Bittinger K. Sunbeam: an extensible pipeline
for analyzing metagenomic sequencing experiments. Microbiome. 2019;7(1):46. https://doi.org/10.1186/540168-
019-0658-x.

McIntyre ABR, Ounit R, Afshinnekoo E, Prill RJ, Hénaff E, Alexander N, Minot SS, Danko D, Foox J, Ahsanuddin S,
Tighe S, Hasan NA, Subramanian P, Moffat K, Levy S, LonardiS, Greenfield N, Colwell RR, Rosen GL, Mason CE.
Comprehensive benchmarking and ensemble approaches for metagenomic classifiers. Genome Biol. 2017;18(1):
182. https://doi.org/10.1186/513059-017-1299-7.

Sczyrba A, Hofmann P, Belmann P, Koslicki D, Janssen 'S, Droge J, Gregor |, Majda S, Fiedler J, Dahms E, Bremges
A, Fritz A, Garrido-Oter R, Jargensen TS, Shapiro N, Blood PD, Gurevich A, BaiY, Turaev D, DeMaere MZ, ChikhiR,
Nagarajan N, Quince C, Meyer F, Balvociaté M, Hansen LH, Serensen SJ, Chia BKH, Denis B, Froula JL, Wang Z,
Egan R, Don Kang D, Cook JJ, Deltel C, Beckstette M, Lemaitre C, Peterlongo P, Rizk G, Lavenier D, Wu Y-W,
Singer SW, Jain C, Strous M, Klingenberg H, Meinicke P, Barton MD, Lingner T, Lin H-H, Liao Y-C, Silva GGZ,
Cuevas DA, Edwards RA, Saha'S, Piro VC, Renard BY, Pop M, Klenk H-P, Goker M, Kyrpides NC, Woyke T, Vorholt
JA, Schulze-Lefert P, Rubin EM, Darling AE, Rattei T, McHardy AC. Critical assessment of metagenome
interpretation—a benchmark of metagenomics software. Nat Methods. 2017;14:1063-71.

Loeffler C, Karlsberg A, Martin LS, Eskin E, Koslicki D, Mangul S. Improving the usability and comprehensiveness of
microbial databases. BMC Biology. 2020;18(1):1-6. https://doi.org/10.1186/512915-020-0756-Z.

Nasko DJ, Koren S, Phillippy AM, Treangen TJ. RefSeq database growth influences the accuracy of k-mer-based
lowest common ancestor species identification. Genome Biol. 2018;19(1):1-10. https://doi.org/10.1186/513059-018-
1554-6.

Zhao Z, Rosen G. Multi-temporal Information Object Incremental Learning Software System. Google Patents. 2018.
https://patents.google.com/patent/US20180253529A1/en.

Taninpong P, Ngamsuriyaroj S. Incremental naive Bayesian spam mail filtering and variant incremental training. In:
2009 Eighth IEEE/ACIS International Conference on Computer and Information Science; 2009. p. 383-7.

Salperwyck C, Lemaire V, Hue C. Incremental weighted naive bays classifiers for data stream. In: ECDA; 2013.

LuJ, Yang Y, Webb Gl. Incremental discretization for naive-bayes classifier. In: International Conference on
Advanced Data Mining and Applications; 2006. p. 223-38, Springer.

Zhao Z, Rollins J, Bai L, Rosen G. Incremental author name disambiguation for scientific citation data. In: 2017 IEEE
International Conference on Data Science and Advanced Analytics (DSAA); 2017. p. 175-83. https://doi.org/10.
1109/DSAA2017.17.

Kochurov M, Garipov T, Podoprikhin D, Molchanov D, Ashukha A, Vetrov D. Bayesian incremental learning for
deep neural networks. arXiv preprint arXiv:1802.07329. 2018.

Castro FM, Marin-Jiménez MJ, Guil N, Schmid C, Alahari K. End-to-end incremental learning. In: Ferrari V, Hebert
M, Sminchisescu C, Weiss Y, editors. Computer Vision — ECCV 2018. Cham: Springer; 2018. p. 241-57.

Polikar R, Upda L, Upda SS, Honavar V. Learn++: an incremental learning algorithm for supervised neural networks.
|EEE Trans Syst Man Cybern Part C Appl Rev. 2001;31(4):497-508. https://doi.org/10.1109/5326.983933.

Ruping S. Incremental learning with support vector machines. In: Proceedings 2001 IEEE International Conference
on Data Mining; 2001. p. 641-2. https://doi.org/10.1109/ICDM.2001.989589.

Zheng J, ShenF, Fan H, Zhao J. An online incremental learning support vector machine for large-scale data. Neural
Comput & Applic. 2013;22(5):1023-35. https://doi.org/10.1007/500521-011-0793-1.

XuJ, XuC, ZouB, Tang YY, PengJ, You X. New incremental learning algorithm with support vector machines. I[EEE
Trans Syst Man Cybern Syst. 2018;49(11):2230-41. https://doi.org/10.1109/TSMC.2018.2791511.

McDonald D, Xu Z, Hyde ER, Knight R. Ribosomal RNA, the lens into life. Cold Spring Harbor Laboratory Press for
the RNA Society. 2015;21(4):692-4. https://doi.org/10.1261/rna.050799.115.

Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the
new bacterial taxonomy. Appl Environ Microbiol. 2007;73(16):5261-7. https://doi.org/10.1128/AEM.00062-07.

LanY, Rosen G, Hershberg R. Marker genes that are less conserved in their sequences are useful for predicting
genome-wide similarity levels between closely related prokaryotic strains. Microbiome. 2016;4(1):1-13.

Lan'Y, Morrison JC, Hershberg R, Rosen GL. POGO-DB?a database of pairwise-comparisons of genomes and
conserved orthologous genes; 2014. p 625-32.

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):
403-10. https://doi.org/10.1016/50022-2836(05)80360-2.

Huson D, Auch A, QiJ, Schuster SC. MEGAN analysis of metagenomic data. Genome Res. 2007;17:377-86. https://
doi.org/10.1101/gr.5969107.

https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data
https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data
https://doi.org/10.1093/bioinformatics/btq619
https://doi.org/10.1093/bioinformatics/btq619
https://doi.org/10.1186/gb-2014-15-3-r46
https://doi.org/10.1093/bioinformatics/btt389
https://doi.org/10.1093/bioinformatics/btt389
https://doi.org/10.1038/nmeth.2066
https://doi.org/10.1186/s40168-019-0658-x
https://doi.org/10.1186/s40168-019-0658-x
https://doi.org/10.1186/s13059-017-1299-7
https://doi.org/10.1186/s12915-020-0756-z
https://doi.org/10.1186/s13059-018-1554-6
https://doi.org/10.1186/s13059-018-1554-6
https://patents.google.com/patent/US20180253529A1/en
https://doi.org/10.1109/DSAA.2017.17
https://doi.org/10.1109/DSAA.2017.17
https://doi.org/10.1109/5326.983933
https://doi.org/10.1109/ICDM.2001.989589
https://doi.org/10.1007/s00521-011-0793-1
https://doi.org/10.1109/TSMC.2018.2791511
https://doi.org/10.1261/rna.050799.115
https://doi.org/10.1128/AEM.00062-07
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1101/gr.5969107
https://doi.org/10.1101/gr.5969107

Zhao et al. BMC Bioinformatics (2020) 21:412 Page 23 of 23

34, Koslicki D, Zabeti H. Improving minhash via the containment index with applications to metagenomic analysis.
Appl Math Comput. 2019;354:206-15.

35. Ounit R, Wanamaker SI, Close TJ, Lonardi S. CLARK: fast and accurate classification of metagenomic and genomic
sequences using discriminative k-mers. BMC genomics. 2015;16(1):236.

36. Rojas-Carulla M, Tolstikhin 10, Luque G, Youngblut N, Ley R, Scholkopf B. Genet: Deep representations for
metagenomics. arXiv preprint arXiv:1901.11015. 2019.

37. Liang Q, Bible PW, LiuY, Zou B, Wei L. DeepMicrobes: taxonomic classification for metagenomics with deep
learning. bioRxiv. 2019. https://doi.org/10.1101/694851, https://www.biorxiv.org/content/early/2019/07/09/694851.
full pdf.

38. Fiannaca A, Paglia LL, Rosa ML, Bosco GL, Renda G, Rizzo R, Gaglio S, Urso A. Deep learning models for bacteria
taxonomic classification of metagenomic data. BMC Bioinformatics. 2018;19(7):198.

39. Rosen GL, Polikar R, Caseiro DA, Essinger SD, Sokhansanj BA. Discovering the unknown: improving detection of
novel species and genera from short reads. J Biomed Biotechnol. 2011;2011:495849. https://doi.org/10.1155/2011/
495849.

40. LanY, Wang Q, Cole JR, Rosen GL. Using the RDP classifier to predict taxonomic novelty and reduce the search
space for finding novel organisms. PLoS ONE. 2012;7(3):32491.

41. Kraal L, Abubucker S, Kota K, Fischbach MA, Mitreva M. The prevalence of species and strains in the human
microbiome: A resource for experimental efforts. PLoS ONE. 2014;9(5):97279.

42. Angly FE, Willner D, Rohwer F, Hugenholtz P, Tyson GW. Grinder: a versatile amplicon and shotgun sequence
simulator. Nucleic Acids Res. 2012;40(12):94. https://doi.org/10.1093/nar/gks251.

43, Margais G, Kingsford C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers.
Bioinformatics. 2011;27(6):764-70. https://doi.org/10.1093/biocinformatics/btr011.

44, Kaehler BD, Bokulich N, McDonald D, Knight R, Caporaso JG, Huttley GA. Species abundance information improves
sequence taxonomy classification accuracy. Nat Commun. 2019;10(1):1-10. https://doi.org/10.1101/406611.

45, Towns J, Cockerill T, Dahan M, Foster |, Gaither K, Grimshaw A, Hazlewood V, Lathrop S, Lifka D, Peterson GD,
Roskies R, Scott JR, Wilkins-Diehr N. XSEDE: Accelerating scientific discovery. Comput Sci Eng. 2014;16(5):62-74.
https://doi.org/10.1109/MCSE.2014.80.

46. Nystrom NA, Levine MJ, Roskies RZ, Scott JR. Bridges: a uniquely flexible HPC resource for new communities and
data analytics. In: Proceedings of the 2015 XSEDE Conference: Scientific Advancements Enabled by Enhanced
Cyberinfrastructure. New York, NY, USA: ACM; 2015. p. 1-8. https://doi.org/10.1145/2792745.2792775.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:

e fast, convenient online submission

o thorough peer review by experienced researchers in your field

 rapid publication on acceptance

o support for research data, including large and complex data types

o gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions k BMC

https://doi.org/10.1101/694851
https://www.biorxiv.org/content/early/2019/07/09/694851.full.pdf
https://www.biorxiv.org/content/early/2019/07/09/694851.full.pdf
https://doi.org/10.1155/2011/495849
https://doi.org/10.1155/2011/495849
https://doi.org/10.1093/nar/gks251
https://doi.org/10.1093/bioinformatics/btr011
https://doi.org/10.1101/406611
https://doi.org/10.1109/MCSE.2014.80
https://doi.org/10.1145/2792745.2792775

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Related work
	Related work on incremental learning
	Related work on taxonomic classification

	Results
	Evaluating NBC on a larger dataset: k-mer size vs. accuracy
	NBC++ taxonomic classification performance
	Evaluation of NBC++ on a healthy gut sample taxonomic profiling results over time

	Discussion
	Monetary analysis of reduced computation in NBC++
	Mistakes: current implementation's tendency to classify to well-represented species classes
	Case example of B. aphidicola and C. botulinum misclassification

	Conclusion
	Methods
	Experimental dataset
	Naïve Bayes taxonomic classifier
	Incremental naïve Bayes classifier
	Scalability of NBC++

	Supplementary informationSupplementary information accompanies this paper at https://doi.org/10.1186/s12859-020-03744-7.
	Additional file 1
	Additional file 2
	Additional file 3
	Additional file 4
	Additional file 5
	Additional file 6
	Additional file 7
	Additional file 8
	Additional file 9
	Additional file 10
	Additional file 11
	Additional file 12
	Additional file 13
	Additional file 14

	Abbreviations
	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher's Note

