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Abstract: Per- and polyfluoroalkyl substances (PFASs) are a class of highly fluorinated aliphatic
compounds that are persistent and bioaccumulate, posing a potential threat to the aquatic envi-
ronment. The electroplating industry is considered to be an important source of PFASs. Due to
emerging PFASs and many alternatives, the acute toxicity data for PFASs and their alternatives are
relatively limited. In this study, a QSAR–ICE–SSD composite model was constructed by combining
quantitative structure-activity relationship (QSAR), interspecies correlation estimation (ICE), and
species sensitivity distribution (SSD) models in order to obtain the predicted no-effect concentrations
(PNECs) of selected PFASs. The PNECs for the selected PFASs ranged from 0.254 to 6.27 mg/L. The
ΣPFAS concentrations ranged from 177 to 983 ng/L in a river close to an electroplating industry in
Shenzhen. The ecological risks associated with PFASs in the river were below 2.97 × 10−4.

Keywords: PFASs; QSAR–ICE–SSD; electroplating industry; ecological risk assessment

1. Introduction

Per- and polyfluoroalkyl substances (PFASs) consist of carbon chains of different
lengths where the hydrogen atoms are completely (perfluorinated) or partly (polyflu-
orinated) substituted by fluorine atoms. PFASs are widely used in the textile/leather
treatment industry, manufacture of fluoropolymers, semiconductor industry, and electro-
plating industry. From 1951 to 2015, an estimated 2610–21,400 t of long-chain perfluoroalkyl
carboxylic acids (PFCAs) were produced [1]. Due to the toxic effects, tissue accumulation,
long-range transport, and environmental persistence of PFASs, perfluorooctanesulfonic
acid (PFOS) was listed under the Stockholm Convention on Persistent Organic Chemicals
and perfluorooctanoic acid (PFOA) was being considered for listing by 2017 [2]. As a result,
around 3 million companies developed PFAS alternatives, for which they claim intellectual
property rights protection [2].

An ecological risk assessment (ERA) aims to qualitatively or quantitatively describe the
possibility that adverse ecological effects occur because of exposure to one or more stressors
(e.g., chemical substances) [3]. An ERA has been adopted as an important methodology
in many studies of typical PFASs such as PFOS [4] and PFOA [5]. The predicted no-effect
concentration (PNEC) is expressed as the lowest concentration of adverse effects in an
ecosystem of a given chemical substance [6]. The ratio of the PNEC to the measured
exposure concentration (MEC) is known as the risk quotient (RQ), which is a screening-
level descriptor of the ecological risk. To reduce the uncertainty associated with an ERA,
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the species sensitivity distribution (SSD) method is widely used to derive the PNEC [7,8].
An SSD is a cumulative probability distribution of the toxicity measurements of a chemical
obtained from single-species bioassays of various species that can be used to estimate the
ecotoxicological impacts of a chemical [9]. The robustness and accuracy of the SSD method
strongly depend on the amount of species toxicity data [6,10,11]. Owing to the wide variety
of PFASs and many emerging alternatives, the acute toxicity data for emerging PFASs and
their alternatives are relatively limited [12]. The combination of quantitative structure-
activity relationship (QSAR) models with interspecies correlation estimation (ICE) models
can greatly expand the ability to predict untested chemicals and their potential effects on
untested species; this has aroused a wide research interest [13–16]. QSAR models provide
opportunities to estimate the ecotoxicity values for certain species (usually standard test
species such as zebrafish) based on the knowledge of chemical structures or properties [17].
ICE models use available toxicity data of tested species (i.e., surrogate species) to predict
those of untested species (i.e., predicted species) [18]. QSAR–ICE models can fill the data
gap to generate SSDs, providing practical applications for the ERA of chemicals with
limited data [13].

In aquatic systems, PFAS concentrations are higher in industrialized and urbanized
areas than in less populated and remote regions in China [19]. Our previous study investi-
gated the concentrations of PFOA and PFOS in the effluent of a sewage treatment plant in
Beijing, which were found to be 29.9–71.5 ng/L and 60.1–233 ng/L, respectively [20]. These
results indicated that the activated sludge process could not effectively remove PFOA and
PFOS. Another previous study in the Fenhe River in Shanxi Province showed that the
PFOA and PFOS concentrations were 2.49–4.79 ng/L and 3.54–16.2 ng/L, respectively [21].
Yamazaki et al. [22] reported that the PFAS concentrations ranged from non-detected to
1.5 ng/L in rivers and lakes on the Qinghai–Tibet Plateau, corresponding with low indus-
trial levels. Based on the estimations of Wang et al. [19], the electroplating industry was the
most important source of PFASs discharged into the aquatic environment.

Few studies have been undertaken on the occurrence and ERA of PFASs in the surface
waters surrounding areas where electroplating industries operate. Relatively limited toxic-
ity data make it difficult to develop the ERA of PFASs and their alternatives. In addition,
QSAR–ICE–SSD models developed for estimating the PNECs of PFASs and their alterna-
tives have been rarely reported in recent studies. Accordingly, the objectives of this study
are (1) to construct QSAR–ICE–SSD models to predict the PNECs of PFASs and their alter-
natives and (2) to assess the ecological risk of PFASs in a river near electroplating factories.

2. Materials and Methods
2.1. Construction of QSAR–ICE Models

Following the procedures recommended in the Technical Guidance Document on
Risk Assessment of the European Commission [6], the Guidelines for Ecological Risk
Assessment of United States Environmental Protection Agency (US EPA) [3], and the
literature [23–25], the process of collecting toxicity data can be summarized briefly as
follows: four species (Pseudokirchneriella subcapitata, Chlorella vulgaris, Daphnia magna, and
Danio rerio) representing three trophic levels in the aquatic environment were selected as
model species for QSAR models. The acute toxicity data were mainly obtained from the
US EPA ECOTOX database (http://cfpub.epa.gov/ecotox/ (accessed on 4 May 2021)), the
literature, and relevant government documents. Structurally similar chemicals in the same
group (i.e., PFASs) were used in the QSAR modeling. Chemicals that contained at least one
-CF2- were originally considered as PFASs and further checked against the list of PFASs of
the US EPA (https://comptox.epa.gov/dashboard/chemical_lists/pfasmaster (accessed
on 4 May 2021)) [26]. Data screening followed the principles of accuracy, relevance, and
reliability [27]. The test methods were in accordance with standard test methods (e.g., the
methods of the Organization for Economic Cooperation and Development). The toxicity
endpoints were the median lethal concentration (LC50) or the median effect concentration
(EC50). The 48 h LC(EC)50 was preferred for invertebrate species and the 96 h LC(EC)50
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was preferred for other species. When multiple toxicity values were available for the same
species and the same endpoint, the geometric mean was taken as the mean toxicity value
for the species.

Molecular structure files were obtained from the ChemSpider database (https://
chemspider.com/ (accessed on 10 May 2021)) and the molecular energy was optimized
using the GAMESS Interface method in ChemBio3D (https://perkinelmerinformatics.com/
(accessed on 12 May 2021)). A total of 12 semi-empirical molecular descriptors were then
calculated using the AM1 method in MOPAC 2016 (http://openmopac.net/ (accessed
on 12 May 2021)) and the Kow values (shown in Table 1) were calculated using EPI Suite
software (https://www.epa.gov/ (accessed on 12 May 2021)). The Chemical Abstracts
Service Registry Number (CAS No.), chain lengths, and molecular descriptor values of the
selected PFASs are listed in the Supplementary Excel file. There were 27 PFASs selected, in
which chain lengths ranged from 2 to 15 and contained PFCAs, perfluoroalkane sulfonic
acids (PFSAs), polyfluoroalkyl ether sulfonic acids (PFESAs), cyclic perfluorinated acids,
fluorotelomer-based substances, and perfluoroalkyl acid precursors.

Table 1. Molecular descriptors used in this study.

No. Molecular Descriptors Abbreviations Units

1 Heat of formation HOF kcal/mol
2 Total energy TE EV
3 Electronic energy EE EV
4 Core–core repulsion energy ECCR EV
5 COSMO area CA Å2
6 COSMO volume CV Å3
7 Gradient norm GN -
8 Gradient norm per atom GN p A -
9 Ionization potential IP EV
10 Lowest unoccupied molecule orbital energy ELUMO EV
11 Highest occupied molecular orbital energy EHOMO EV
12 Molecular weight MW -
13 Octanol–water partition coefficient Kow -

The stepwise regression method in SPSS (https://www.ibm.com/ (accessed on 4
May 2021)) was used to establish the multiple regression statistical models between the
logarithmic values of the toxicity data (i.e., log LC(EC)50) and the molecular descriptors
(including their logarithmic values)). Four QSAR models were validated using SIMCA
software (https://www.sartorius.com/ (accessed on 28 May 2021)), in which the non-
cross-validation correlation coefficient (r2) and leave-one-out cross-validation correlation
coefficient (q2) were used as the evaluation indices.

A total of 227 ICE models of native species in China were established and used
to estimate the acute toxicity data of 6 chemicals, including 4-dichlorophenol, triclosan,
tetrabromobisphenol A, nitrobenzene, PFOS, and octachlorodiphenyl [28]. These ICE
models were used after verifying the application domain.

2.2. Sample Treatment and Analysis of PFASs

Water samples were collected from a river near electroplating factories in Shenzhen.
S1 and S5 were located approximately 500 m upstream of the factories and S2, S3, and S4
were located downstream. The locations of the water sampling points around the plant
are shown in Figure 1. Each water sample was collected in a polypropylene sample bottle
and stored at 4 ◦C in a sampling box. Upon arrival at the laboratory, 500 mL of each water
sample was filtered through a glass microfiber filter (GFF: diameter 150 mm; pore size
0.7 µm). The pH of the water was adjusted to 3.0 with a hydrochloric acid solution. The
samples were then stored at 4 ◦C in the laboratory.

https://chemspider.com/
https://chemspider.com/
https://perkinelmerinformatics.com/
http://openmopac.net/
https://www.epa.gov/
https://www.ibm.com/
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The water samples were extracted following a previously established method [29]
with a few modifications. Briefly, Oasis WAX cartridges were preconditioned with 4 mL of
0.1% NH4OH/MeOH, 4.0 mL of methanol, and 4.0 mL of deionized water. Each filtrate was
passed through a preconditioned cartridge at a flow rate of 5–10 mL min−1. The cartridge
was then washed with 4 mL of deionized water and 25 mM of an acetic acid–ammonium
acetate buffer solution (pH = 4). The WAX cartridges were placed in a centrifuge tube and
centrifuged at 3000 rpm for 2 min to remove the excess water. An elution was carried out
with 4 mL of methanol and 4 mL of 0.1% NH4OH/MeOH. The eluent was evaporated
to dryness under a gentle N2 stream in a water bath at 40 ◦C, redissolved in 1.0 mL of
methanol, transferred to a liquid chromatography (LC) vial, and evaporated to dryness
under a gentle N2 stream. Each sample was reconstituted with methanol (0.5 mL) and
spiked with an internal standard (0.5 ng).

Ultra-high-performance liquid chromatography combined with Q-Exactive Orbitrap
Tandem Mass Spectrometry (UPLC-Q-Exactive MS) was applied for the non-target screen-
ing of the PFASs and 19 certified standards (Table S1) were applied for the further quantifi-
cation of the PFASs. An RRHD Extend-C18 column (2.1 mm × 50 mm, 1.8 µm, Agilent) was
used for separation. Mobile phase A consisted of 2 mM ammonium acetate/water, and
mobile phase B consisted of methanol. The elution gradient was set as follows: 5–35% B for
1 min; 35–55% B for 7 min; 55–95% B for 17 min and maintained at 18 min; then back to the
initial conditions (95% A) for 18.1 min and maintained at 20 min. The flow rate was set at
0.25 mL/min and the column oven was maintained at 35 ◦C. A 5 µL aliquot was injected
into the LC-Q-Exactive MS system. The mass spectrometer was operated in the negative
electrospray ionization in full scan mode (m/z 100–1000) (Table S1). The chromatograms
are shown in Figure S1. The exact mass of the PFASs was applied to the screening and
quantification of the PFASs.

All target analytes were quantified using an internal standard calibration curve
(r > 0.99). The method reproducibility was evaluated based on the relative standard devi-
ation (RSD) of the recovery of the spiked replicates. The limits of detection (LOD) were
estimated based on signal-to-noise ratios of 3:1. The mean procedural recovery of the
PFASs ranged from 81 to 122% and the LODs of the PFASs were 1–70 ng/L (Table S1). One
procedural blank and one procedural recovery sample were also analyzed for each batch
of samples to check for laboratory contamination and accuracy.
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2.3. Ecological Risk Characterization

RQ methods were used in this study to roughly characterize the estimated ecological
risks posed by the PFASs (as shown in Equation (1)). The ecological risks could be divided
into four grades: high risk (RQ≥ 1); medium risk (1 > RQ≥ 0.1); low risk (0.1 > RQ ≥ 0.01);
and no risk (RQ < 0.01) [30].

RQ =
MEC
PNEC

. (1)

The PNEC values were extrapolated by SSDs. The log normal parametric fitting
method was used for the construction of the SSD curves. The cumulative distribu-
tion function (CDF) is shown in Equation (2). The threshold concentration for pro-
tecting 95% of the species (i.e., the hazardous concentration for 5% of species, HC5)
was obtained from the constructed SSD curve. The PNEC values were obtained using
Equation (3). The model construction and related statistical calculations were completed
using R (https://r-project.org (accessed on 2 July 2021)) and related packages such as “ss-
dtools” (https://bcgov.github.io/ssdtools/ (accessed on 2 July 2021)). The goodness-of-fit
test for the normal distribution of the toxicity data was conducted using the Anderson–
Darling test, Kolmogorov–Smirnov test, or Cramér–von Mises test.

CDF = (x, µ, σ)
1
2
+

1
2

erf[
ln x− µ√

2σ
]. (2)

PNEC =
HC5

AF
(3)

where AF is the assessment factor, which was set to 5 in this study [6].

3. Results and Discussion
3.1. Predicted Toxicity Data by QSAR–ICE Models

The acute toxicity of PFASs to Pseudokirchneriella subcapitata, Chlorella vulgaris, Daphnia
magna, and Danio rerio were collected (Table S2). There were 14 EC50 values (from 2.1 to
1130 mg/L) for Pseudokirchneriella subcapitata, 10 EC50 values (from 3.9 to 4030 mg/L) for
Chlorella vulgaris, 10 LC50 values (from 0.06 mg/L to 2.58 × 105 mg/L) for Daphnia magna,
and 12 LC50 values (from 8.4 to 1500 mg/L) for Danio rerio. Based on the collected data,
the calculated molecular descriptors (Supplementary Excel file), and a stepwise multiple
linear regression, QSAR models for the four species were constructed (Equations (4)–(7)
in Table 2). The four QSAR models were validated using the conventional correlation
coefficient (r2) and the leave-one-out cross-validation correlation coefficient (q2) (Table 2).
Generally, QSAR models with r2 > 0.6 and q2 > 0.5 can be regarded as having a relatively
good predictive ability [31]. In this study, although the QSAR models showed only passable
fitting degrees (R2) due to the relatively small datasets (n), the r2 and q2 values were >0.6
and >0.5, respectively, indicating that the established QSAR models had a good prediction
ability and statistical significance (p < 0.05).

Table 2. QSAR models and their validation parameters.

Species Models Equations n a R2 b r2 c q2 d p e

Pseudokirchneriella
subcapitata

log EC50 = −log Kow × 8.82 + TE × 47.8 + log
ELUMO × 1.47 − ECCR × 39.7 + 50.3 (4) 14 0.770 0.742 0.701 0.006

Chlorella vulgaris log EC50 = −4.18 × Kow − 0.332 × ECCR − 4.29 (5) 10 0.592 0.751 0.673 0.043

Daphnia magna log LC50 = −Kow × 4.09 + log TE × 9.75 − ECCR
× 7.03 + log ELUMO × 1.63 + 1.95 (6) 10 0.370 0.605 0.580 0.045

Danio rerio log LC50 = −Kow × 1.03 − ECCR × 1.04 +
ELUMO × 0.318 + 2.94 (7) 12 0.558 0.722 0.630 0.046

a n: number of toxicity data. b R2: coefficient of determination of the multiple regression. c r2: conventional correlation coefficient or
non-validation correlation coefficient. d q2: leave-one-out cross-validation correlation coefficient. e p: statistical significance.

https://r-project.org
https://bcgov.github.io/ssdtools/
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The molecular descriptors of the established models practicably explained the mecha-
nism of acute toxicity (MOA). There was a positive correlation between the log EC50 and
the total energy (TE), which is a molecular descriptor related to the molecular energies
and stabilities of PFASs. These include molecular internal energy, translational kinetic
energy, the energy of electrons in a molecule, the vibration energy between atoms in a
molecule, and the energy of a molecule rotating around the center of a mass. A higher TE
value indicates that the molecule is not easily polarized or absorbed by cells, thus resulting
in a lower toxicity [32]. There was a positive correlation between the log EC50 and the
lowest unoccupied molecule orbital energy (ELUMO). As the electronegativity of the F
atom is the strongest, the PFASs reacted with the action site of the target organism as the
electron acceptor. According to the frontier orbital theory, the occurrence of the reaction
is related to the difference between the highest occupied orbital energy (EHOMO) of the
electron donor and the ELUMO of the electron acceptor; that is, EHOMO–ELUMO (also
known as the energy band gap). The larger the band gap, the easier the reaction and the
stronger the binding force between the electron donor and the electron acceptor. Hence, the
larger the band gap, the more obvious the toxicity and the lower the log LC50 value [33].
There was a negative correlation between the log LC50 and the nuclear–nuclear repulsive
energy (ECCR). The electron cloud of atoms in a molecule is deformed more easily with an
increase in the ECCR value, which makes PFASs more likely to polarize and enter a cell [33].
The log EC50 was negatively correlated with the octanol–water partition coefficient (Kow),
which is related to the lipophilicity of PFASs. With an increase in the Kow value, PFASs
accumulate more easily in an organism, thus corresponding with a higher toxicity. Kow
is a key physico-chemical parameter serving as a classic molecular descriptor in QSAR
modeling [34]. In this study, all 4 QSAR models contained Kow (or log Kow), indicating the
universality of Kow in predicting aquatic acute toxicity. Moreover, it has been shown that
Kow is also important in applying QSAR models to predict toxicity in rodents [35,36] and
in vitro toxicity assays [37,38]. In the practice of chemical management, Kow can be used to
justify waiving ecotoxicity tests (if log Kow < 3) to assess bioaccumulation (if log Kow < 3,
the chemical can be considered to be non-bioaccumulative) [34]. As a result, Kow-based
QSAR modeling can be an effective tool for predicting the toxicity of different endpoints in
screening levels.

The acute toxicity data of perfluorobutyric acid (PFBA), PFOA, perfluorobutane-
sulfonic acid (PFBS), perfluorohexanesulfonic acid (PFHxS), PFOS, and 6:2 chlorinated
polyfluoroalkyl ether sulfonate (6:2 Cl-PFESA) for the four selected species were predicted
using the four QSAR models, as shown in Table 3. The results predicted by the QSAR
models showed that the toxicities of novel PFASs or substitutes such as 6:2 Cl-PFESA,
PFBA, and PFBS were higher than those of PFOS and PFOA. The insertion of an oxygen
atom into the 6:2 Cl-PFESA molecule could increase the activity of the molecule. The
experimental results of other studies have also indicated that the presence of oxygen atoms
could increase the toxicity of PFASs [39]. Due to their smaller molecular weight, short-chain
PFAS substitutes (e.g., PFBA and PFBS) may be more easily polarized and absorbed by
cells, thus increasing toxicity.

Table 3. Predicted acute toxicity data (mg/L) of six PFASs by QSAR models.

PFASs CAS No. Pseudokirchneriella subcapitata Chlorella vulgaris Daphnia magna Danio rerio

PFBA 375-22-4 67.1 112 37.4 1410
PFOA 335-67-1 478 150 570 98.5
PFBS 375-73-5 2840 222 487 1000

PFHxS 355-46-4 1030 258 821 256
PFOS 1763-23-1 53 309 173 61.3

6:2 Cl-PFESA 73606-19-6 1.3 84.9 10.9 32.7

Based on the measured toxicity data collected from databases (Table S3) and the
predicted data of the QSAR models, the 13, 34, 17, 13, 13, and 13 ICE models available
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for PFBA, PFOA, PFBS, PFHxS, PFOS, and 6:2 Cl-PFESA (Table S4) were selected for their
toxicity extrapolation, respectively [28]. The acute toxicity data estimated by the QSAR–ICE
models constructed for the above six substances are listed in Table S5.

3.2. Calculation and Comparison of the PNEC Values of SSDs Produced Using Predicted and
Measured Data

Figure 2 shows the SSD curves based on the predicted data by the QSAR–ICE models
(the six PFASs) and measured data, respectively. The results of the goodness-of-fit tests
for the acute toxicity data are shown in Table S6. The results of the goodness-of-fit tests
for all six PFASs were less than the corresponding thresholds, indicating that the obtained
acute toxicity data were consistent with the log normal distribution. The HC5 and PNEC
values are presented in Table 4. The order of the HC5 values was ranked from low to high,
which was 6:2 Cl-PFESA < PFBA < PFOS < PFOA < PFBS < PFHxS. The measured acute
toxicity data used in the SSD curves of PFOA and PFOS are shown in Table S7. The HC5
values obtained by the two methods were compared in order to evaluate the accuracy of
the QSAR–ICE–SSD models. As shown in Table 4, the HC5 values of the QSAR–ICE–SSD
models were 1.16 times (PFOA) and 1.20 times (PFOS) higher than the calculated values
based on the measured toxicity data. As a result, the QSAR–ICE–SSD models had a certain
reliability for predicting PNEC values when limited data were available.

Table 4. The HC5 and PNEC values based on the predicted data (six PFASs) and measured data (PFOA and PFOS).

PFBA PFOA PFOA (Measured) PFBS PFHxS PFOS PFOS (Measured) 6:2 Cl-PFESA

HC5 (mg/L) 4.02 31.4 27 50.5 64.5 10.5 8.72 1.27
PNEC (mg/L) 0.804 6.27 - 10.1 12.9 2.09 - 0.254

3.3. Concentrations of PFASs in the River near the Electroplating Factories

The Σ19PFAS concentrations ranged from 177 to 983 ng/L in the river water samples
(Figure 3); the mean values of PFOS, PFBS, and PFHxS were 254, 132, and 9.18 ng/L,
respectively. One study on PFASs in 28 rivers in eastern China showed that the PFAS
concentration ranges were 39–212 ng/L and 0.68–146 ng/L in Shanghai and Zhejiang
Province, respectively [40]. Another study of fluoropolymer facilities showed that PFAS
concentrations ranged from 0.96 to 4534.41 ng/L in nearby rivers [41]. Industrial pro-
cesses involving the use of PFASs are a conspicuous source of PFASs for the environment.
Major downstream industrial users, such as electroplating facilities, have started to use
alternatives [42].

3.4. Ecological Risks of PFASs

Based on the monitoring data of PFASs in this study, PFBA, PFOA, PFBS, PFHxS,
PFOS, and 6:2 Cl-PFESA were the mainly detected PFASs in the river near the electroplating
facilities. The PNEC values of the six typical PFASs were calculated using the QSAR–ICE–
SSD models. The RQ values of the PFASs in this study and in four other electroplating
areas in Guangdong Province in China [43] were then calculated, as listed in Table 5.
The results showed that the six PFASs posed no ecological risks to the river although,
compared with other electroplating areas, the RQ values of PFOA, PFBS, PFOS, and 6:2
Cl-PFESA were higher in this study. Only ecological risks based on acute PNEC values
were calculated due to limited data. However, it has been suggested that PFASs may
have reproductive and growth adverse effects on aquatic organisms [12]. PFASs are
persistent, bioaccumulative, and can be transported long distances, thus causing lasting
damage to the aquatic organism [12]. The ecological risks of PFASs in this study may have
been underestimated.
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Table 5. RQ values (×10−6) of six PFASs in this study and in the literature.

Sample Sites RQ Values PFBA PFOA PFBS PFHxS PFOS 6:2 Cl-PFESA

This Study Range 11.5–60.9 3.25–15.8 9–20 0.23–1.83 15.3–297 5.1–49.8
Mean 29.1 7.26 13.1 0.71 121 19.1

Gaoping [43] Range 2.44–24.1 0.18–2.81 0–0.6 0.04–0.48 0–7.66 0–1.38
Mean 11.1 0.57 0.21 0.23 1.07 0.12

Humen [43]
Range 2.44–42.3 0.53–3.24 0.13–1.24 0–27,000 0–4.41 0–3.82
Mean 24.7 1.42 0.64 9290 1.29 0.39

Boluo [43]
Range 16.2–54.3 0.064–2.99 0–14.9 0–1.87 0–15.6 0–1.26
Mean 24.3 0.76 4.17 0.31 2.03 0.16

Shatian [43]
Range 22–105 0.99–6.98 0.23–4.7 0–0.3 0–6.44 0
Mean 38.9 3.4 1.7 0.2 1.57 0

3.5. Implications and Limitations

It has been shown that there are around 4700 PFASs on the global market [26]. The
development of rapid in silico methods avoiding time-consuming and laborious animal
experiments is necessary. QSAR–ICE–SSD models can be used to derive screening-level
PNEC values in both prospective and retrospective assessments for novel PFASs where
ecotoxicity data are lacking. The acute toxicity data of at least 15 species covering three
trophic levels of an ecosystem can be derived [26]. These data can meet the requirements of
the minimum datasets for the construction of SSD models, improving ecological relevance
and reducing the uncertainty caused by the limited data quantity [3,6,44]. We selected as
much as possible of the acute toxicity data of four model species from a wide range of
PFAS groups (e.g., PFCAs, PFSAs, PFESAs) selected for QSAR modeling. The selected ICE
models were also developed from data containing PFOS. This improved the adaptability
and reliability of the model, reducing the uncertainty caused by the construction of the
models [45]. As mentioned in Section 3.1, Kow was found to be a key molecular descriptor
in predicting aquatic acute toxicity in QSAR modeling. A possible future research direction
could be to identify the role of Kow in QSAR modeling to predict other endpoints (e.g.,
no observed adverse effect level (NOAEL), benchmark dose (BMD) of acute toxicity in
rodents, or in vitro toxicity assays). This can help us understand the MOA of PFASs and
integrate the data between an ERA and a human health risk assessment [46].
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A major limitation of this study was that the acute toxicity data used to develop the
QSAR model for each species was quite limited. Correspondingly, the small data sizes
led to a just passable fitting effect of the QSAR models and limited the use of machine
learning algorithms such as random forest [47,48]. One possible improvement of this issue
is the selection of more acute toxicity data in QSAR modeling from not only PFASs but also
other organic chemicals based on the same MOA [49]. However, this method is based on
a sufficient understanding of the MOA of PFASs, in which further study is needed [26].
Another limitation of the QSAR–ICE–SSD approach was that only acute toxicity data were
used and only acute PNEC values could be derived. Given the current limited availability
of chronic (e.g., growth and reproductive effect) no observed effect concentration (NOEC),
lowest observed effect concentration (LOEC), and 10% effect concentration (EC10) data,
it was not possible to follow our approach to derive chronic PNEC values. Using an
acute-to-chronic ratio to extrapolate the chronic toxicity data for each species is a possible
way; however, it can increase the uncertainty of the data quality [50].

4. Conclusions

In summary, the QSAR–ICE–SSD models predicted the following HC5 values for six
PFASs: 0.804 mg/L (PFBA), 6.27 mg/L (PFOA), 10.1 mg/L (PFBS), 12.9 mg/L (PFHxS),
2.09 mg/L (PFOS), and 0.254 mg/L (6:2 Cl-PFESA). The Σ19PFAS concentrations were
177–983 ng/L in the nearby river of electroplating factories in Shenzhen. The results
indicated that these electroplating factories may not be the source of the PFASs in the
local aquatic environment. The RQ values of the six PFASs ranged from 2.29 × 10−7 to
2.97 × 10−4 in the nearby river.

Supplementary Materials: The following are available online: Supplementary Excel file; Table S1:
PFAS properties and m/z values for quantification; Table S2: The collected acute toxicity of PFASs
to four species for the QSAR models; Table S3: The collected acute toxicity of PFASs for the ICE
models; Table S4: The ICE models used in this study; Table S5: The predicted acute toxicity of PFASs
by QSAR–ICE models; Table S6: The results of the goodness-of-fit tests of the SSD models; Table S7:
The measured acute toxicity of PFOA and PFOS; Figure S1: Liquid chromatography coupled to
hybrid quadrupole-Orbitrap mass spectrometer LC-MS (Q-Exactive) (Thermo fisher scientific, USA)
chromatograms for (A) standard PFASs and their (B) internal standard.

Author Contributions: Conceptualization, writing—original draft preparation, writing—review and
editing, and methodology, J.Z. and M.Z.; investigation and visualization, H.T. and G.Q.; writing—
review and editing and funding acquisition, W.G.; writing—review and editing and funding acquisi-
tion, H.G.; writing—review and editing, supervision, and funding acquisition, J.S. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the Ministry of Science and Technology of the People’s
Republic of China (2018YFC1801603 and 2018YFC1801605), the Science, Technology and Innovation
Commission of Shenzhen Municipality (JCYJ20170817110953833), and the National Natural Science
Foundation of China (No. 21976079 and No. 41977325).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This research was supported by the Center for Computational Science and
Engineering at Southern University of Science and Technology.

Conflicts of Interest: The authors declare no conflict of interest.

Sample Availability: Not applicable.



Molecules 2021, 26, 6574 11 of 12

References
1. Wang, Z.; Cousins, I.T.; Scheringer, M.; Buck, R.C.; Hungerbühler, K. Global emission inventories for C4–C14 perfluoroalkyl

carboxylic acid (PFCA) homologues from 1951 to 2030, Part I: Production and emissions from quantifiable sources. Environ. Int.
2014, 70, 62–75. [CrossRef]

2. United Nations Environment Programme. Eighth Meeting of the Conference of the Parties to the Stockholm Convention.
Available online: http://chm.pops.int/TheConvention/ConferenceoftheParties/Meetings/COP8/tabid/5309/Default.aspx
(accessed on 1 September 2021).

3. United States Environmental Protection Agency. Guidelines for Ecological Risk Assessment. Available online: https://www.epa.
gov/sites/production/files/2014-11/documents/eco_risk_assessment1998.pdf (accessed on 3 January 2020).

4. Salice, C.J.; Anderson, T.A.; Anderson, R.H.; Olson, A.D. Ecological risk assessment of perfluooroctane sulfonate to aquatic fauna
from a bayou adjacent to former fire training areas at a US Air Force installation. Environ. Toxicol. Chem. 2018, 37, 2198–2209.
[CrossRef] [PubMed]

5. Kwak, J.I.; Lee, T.-Y.; Seo, H.; Kim, D.; Kim, D.; Cui, R.; An, Y.-J. Ecological risk assessment for perfluorooctanoic acid in soil using
a species sensitivity approach. J. Hazard. Mater. 2020, 382, 121150. [CrossRef]

6. European Chemicals Bureau. Technical Guidance Document on Risk Assessment. Available online: https://echa.europa.eu/
documents/10162/16960216/tgdpart2_2ed_en.pdf (accessed on 3 January 2020).

7. Grist, E.P.M.; O’Hagan, A.; Crane, M.; Sorokin, N.; Sims, I.; Whitehouse, P. Bayesian and Time-Independent Species Sensitivity
Distributions for Risk Assessment of Chemicals. Environ. Sci. Technol. 2006, 40, 395–401. [CrossRef] [PubMed]

8. Caldwell, D.J.; Hutchinson, T.H.; Heijerick, D.; Anderson, P.D.; Sumpter, J.P. Derivation of an Aquatic Predicted No-Effect
Concentration for the Synthetic Hormone, 17α-Ethinyl Estradiol. Environ. Sci. Technol. 2008, 42, 7046–7054. [CrossRef] [PubMed]

9. Garner, K.L.; Suh, S.; Lenihan, H.S.; Keller, A.A. Species Sensitivity Distributions for Engineered Nanomaterials. Environ. Sci.
Technol. 2015, 49, 5753–5759. [CrossRef] [PubMed]

10. Wheeler, J.R.; Grist, E.P.M.; Leung, K.M.Y.; Morritt, D.; Crane, M. Species sensitivity distributions: Data and model choice. Mar.
Pollut. Bull. 2002, 45, 192–202. [CrossRef]

11. Maltby, L.; Blake, N.; Brock, T.C.M.; Van den Brink, P.J. Insecticide species sensitivity distributions: Importance of test species
selection and relevance to aquatic ecosystems. Environ. Toxicol. Chem. 2005, 24, 379–388. [CrossRef]

12. Ankley, G.T.; Cureton, P.; Hoke, R.A.; Houde, M.; Kumar, A.; Kurias, J.; Lanno, R.; McCarthy, C.; Newsted, J.; Salice, C.J.; et al.
Assessing the Ecological Risks of Per- and Polyfluoroalkyl Substances: Current State-of-the Science and a Proposed Path Forward.
Environ. Toxicol. Chem. 2020, 40, 564–605. [CrossRef]

13. He, J.; Tang, Z.; Zhao, Y.; Fan, M.; Dyer, S.D.; Belanger, S.E.; Wu, F. The Combined QSAR-ICE Models: Practical Application in
Ecological Risk Assessment and Water Quality Criteria. Environ. Sci. Technol. 2017, 51, 8877–8878. [CrossRef]

14. Douziech, M.; Ragas, A.M.J.; van Zelm, R.; Oldenkamp, R.; Jan Hendriks, A.; King, H.; Oktivaningrum, R.; Huijbregts, M.A.J.
Reliable and representative in silico predictions of freshwater ecotoxicological hazardous concentrations. Environ. Int. 2020,
134, 105334. [CrossRef]

15. Zhang, S.; Wang, L.; Wang, Z.; Fan, D.; Shi, L.; Liu, J. Derivation of freshwater water quality criteria for dibutyltin dilaurate from
measured data and data predicted using interspecies correlation estimate models. Chemosphere 2017, 171, 142–148. [CrossRef]
[PubMed]

16. Raimondo, S.; Barron, M.G. Application of Interspecies Correlation Estimation (ICE) models and QSAR in estimating species
sensitivity to pesticides. SAR QSAR Environ. Res. 2020, 31, 1–18. [CrossRef] [PubMed]

17. Escher, B.I.; Hermens, J.L.M. Modes of action in ecotoxicology: Their role in body burdens, species sensitivity, QSARs, and
mixture effects. Environ. Sci. Technol. 2002, 36, 4201–4217. [CrossRef] [PubMed]

18. Dyer, S.D.; Versteeg, D.J.; Belanger, S.E.; Chaney, J.G.; Raimondo, S.; Barron, M.G. Comparison of species sensitivity distributions
derived from interspecies correlation models to distributions used to derive water quality criteria. Environ. Sci. Technol. 2008, 42,
3076–3083. [CrossRef] [PubMed]

19. Wang, T.; Wang, P.; Meng, J.; Liu, S.; Lu, Y.; Khim, J.S.; Giesy, J.P. A review of sources, multimedia distribution and health risks of
perfluoroalkyl acids (PFAAs) in China. Chemosphere 2015, 129, 87–99. [CrossRef]

20. Zhang, H.; Shi, J.; Higashiguchi, T.; Bo, T.; Niu, J. Quantitative determination and mass flow analysis of perfluorooctanesulfonate
(PFOS) and perfluorooctanoate (PFOA) during reversed A2O wastewater treatment process. Acta Sci. Circumstantiae 2014, 34,
872–880.

21. Higashiguchi, T.; Shi, J.; Zhang, H.; Liu, X. Distribution of Perfluorooctanesulfonate and Perfluorooctanoate in Water and the
Sediment in Fenhe River, Shanxi Provice. Environ. Sci. 2013, 34, 4211–4217.

22. Yamazaki, E.; Falandysz, J.; Taniyasu, S.; Hui, G.; Jurkiewicz, G.; Yamashita, N.; Yang, Y.-L.; Lam, P.K.S. Perfluorinated carboxylic
and sulphonic acids in surface water media from the regions of Tibetan Plateau: Indirect evidence on photochemical degradation?
J. Environ. Sci. Health Part A 2016, 51, 63–69. [CrossRef]

23. Jin, X.; Wang, Y.; Jin, W.; Rao, K.; Giesy, J.P.; Hollert, H.; Richardson, K.L.; Wang, Z. Ecological Risk of Nonylphenol in China
Surface Waters Based on Reproductive Fitness. Environ. Sci. Technol. 2014, 48, 1256–1262. [CrossRef]

24. Wang, X.-N.; Liu, Z.-T.; Yan, Z.-G.; Zhang, C.; Wang, W.-L.; Zhou, J.-L.; Pei, S.-W. Development of aquatic life criteria for triclosan
and comparison of the sensitivity between native and non-native species. J. Hazard. Mater. 2013, 260, 1017–1022. [CrossRef]

http://doi.org/10.1016/j.envint.2014.04.013
http://chm.pops.int/TheConvention/ConferenceoftheParties/Meetings/COP8/tabid/5309/Default.aspx
https://www.epa.gov/sites/production/files/2014-11/documents/eco_risk_assessment1998.pdf
https://www.epa.gov/sites/production/files/2014-11/documents/eco_risk_assessment1998.pdf
http://doi.org/10.1002/etc.4162
http://www.ncbi.nlm.nih.gov/pubmed/29691889
http://doi.org/10.1016/j.jhazmat.2019.121150
https://echa.europa.eu/documents/10162/16960216/tgdpart2_2ed_en.pdf
https://echa.europa.eu/documents/10162/16960216/tgdpart2_2ed_en.pdf
http://doi.org/10.1021/es050871e
http://www.ncbi.nlm.nih.gov/pubmed/16433377
http://doi.org/10.1021/es800633q
http://www.ncbi.nlm.nih.gov/pubmed/18939525
http://doi.org/10.1021/acs.est.5b00081
http://www.ncbi.nlm.nih.gov/pubmed/25875138
http://doi.org/10.1016/S0025-326X(01)00327-7
http://doi.org/10.1897/04-025R.1
http://doi.org/10.1002/etc.4869
http://doi.org/10.1021/acs.est.7b02736
http://doi.org/10.1016/j.envint.2019.105334
http://doi.org/10.1016/j.chemosphere.2016.12.046
http://www.ncbi.nlm.nih.gov/pubmed/28013075
http://doi.org/10.1080/1062936X.2019.1686716
http://www.ncbi.nlm.nih.gov/pubmed/31724447
http://doi.org/10.1021/es015848h
http://www.ncbi.nlm.nih.gov/pubmed/12387389
http://doi.org/10.1021/es702302e
http://www.ncbi.nlm.nih.gov/pubmed/18497169
http://doi.org/10.1016/j.chemosphere.2014.09.021
http://doi.org/10.1080/10934529.2015.1079113
http://doi.org/10.1021/es403781z
http://doi.org/10.1016/j.jhazmat.2013.07.007


Molecules 2021, 26, 6574 12 of 12

25. Feng, C.L.; Wu, F.C.; Dyer, S.D.; Chang, H.; Zhao, X.L. Derivation of freshwater quality criteria for zinc using interspecies
correlation estimation models to protect aquatic life in China. Chemosphere 2013, 90, 1177–1183. [CrossRef]

26. Cousins, I.T.; DeWitt, J.C.; Glüge, J.; Goldenman, G.; Herzke, D.; Lohmann, R.; Miller, M.; Ng, C.A.; Scheringer, M.; Vierke, L.;
et al. Strategies for grouping per- and polyfluoroalkyl substances (PFAS) to protect human and environmental health. Environ.
Sci. Process. Impacts 2020, 22, 1444–1460. [CrossRef] [PubMed]

27. Klimisch, H.J.; Andreae, M.; Tillmann, U. A Systematic Approach for Evaluating the Quality of Experimental Toxicological and
Ecotoxicological Data. Regul. Toxicol. Pharm. 1997, 25, 1–5. [CrossRef] [PubMed]

28. Wang, X.; Fan, B.; Fan, M.; Belanger, S.; Li, J.; Chen, J.; Gao, X.; Liu, Z. Development and use of interspecies correlation estimation
models in China for potential application in water quality criteria. Chemosphere 2020, 240. [CrossRef] [PubMed]

29. Taniyasu, S.; Kannan, K.; So, M.K.; Gulkowska, A.; Sinclair, E.; Okazawa, T.; Yamashita, N. Analysis of fluorotelomer alcohols,
fluorotelomer acids, and short- and long-chain perfluorinated acids in water and biota. J. Chromatogr. A 2005, 1093, 89–97.
[CrossRef]
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