
SHORT REPORT Open Access

Identification of novel human adenovirus
candidates using the coxsackievirus and
adenovirus receptor for cell entry
Kemal Mese1, Oskar Bunz1, Sebastian Schellhorn1, Wolfram Volkwein2, Dominik Jung1, Jian Gao1, Wenli Zhang1,
Armin Baiker2 and Anja Ehrhardt1*

Abstract

Background: There are over 100 known human adenovirus (HAdV) types, which are able to cause a broad variety
of different self-limiting but also lethal diseases especially in immunocompromised patients. Only limited
information about the pathogenesis and biology of the majority of these virus types is available. In the present
study, we performed a systematic screen for coxsackievirus and adenovirus receptor (CAR)-usage of a large
spectrum of HAdV types.

Methods: To study receptor usage we utilized a recombinant HAdV library containing HAdV genomes tagged with
a luciferase and GFP encoding transgene. We infected CHO-CAR cells stably expressing the CAR receptor and to
much information with tagged viruses (HAdV3, 14, 16, 50, 10, 24, 27, 37 and 69) and measured luciferase expression
levels 26 and for some viruses (AdV10, − 24 and − 27) 52 h post-infection. As positive control, we applied human
adenovirus type 5 (HAdV5) known to use the CAR receptor for cell entry. For viruses replication studies on genome
level we applied digital PCR.

Results: Infection of CHO-CAR and CHO-K1 cells at various virus particle numbers per cell (vpc) revealed that
HAdV10, 24, and 27 showed similar or decreased luciferase expression levels in the presence of CAR. In contrast,
HAdV3, 14, 16, 50, 37 and 69 resulted in increased luciferase expression levels in our initial screening experiments.
CAR usage of HAdV3, 14, 50, and 69 was not studied before, and therefore we experimentally confirmed CAR usage
for these HAdV as novel viruses utilizing CAR as a receptor. To rule out that replication of HAdV in transduced CHO
cells is responsible for increased transduction rates we performed replication assays on virus genome level, which
revealed that there is no HAdV replication.

Conclusion: In the present study, we screened a HAdV library and identified novel human HAdV using the CAR
receptor. To our knowledge, this is the first description of CAR usage for HAdV 3, 14, 50, and 69.
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Main text
In the clinic, human adenoviruses (HAdV) gained increas-
ing importance. They cause different clinical symptoms
with a wide range of diseases such as conjunctivitis, gastro-
enteritis, pneumonia, and myocarditis. Most threatened
groups are children younger than 5 years and immune-
deficient patients for instance after transplantation. In the
US-military bases HAdV caused pneumonia outbreaks
were reported [1]. Until now over 100 HAdV were

identified (http://hadvwg.gmu.edu/) which are divided into
six species (A-G). Adenoviruses have a size of 65 to 85 nm
in diameter and they belong to the group of non-enveloped
viruses. The capsid consists of 252 capsomeres with an
icosahedral shape. It is comprised of 240 hexon trimers, 12
pentons and 12 fiber proteins protruding from the penton
base. The genome of HAdV is a linear double-stranded
DNA which is approximately 26–46 kbp in length
dependent on the adenovirus type [1]. Adenoviruses are

Fig. 1 Schematic visualization of the screening procedure (a) and results of screening reporter-gene tagged species B and D
adenoviruses on CHO-CAR and CHO-K1 cells (b-j). Cells were infected at various viral particle numbers per cell (vpc) and luciferase expression
levels were measured 26 h post-infection. HAdV3, 14, 16, 50, 10, 24, 27, 37 and 69 (b-j) were analyzed. These experiments were performed in
triplicates, which were pooled for measurement. RLU: relative light units

Mese et al. Virology Journal           (2020) 17:52 Page 2 of 7

http://hadvwg.gmu.edu/


known as pathogens in the clinic but they are also explored
as viral vectors in gene therapeutic applications. Historic-
ally, predominantly HAdV5 was investigated as viral vector,
but it became clear over the past decade that this virus type
displays limitations associated with its seroprevalence and
tropism. Towards that end other than HAdV5 adenovirus
types were explored as gene therapeutic agent. However, it
is crucial to further understand biological features of these
viruses to pursue them in preclinical and clinical studies.
This includes the virus tropism to achieve an effective ther-
apy to cure viral infections but also to develop improved
vectors for gene therapeutic applications [2, 3].
It was shown that for attachment and cell entry HAdV

binds to CD46, heparansulfate, sialic acid, integrins, CD80/
86, desmoglein 2, and CAR presented on the cell surface
[4–11]. CAR is a 46 kda protein which belongs to the

Immunoglobulin (Ig) superfamily and possesses two extra-
cellular immunoglobulin-like domains. The tissue distribu-
tion is not completely understood. Biodistribution analyses
on the level of mRNA revealed that mRNA is present in dif-
ferent organs like brain, heart, intestine, pancreas, lung, liver
and kidney. There is evidence for CAR-mediated virus at-
tachment for HAdV 2, 4, 5, 9, 12, 19, 31, 37, and 41 [12, 13].
However, these studies represent punctual studies and there-
fore we aimed at studying CAR usage of a broad spectrum
of human adenoviruses derived from different species.
We took advantage of a luciferase and GFP tagged HAdV

library, which was generated in our laboratory [14]. The
generated viruses are replication-competent and contain a
monocistronic luciferase and GFP expression cassette in
the adenovirus early region E3, which allows measuring
and visualization of adenovirus transduction efficiencies.

Fig. 2 Screening of HAdV10, 24 and 27 luciferase expressions in CHO-CAR and CHO-K1 at two different time points. Cells were infected
with 100 vpc and harvested at two different time points (26 and 52 h post-infection) with HAdV10 (a), HAdV24 (b), HAdV27 (c). Each experiment
was performed in biological and technical triplicates. RLU: relative light units. For statistical analyses a two-way ANOVA was performed. Displayed
are means + standard deviation. * a-values ≤ 0.05, **, ≤ 0.005*** ≤ 0.0005
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After transduction of cells, luciferase and GFP expression
levels directly correlate with adenovirus transduction effi-
ciencies. Here we screened HAdV3 (species B1), 16 (species
B1), 50 (species B1), 14 (species B2), 10 (species D), 24 (spe-
cies D), 27 (species D), 37 (species D), and 69 (species D)
for CAR usage. Note that for HAdV3, 14, 16, and 50 it was
demonstrated that these viruses utilize CD46 for cell entry
and in addition to CD46 HAdV3 and all members of
HAdV species B can utilize CD80/86 ([10]. HAdV37 was
shown to bind to CD46, sialic acid and CAR [15, 16]. To
our knowledge, there is no information on cell attachment
and binding factors for HAdV 10, 24, 27, and 69. Note that
for HAdV5 it is well established that this virus utilizes CAR
for cell entry, and therefore it was applied as a positive con-
trol in the present study.
Here we explored CHO-CAR cells stably expressing

the human coxsackievirus and adenovirus receptor and
CHO-K1 CAR-negative control cells, which were cul-
tured in DMEM medium (PAN-Biotech GmbH, Aiden-
bach, Germany) with 10% FCS (PAN-Biotech GmbH,
Aidenbach, Germany) and 1% Penicillin/Streptomycin
(PAN-Biotech GmbH, Aidenbach, Germany) using 5%
CO2 at 37 °C. For selection, we added 100 μl G418 (50
mg/ml) to the culture medium of both CHO cell -lines.
Cells were seeded at a density of 3 × 104 per well in 96-
well tissue culture plates in triplicates for each test. After
infection with respective total virus particle numbers per
cell (vpc), all luciferase measurements were performed
26 h post-infection (Fig. 1a).
Initially we performed a first screening based on infec-

tion of CHO-CAR and CHO-K1 cells utilizing all avail-
able viruses. Cells grown in a 96-well plate were infected
with 33, 67, 100, 133, 167 vpc per well and luciferase as-
says were performed. For HAdV derived from species B,
HAdV3, HAdV16, HAdV50 and HAdV14 showed in-
creased virus uptake after infection of CHO-CAR cells
in comparison to CHO-K1 cells (Fig. 1b-e). For species
D viruses, HAdV37 and 69 showed increased uptake into
CHO-CAR cells if directly compared to CHO-K1 cells as
measured by luciferase values 26 h post-infection (Fig.
1i-j). In contrast, after infection with HAdV10, 24, and
27 we measured even lower luciferase values compared
to control cells (CHO-K1), demonstrating that these vi-
ruses fail to use the CAR receptor for cellular uptake
(Fig. 1f-h). With these viruses we performed luciferase
measurements at two different time-points (26 and 52 h
after infection) using 100 vpc, to address the question
whether virus attachment and uptake may take longer
for these viruses. However, this hypothesis could not be
confirmed (Fig. 2a-c) and no conclusive statements
could be obtained. Table 1 summarizes results for all
screened viruses in these initial screening experiments.
For further experiments, we selected out HAdV14, 50,

3 and 69 for which the information on receptor usage is

scarce. These viruses displayed increased cellular uptake
in the presence of the CAR receptor (Figs. 3a-e). In the
following steps, we applied 100 vpc of these viruses and
performed biological and technical triplicates. As posi-
tive control we used AdV5 because it is well established
that this virus utilizes CAR as primary receptor. We
found that all viruses resulted in significantly increased
luciferase expression levels 26 h after infection (Fig. 3a-
e). Since the HAdV69 and 50 showed extremely high lu-
ciferase values 26 h post-infection, we addressed the
question whether these human adenoviruses may repli-
cate in Chinese hamster ovarian (CHO) cells, despite the
species barrier. To address this question we performed a
replication study in CHO-CAR cells by quantifying viral
vector genomes 4 h, 1 day, 2 days and 3 days post-
infection with 100 vpc. Detection of increasing vector
genome copy numbers over time would be a strong indi-
cator for virus replication in CHO cells. To quantify vec-
tor genome copy numbers we used a droplet digital PCR
approach.
Genomic DNA was purified according the instructions

of the producer (NucleoSpin®, MACHEREY-NAGEL,
Germany). For the detection of genome copy numbers
of HAdV50 and HAdV69, droplet digital PCR (ddPCR)
using primers Ad1 (5′-GCC ACG GTG GGG TTT CTA
AAC TT-3′) and Ad2 (5′-GCC CCA GTG GTC TTA
CAT GCA CAT C-3′) according to Heim et al. [17] was
performed. In order to meet the criteria for ddPCR, the
respective probe was slightly modified to Ad_ddPCR_
probe (5′6FAM-TGC ACC AGA /ZEN/ CCC GGG
CTC AGG TAC TCC GA 3’IABkFQ). The total ddPCR
reaction volume was 20 μL, containing 10 μL of ddPCR
supermix for probes (Bio-Rad, Munich, Germany), 400
nM of primers Ad1 and Ad2, 500 nM of probe Ad_
ddPCR_probe, and 2 μL of extracted DNA. Droplets
were generated using 70 μL of droplet generation oil

Table 1 Summary of tested viruses for CAR receptor usage in
the present study. (−) No higher luciferase measurements on
CHO-CAR cells;(+) Low but significant higher luciferase
measurements; (++) Higher luciferase measurements

HAdV (species) CAR receptor usage

3 (B1) +

16 (B1) +

50 (B1) ++

14 (B2) +

5 (C) ++

10 (D) +

24 (D) +/−

27 (D) –

37 (D) +

69 (D) ++
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(Bio-Rad, Munich, Germany) in a QX100 droplet gener-
ator (Bio-Rad,Munich, Germany) and then transferred to
a 96-well plate which was heat-sealed afterwards. PCR
reaction was performed in a T100 PCR thermocycler
using the following temperature profile: 95 °C for 10
min, 60 cycles at 94 °C for 30 s and 59 °C for 2 min, 98 °C
for 10 min. For all steps, a ramp rate of 1 °C/second was

used. Afterwards, droplets were analyzed with the
QX100 droplet reader (Bio-Rad, Munich, Germany) in
combination with Quantasoft software, version
1.7.4.0917 (Bio-Rad, Munich, Germany) and the results
were normalized to 1 ng of extracted DNA. As displayed
in Fig. 3f no vector genome replication is detectable in
CHO-CAR cells and therefore, we could exclude the

Fig. 3 Infection efficiencies for HAdV5, 3, 14, 50 and 69 on CHO-CAR and CHO-K1 control cells and quantification of HAdV50 and
HAdV69 vector genomes over time in CHO-CAR cells. Cells were infected with HAdV3 (a), HAdV14 (b), HAdV5 (c) and HAdV50 (d) and
HAdV69 (e) at 100 viral particle numbers per cell (vpc) and luciferase expression levels were measured 26 h post-infection. As positive control,
HAdV5 was applied and uninfected cells were measured referring to the negative control. For each virus, experiments were performed in
biological and technical triplicates. (f) Quantification of HAdV50 and HAdV69 vector genomes in CHO-CAR cells after 4 h, 1 day, 2 days and 3 days
after infection with 100 vpc using a digital droplet PCR approach. For statistical analyses a student’s t-test was performed. Displayed are means +
standard deviation. * p-values ≤ 0.05, ** ≤ 0.005
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replication of HAdV50 and 69 in CHO cells (Fig. 3f).
We can only speculate for the reasons of high transgene
expression levels of HAdV69 and HAdV50. Possibly
more vector genome copy numbers might enter the nu-
cleus (as compared to other serotypes) which then leads
to increased transgene expression levels.
In summary in our work, we applied a luciferase/GFP-

tagged virus library to study the usage of CAR as an
entry receptor for adenoviruses. Luciferase measure-
ments revealed usage of CAR for HAdV3, 16, 14, 50 and
69, which was not shown before. Interestingly, we ob-
served lower luciferase expression levels in CHO-CAR
cells for HAdV10, 24 and 27, if directly compared to
CHO-K1 cells lacking the receptor. Further investiga-
tions are needed to shed light on this phenomenon.
However, we speculate that there could be a possible
blocking effect of CAR mediated by binding of the virus
to the cellular surface without uptake into the cell. Po-
tentially CAR only captures the virus but cellular import
or downstream processes related to virus trafficking into
the nucleus may be impaired. As described previously
HAdV37 can bind to CAR, but seems to be less import-
ant for virus uptake, which is in concordance with the
literature showing the binding ability of HAdV37 to
CAR-D1 [8, 16]. Note that for HAdV14 there are con-
flicting results regarding the direct comparison virus up-
take into CHO-CAR and CHO-K1 control cells (Fig. 1c
and Fig. 3b) at 100 vpc per cell. Note that there are stud-
ies describing reduced CAR expression on tumor cells
[18, 19] and also reduced CAR expression on infected
hematopoietic cells [20]. In the context of these findings
we believe that results presented in this study utilizing
CHO cells overexpressing CAR are needed, because they
represent an initial screening tool to analyze receptor
usage of adenoviruses.
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