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Abstract: Dipeptidyl peptidase-4 (DPP-4) inhibitors have been reported to play a protective role against
atherosclerosis in both animal models and patients with type 2 diabetes (T2D). However, since T2D is
associated with dyslipidemia, hypertension and insulin resistance, part of which are ameliorated
by DPP-4 inhibitors, it remains unclear whether DPP-4 inhibitors could have anti-atherosclerotic
properties directly by attenuating the harmful effects of hyperglycemia. Therefore, we examined
whether a DPP-4 inhibitor, teneligliptin, could suppress oxidized low-density lipoprotein (ox-LDL)
uptake, foam cell formation, CD36 and acyl-coenzyme A: cholesterol acyltransferase-1 (ACAT-1) gene
expression of macrophages isolated from streptozotocin-induced type 1 diabetes (T1D) mice and T1D
patients as well as advanced glycation end product (AGE)-exposed mouse peritoneal macrophages
and THP-1 cells. Foam cell formation, CD36 and ACAT-1 gene expression of macrophages derived
from T1D mice or patients increased compared with those from non-diabetic controls, all of which
were inhibited by 10 nmol/L teneligliptin. AGEs mimicked the effects of T1D; teneligliptin attenuated
all the deleterious effects of AGEs in mouse macrophages and THP-1 cells. Our present findings
suggest that teneligliptin may inhibit foam cell formation of macrophages in T1D via suppression of
CD36 and ACAT-1 gene expression partly by attenuating the harmful effects of AGEs.
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1. Introduction

Diabetes is associated with an increased risk of atherosclerotic cardiovascular disease, and
half of diabetic patients die from this devastating disorder [1]. Various biochemical pathways are
activated under diabetic conditions, thereby being involved in the development and progression of
atherosclerosis [2,3]. Among them, advanced glycation end products (AGEs), senescent macromolecule
derivatives formed at an accelerated rate under hyperglycemic and oxidative stress conditions, play a
crucial role in atherosclerotic cardiovascular disease of patients with type 1 diabetes (T1D) and type
2 diabetes (T2D) [4–6]. Indeed, AGEs are localized in macrophage-derived foam cells within the
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atherosclerotic lesions and associated with endothelial dysfunction and arterial stiffness, being a
prognostic marker of future cardiovascular events in T1D and T2D patients [7–12].

Accumulation of cholesterol esters and foam cell formation of macrophages are one of the early
characteristic features of atherosclerosis [2,3], which are partly dependent on uptake of oxidized
low-density lipoprotein (ox-LDL) via scavenger receptor CD36 [13] and esterification of free cholesterol
to cholesteryl ester by acyl-coenzyme A: cholesterol acyltransferase-1 (ACAT-1) [13]. Furthermore,
the foam cell formation of macrophages is enhanced under diabetic states [14–16], which could
contribute to the increased risk of macrovascular complications in diabetes [17].

Dipeptidyl peptidase-4 (DPP-4) inhibitors have been known to improve hyperglycemia in T2D
patients by stimulating the incretin effects via suppressing the degradation of incretins, such as
glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) [18]. DPP-4
inhibitors are now one of the widely used drugs for the treatment of T2D patients due to its low
risk of weight gain and hypoglycemia [18]. Recently, DPP-4 inhibitors have been shown to play a
protective role against atherosclerosis in diabetic animal models [17,19] and T2D patients [20–22].
Indeed, we have found that foam cell formation and atherosclerotic lesions of diabetic apolipoprotein
E-deficient mice were significantly increased compared with non-diabetic counterparts, which were
prevented by vildagliptin [17]. Furthermore, an inhibitor of DPP-4, teneligliptin has been shown to
significantly attenuate ox-LDL uptake and foam cell formation of macrophages isolated from obese
T2D mice and patients partly by suppressing CD36 and ACAT-1 expression [14]. However, since T2D
is associated with dyslipidemia, hypertension, and insulin resistance, part of which are ameliorated
by DPP-4 inhibitors [18], it remains unclear whether DPP-4 inhibitors could have anti-atherosclerotic
properties directly by blocking the harmful effects of hyperglycemia or indirectly by ameliorating
these comorbidities. On the other hand, we have previously found that DPP-4 inhibitors suppress
atherosclerotic vascular injury in diabetic animals by inhibiting the deleterious effects of AGEs [18,23–26].
These findings led us to speculate that DPP-4 inhibitors could attenuate atherosclerosis partly by
suppressing the harmful effects of AGEs on macrophages. To address the issue, we examined here
whether teneligliptin could inhibit ox-LDL uptake, foam cell formation, CD36 and ACAT-1 gene
expression of macrophages isolated from streptozotocin-induced T1D mice and T1D patients as well as
AGE-exposed mouse peritoneal macrophages and THP-1 cells.

2. Results

2.1. Characteristics and Laboratory Data of Mice and Humans

Laboratory data of wild-type mice and streptozotocin (STZ)-induced T1D mice are presented in
Table 1. Compared with the wild-type mice, T1D mice exhibited severe hyperglycemia, low body
weight, and few insulin levels with marked elevation of glycated hemoglobin (HbA1c). The area under
the curve of blood glucose during oral glucose tolerance test (OGTT) was significantly higher in T1D
mice than wild-type mice (Table 1).

Table 1. Laboratory characteristics of wild-type mice and streptozotocin-induced type 1 diabetes mice
at 13 weeks old.

Wild-Type Mice T1D Model Mice p-Value

Number 6 6 −

Final body weight (g) 24.3 ± 1.6 20.3 ± 3.2 P < 0.01 F

Food Intake (g/day) 4.5 ± 0.4 4.8 ± 1.0 0.459
SBP (mmHg) 100 ± 16 102 ± 15 0.840
DBP (mmHg) 61 ± 6 65 ± 7 0.302

Total-C (mg/dL) 74 ± 9 86 ± 22 0.592
HDL-C (mg/dL) 40 ± 17 32 ± 15 0.378

Triglycerides (mg/dL) 60 ± 9 82 ± 39 0.205
FBG (mg/dL) 90 ± 8 164 ± 56 p < 0.01 F
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Table 1. Cont.

Wild-Type Mice T1D Model Mice p-Value

Insulin (ng/mL) 0.27 ± 0.08 0.05 ± 0.02 p < 0.001 F

HbA1c (%) 4.3 ± 0.2 7.9 ± 0.5 p < 0.001 F

OGTT-AUC of glucose(mg/dL x hour) 608 ± 36 1150 ± 365 p < 0.005 F

T1D, type 1 diabetes; SBP, systolic blood pressure; DBP, diastolic blood pressure; Total-C, Total cholesterol; HDL-C,
high-density lipoprotein cholesterol; FBG, fasting blood glucose; HbA1c, glycated hemoglobin; OGTT, oral glucose
tolerance test; AUC, Area under the curve. Results are presented as mean values ± SD and analyzed with unpaired
t-test. F p < 0.05 vs. C57BL6/J mice.

Table 2 summarizes the clinical characteristics of five T1D patients and six volunteers. Blood glucose
and HbA1c values were significantly higher in T1D patients than controls. Fasting C-peptide and
stimulated C-peptide levels were dramatically decreased in T1D patients. The number of patients
with simple retinopathy, stage 2–3 diabetic nephropathy, and peripheral artery disease are 1, 2, and 1,
respectively. Two T1D patients received statins for dyslipidemia, while 3 anti-hypertensive agents
for hypertension.

Table 2. Clinical parameters of type 1 diabetes patients and controls.

Controls T1D Patients p-Value

Number (male/female) 6 (5/1) 5 (3/2) 0.251
Age (years) 42 ± 10 58 ± 30 0.25

Duration of diabetes (years) − 11 ± 10 −

Body Weight (kg) 67 ± 8 71 ± 20 0.725
BMI (kg/m2) 23.1 ± 1.3 21.3 ± 3.9 0.318
SBP (mmHg) 114 ± 5 114 ± 10 0.912
DBP (mmHg) 71 ± 7 68 ± 13 0.662

Total-C (mg/dL) 187 ± 7 167 ± 24 0.087
LDL-C (mg/dL) 110 ± 38 92 ± 28 0.11
HDL-C (mg/dL) 52 ± 14 57 ± 20 0.657

Triglycerides (mg/dL) 110 ± 38 90 ± 48 0.465
FBG (mg/dL) 93 ± 3 233 ± 78 p < 0.005 F

HbA1c (%) 5.2 ± 0.4 7.7 ± 0.4 p < 0.001 F

Fasting C-peptide (ng/mL) N.A. 0.16 ± 0.09 −

Stimulated C-peptide (ng/mL) N.A. 0.28 ± 0.25 −

Retinopathy (NDR/SDR/PPDR/PDR) N.A. (4/1/0/0) −

Nephropathy (1/2/3/4/5) N.A. (3/1/1/0/0) −

PAD/none N.A. (1/4) −

Total daily insulin dose (Unit) − 48 ± 36 −

Lipid-lowering drugs (statins/none) (1/5) (2/3) 0.251
Anti-hypertensive

drugs(ARBs/ARBs+CCBs/CCBs/none) (0/0/0/6) (1/1/1/2) 0.176

T1D, type 1 diabetes; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; Total-C,
total cholesterol; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; FBG,
fasting blood glucose; HbA1c, glycated hemoglobin; NDR, no diabetic retinopathy; SDR, simple diabetic retinopathy;
PPDR, pre-proliferative diabetic retinopathy; PDR, proliferative diabetic retinopathy; N.A., not available; −, none;
PAD, peripheral artery disease; ARB, angiotensin II receptor blockers; CCBs, calcium channel blockers. Results
are presented as mean values ± SD and analyzed with unpaired t-test. Categorical variables were compared by
chi-square test. F p < 0.05 vs. controls.

2.2. Teneligliptin Suppressed Foam Cell Formation of Macrophages Isolated from T1D Mice and T1D Patients

We first evaluated the effects of teneligliptin on ox-LDL uptake and foam cell formation of
macrophages isolated from T1D mice and wild-type mice. Immunofluorescent staining showed that
1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate-oxidized-low-density lipoprotein
(Dil-ox-LDL)-positive cells were co-stained with F4/80, a marker of macrophages (Figure 1A–I),
confirming the uptake of ox-LDL into mouse peritoneal macrophages. As shown in Figure 1J,
Dil-ox-LDL uptake into macrophages was significantly increased in T1D mice compared with wild-type
mice, which was completely prevented by the treatment with 10 nmol/L teneligliptin. When the
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foam cell formation of macrophages was evaluated by cholesterol esterification assay using ox-LDL
with [3H]oleate, foam cell formations of macrophages isolated from T1D mice and T1D patients were
significantly increased in comparison with controls, both of which were attenuated by 10 nmol/L
teneligliptin (Figure 1K,L). Furthermore, 10 nmol/L teneligliptin significantly inhibited the up-regulation
of CD36 and ACAT-1 gene expression in macrophages derived from T1D mice and T1D patients
(Figure 1M–P).
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Figure 1. Effects of teneligliptin on oxidized low-density lipoprotein (ox-LDL) uptake, foam cell
formation, and CD36 and ACAT-1 gene expression in macrophages extracted from type 1 diabetes
(T1D) model mice and T1D patients. (A–I) Representative immunofluorescent staining images in the
peritoneal macrophages isolated from wild-type mice and T1D model mice. Dil-ox-LDL staining cells
were in red, and F4/80 expressing cells were in green. Scale bars represent 50 µm. (J) Fluorescence
intensity of Dil-ox-LDL per area. (K) and (L) Foam cell formation was evaluated by the radioactivity of
cholesterol [3H] oleate. (M–P) Gene expression levels of CD36 (M,O) and ACAT1 (N,P) in peritoneal
macrophages isolated from mice and in monocyte-derived macrophages from humans. (J,M–P) are
normalized to the control levels.(A–K,M,N); number = 6 for each group. L, O, and P, number = 6 for
control group. number = 5 for each T1D group. *** p < 0.005, ** p < 0.01.

2.3. Teneligliptin Inhibited ox-LDL Uptake in AGE-exposed Mouse Macrophages and Human
THP-1 Macrophages

We further evaluated the effects of teneligliptin on ox-LDL uptake in AGE-exposed mouse
peritoneal macrophages and human THP-1 cells. As shown in Figure 2A–H, AGE-bovine serum
albumin (AGE-BSA) significantly increased ox-LDL uptake into mouse peritoneal macrophages and
human THP-1 cells compared to non-glycated control BSA, which were completely prevented by
10 nmol/L teneligliptin. In addition, 10 nmol/L teneligliptin completely suppressed the up-regulation
of CD36 and ACAT-1 gene expression in AGE-exposed mouse peritoneal macrophages and human
THP-1 cells (Figure 2I–L).
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Scale bars represent 50 µm for A-C and 100 µm for E-G. (D,H) Fluorescence intensity of Dil-ox-LDL per
area. (I–L) Gene expression levels of CD36 (I,K) and ACAT-1 (J,L) in mouse macrophages and THP-1
cells. (A–C,D,I,J) number = 6 for each group. (E–G,H,K,L) number = 8 for each group. (D,H-L) are
normalized to the control levels. *** p < 0.005, ** p < 0.01, * p < 0.05.

3. Discussion

DPP-4 inhibitors have been shown to play atheroprotective properties in both animal models
and patients with T2D [17,19–22]. Indeed, although large clinical trials with DPP-4 inhibitors did
not reduce the risk of major cardiovascular events [27–30], a couple of clinical papers reported
that DPP-4 inhibitors showed favorable effects on carotid intima-media thickness in T2D patients,
a surrogate marker of atherosclerosis, and sitagliptin use was independently associated with the
lower incidence rates of atherosclerotic cardiovascular disease in subjects with T2D [20–22]. DPP-4
inhibitors not only ameliorate hyperglycemia, but also improve dyslipidemia with modest blood
pressure lowering effects [31–33]. Furthermore, there is an accumulating body of evidence to show
that GLP-1 and GIP have pleiotropic effects on diabetic vessels; GLP-1 and GIP could attenuate
oxidative stress generation, inflammatory reactions, and foam cell formation of macrophages within
the atherosclerotic plaques [34–37], thus playing a protective role against atherosclerosis. Therefore,
it remains unclear whether DPP-4 inhibitors slow the process of atherosclerosis directly via the
improvement of hyperglycemia and related AGE formation, indirectly via the amelioration of comorbid
risk factors, or through the pleiotropic effects of incretins. To address whether the effects of DPP-4
inhibitor are partly independent of these comorbidities associated with T2D and pleiotropic actions
of incretins, we first examined the effects of a DPP-4 inhibitor, teneligliptin on ox-LDL uptake and
foam cell formation of macrophages isolated from STZ-induced T1D mice and T1D patients because
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(1) blood pressure levels and lipid parameters in T1D mice and patients were comparable with those
in controls, (2) body weight, triglycerides, and homeostasis model assessment of insulin resistance
(HOMA-IR), a marker of insulin resistance were higher in the previously published T2D mice models
or patients than controls, (3) there were significant differences of triglycerides and HOMA-IR or fasting
C-peptide between T1D and T2D, and (4) DPP-4 inhibitors did not modulate the effects of incretins on
macrophages in vitro. In other words, we used here macrophages from T1D model mice and patients
to rule out the effects of these comorbidities.

In this study, we found for the first time that teneligliptin at 10 nmol/L significantly blocked
ox-LDL uptake and foam cell formation of macrophages isolated from STZ-induced T1D mice or T1D
patients. Furthermore, teneligliptin significantly inhibited the up-regulation of CD36 and ACAT-1
mRNA levels in macrophages isolated from T1D mice and T1D patients. CD36 is a major scavenger
receptor mediating uptake of ox-LDL into macrophages, whereas ACAT-1 is a rate-limiting enzyme for
the esterification of free cholesterol, which could contribute to macrophage foam cell formation [13].
Therefore, our present observations suggest that teneligliptin could inhibit ox-LDL uptake and foam cell
formation of macrophages in T1D partly via suppression of CD36 and ACAT-1 expression. The present
findings have extended the previous observations showing that DPP-4 inhibitors directly suppressed
foam cell formation of macrophages in vitro partly via inhibition of CD36 [14,38]. The peak plasma
concentration of teneligliptin after oral administration of clinical dose of 20 mg is about 280 nmol/L,
and approximately 20% of the amount of teneligliptin in the blood is a protein-unbound, free form [39].
Therefore, the concentration of teneligliptin (10 nmol/L) with beneficial effects on macrophages
observed here may be comparable to the therapeutic level (less than 50 nmon/L) which is achieved in
the treatment for patients with T2D. Since ox-LDL uptake and foam cell formation are key components
of atherosclerosis [2,3], our present study suggests that teneligliptin may inhibit the progression of
atherosclerosis through its direct pleiotropic effects on macrophages.

We have already reported that teneligliptin significantly reduced ox-LDL uptake, foam cell
formation, CD36/ACAT-1 mRNA levels of macrophages derived from T2D patients and db/db mice,
an animal model of T2D [14]. However, it remains unclear how teneligliptin directly inhibits ox-LDL
uptake and foam cell formation of macrophages. In other words, the mechanisms of action of the
drug are not fully elucidated. Therefore, we examined the effects of teneligliptin on ox-LDL uptake,
CD36 and ACAT-1 gene expression in AGE-exposed mouse peritoneal macrophages and THP-1 cells,
a human macrophage cell line because (1) we have previously shown that DPP-4 inhibitors could
block the harmful effects of AGE in cultured endothelial cells and renal proximal tubular cells [24,40]
and (2) AGE play a central role in atherosclerosis in diabetes [18]. In this study, we found that AGE
mimicked the effects of T1D; AGE significantly increased ox-LDL uptake, CD36 and ACAT-1 gene
expression in mouse macrophages and THP-1 cells, all of which were prevented by the treatment
with 10 nmol/L teneligliptin. Therefore, teneligliptin could suppress the ox-LDL uptake and foam cell
formation of macrophages isolated from T1D mice and patients partly via suppression of deleterious
effects of AGE on macrophages. AGE and macrophages were co-existed within the atherosclerotic
plaques, which were associated with the severity of atherosclerosis [7,8,41]. In addition, circulating and
tissue accumulation levels of AGE were associated with the increased risk of cardiovascular disease in
both diabetic and non-diabetic patients [5,6,10,11,42–46]. These findings further support the clinical
relevance of anti-atherosclerotic effects of teneligliptin in diabetes.

The present study has some potential limitations. First, we examined the atheroprotective role of
teneligliptin only focusing on macrophage foam cell formation in vitro. Second, it is probable that
any of clinical characteristics of T1D patients, including disease duration, age and drug medications,
such as statins and anti-hypertensive agents could have impacted the present findings. Indeed, in this
study, age and sex were not completely matched between T1D cases and controls. Since accumulation
of AGE has been known to progress in a normal ageing process and under diabetic condition, especially
diabetic patients with a long disease history [45], the difference of mean ages of the T1D cases and
controls may influence the present results. In addition, there is a sex disparity in cardiovascular event
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and mortality rates associated with diabetes [47], and therefore the difference of number of male/female
in cases/controls may also affect the ox-LDL uptake and foam cell formation of macrophages. However,
we could not sub-analyze the data because of small number of patients in this study. Third, in order
to avoid the effects of streptozotocin and narrow it down the specific effect of hyperglycemia on
macrophages, we investigated the effects of AGE, a marker of cumulative hyperglycemic exposure
on ox-LDL uptake, CD36 and ACAT-1 gene expression of macrophages derived from non-diabetic
mice. Fourth it would be relevant to see the impact of teneligliptin on ox-LDL, foam cell formation and
CD36/ACAT-1 mRNA levels under normal glycemic conditions. Since teneligliptin is an inhibitor of
DPP-4, which is approved for the treatment of diabetes, we examined here the effects of teneligliptin on
macrophages under diabetic conditions. Fifth, we performed the present experiments at only 1 dose of
teneligliptin (10 nmol/L). It would be interesting to examine the dose-dependent effects of teneligliptin
on macrophages. Sixth, it would be valuable to demonstrate CD36 and ACAT-1 protein levels by
western blotting. However, CD36 and ACAT-1 protein expression levels are functionally correlated with
ox-LDL uptake and foam cell formation of macrophages, respectively. The observation suggests that
these gene expression levels would be correlated with protein levels. Seventh, it would be interesting
to explore other genes, such as interleukin-6 with changing expression levels by teneligliptin through
RNA-sequencing. Eighth, although Xu et al. reported that AGE at supraphysiological concentrations
(300–600 µg/mL AGE-BSA) increased lipid accumulation in macrophages partly by regulating CD36,
scavenger receptor A2, hydroxymethylglutaryl-CoA reductase, ACAT-1, and ATP-binding cassette
transporter G1 [48], we provided here a new line of following evidence; concentration of AGE
(100 µg/mL AGE-BSA), which is comparable with that of in vivo-diabetic situation [49,50], actually
stimulated ox-LDL uptake of macrophages via CD36 and ACAT-1 expression, which is a molecular
target for atheroprotective properties of teneligliptin. Ninth, intraperitoneal administration of AGE-BSA
has been reported to impair glucose tolerance in mice in association with decrease in acute insulin
secretion [51], AGE may augment foam cell formation of macrophages by further deteriorating
hyperglycemia. Specifically, the salient findings of our present study are that teneligliptin at a
therapeutic level inhibited foam cell formation of macrophages by suppressing the harmful effects of
AGE, whose concentration is also comparable with that of diabetic conditions. In any case, further
clinical studies should be needed to clarify whether DPP-4 inhibitors could inhibit foam cell formation
of macrophages and resultantly reduce the risk of cardiovascular events in patients with diabetes.

4. Materials and Methods

4.1. Animal Experiments

STZ was purchased from Sigma–Aldrich (St. Louis, MO, USA) and a DPP-4 inhibitor teneligliptin
was generously gifted by Tanabe Mitsubishi Pharma (Tokyo, Japan). Animal experiments were
conducted under strict accordance with the recommendations in the Guide for the Care and Use of
Laboratory Animals [52]. The study design was approved by the Animal Care Committee of Showa
University (permission number: 07005). All surgeries and sacrifices were performed under general
anesthesia using isoflurane and with efforts to minimize the suffering.

A total of 12 male C57BL/6J (wild-type) mice at 7 weeks old were purchased from Sankyo Labo
Service (Tokyo, Japan), kept on a standard rodent chow (Labo MR Stock, NOSAN, Yokohama,
Kanagawa, Japan) with free access to water, and housed within a specific pathogen-free facility in
the Division of Animal Experimentation of Showa University School of Medicine. The rooms were
controlled under a 12-h dark/light cycle, 21 ◦C temperature, and 40–60% humidity. At 8 weeks old,
the mice received intraperitoneal injections of saline or STZ (50 mg/kg/day) for 5 consecutive days
to create a T1D model mouse, as previously described [17]. All mice showed FBG levels higher than
200 mg/dL, and were used in the present experiments as T1D model mice. All mice did not show any
clinical signs, including severe weight loss by more than 20% from the baseline or obvious weakness.
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At 13 weeks old, blood samples were collected, and peritoneal macrophages were extracted from mice
after intraperitoneal injection of thioglycolate broth as previously described [14,17,31,36,37].

4.2. Measurements of Laboratory Parameters in Mice

Blood samples collected after a 12-h fast were used for the analysis of biochemical analysis. Systolic
and diastolic blood pressures (SBP and DBP) were measured, and FBG, HbA1c, total cholesterol
(Total-C), high-density lipoprotein cholesterol (HDL-C), triglycerides, and insulin levels were measured,
and OGTT was performed as previously described [14,17].

4.3. Experiments of Human Macrophages

The study protocol was approved by the Ethics Committee of Showa University School of Medicine
(Tokyo, Japan; approval number: 2799). Written informed consent was obtained from all T1D patients
and healthy volunteers. The study was designed in compliance with the Declaration of Helsinki.

Five patients with uncontrolled T1D despite multiple daily insulin injections over≥12 weeks and six
controls were enrolled in the present study. Blood samples were collected, and human monocyte-derived
macrophages were isolated using anti-CD14 antibody-conjugated magnetic microbeads (Miltenyi
Biotec, Auburn, CA, USA) as previously described [14].

4.4. Measurements of Clinical Parameters in Humans

Body mass index (BMI), SBP and DBP were measured and FBG, HbA1c (NGSP), LDL-C, HDL-C,
triglycerides, fasting C-peptide and the 6-min value of C-peptide after glucagon (1 mg) stimulation
test (stimulated C-peptide) were measured by standard methods as described previously [53].

4.5. Preparation of AGE-BSA

AGE-BSA was prepared as previously described [54]. In brief, BSA (25 mg/mL) was incubated
under sterile conditions with 0.1 M glyceraldehyde in 0.2 M NaPO4 buffer (pH 7.4) for 7 days. Control
non-glycated BSA was incubated in the same conditions except for the absence of reducing sugars.

4.6. Differentiation of THP-1 Macrophages

A human monocytic cell line, THP-1 cells were maintained in RPMI 1640 medium with 10% fetal
bovine serum. The cells were seeded onto 3.5-cm dishes (1.0 × 106 cells/dish) and incubated with
phorbol 12-myristate 13-acetate (40 ng/mL; Sigma–Aldrich, St. Louis, MO, USA) for 24 h to differentiate
macrophages [55].

4.7. Immunofluorescent Staining of Mouse Macrophages and THP-1 Macrophages

Peritoneal macrophages isolated from wild-type mice and T1D model mice, or THP-1 macrophages
were incubated with or without 100 µg/mL AGE-BSA or 100 µg/mL non-glycated BSA for 24 h, and
then treated with 10 µg/mL Dil-ox-LDL in the presence or absence of 10 nmol/L teneligliptin for 18 h.
After washing, they were mounted in Vectashield mounting medium (H-1500, Vector Laboratories,
Burlingame, CA, USA) and were imaged with BZ-X710 microscope/software (Keyence, Osaka, Japan)
as previously described [14].

4.8. Cholesterol Esterification Assay in Macrophages Isolated from Mice and Humans

Cholesterol esterification assay was conducted as previously described [14,17,31,36,37]. In brief,
peritoneal macrophages isolated from wild-type mice and T1D model mice or human monocyte-derived
macrophages from T1D patients and controls were incubated with 10 µg/mL ox-LDL and 0.1 mmol/L
[3H]oleate for 18 h in the presence or absence of 10 nmol/L teneligliptin [14]. Cellular lipids were
extracted and the radioactivity of cholesterol [3H]oleate was determined by a thin-layer chromatography.
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4.9. Gene Expression Levels in Macrophages Isolated from T1D Mice and T1D Patients and in
AGE-Exposed Cells

Peritoneal macrophages isolated from wild-type and T1D model mice, monocyte-derived
macrophages from T1D patients and controls, or THP-1 macrophages were treated with or without
100 µg/mL AGE-BSA or 100 µg/mL non-glycated BSA for 24 h, and then incubated with or without
10 nmol/L teneligliptin for 18 h [14]. Total RNA was isolated with QIAGEN reagents (Hilden, Germany),
and gene expression was analyzed by real-time reverse-transcription polymerase chain reactions using
the TaqMan gene expression assay and a sequence detection system (ABI PRISM 7900, Life Technologies,
Thermo Fischer Scientific, Pleasanton, CA, USA) as previously described [14]. The pre-designed
TaqMan probe sets used in mice were as follows: Cd36, Mm01135198_ml; Acat-1, Mm00507463_ml;
glyceraldehyde-3-phosphate dehydrogenase (Gapdh), Mm03302249_g1. Human probes were as follows:
Cd36, Hs00169627_ml; Acat-1, Hs01009746_ml; Gapdh, Hs99999905_ml.

4.10. Statistical Analysis

Values were expressed as mean ± standard deviation. Statistical analyses were performed by
unpaired t-test to compare two groups and analysis of variance (ANOVA) to compare multiple
groups followed by appropriate multiple comparison tests. Categorical variables were compared by
chi-square test. All analyses were performed by PRISM 7.0 software (GraphPad, San Diego, CA, USA).
The significance level was defined as p < 0.05.

5. Conclusions

The present study suggests that teneligliptin could inhibit foam cell formation of macrophages in
T1D via suppression of CD36 and ACAT-1 gene expression partly by attenuating the harmful effects
of AGEs.
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