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Serum integrative omics reveals the landscape
of human diabetic kidney disease
Shijia Liu 1,2, Yuan Gui 3, Mark S. Wang 3, Lu Zhang 1, Tingting Xu 1, Yuchen Pan 4,5, Ke Zhang 6,7, Ying Yu 6,8,
Liangxiang Xiao 6,9, Yi Qiao 10, Christopher Bonin 11, Geneva Hargis 11, Tao Huan 12, Yanbao Yu 13,
Jianling Tao 14, Rong Zhang 15, Donald L. Kreutzer 10, Yanjiao Zhou 11, Xiao-Jun Tian 15, Yanlin Wang 3,
Haiyan Fu 6,16, Xiaofei An 1,17,***, Silvia Liu 6,**, Dong Zhou 3,*
ABSTRACT

Objective: Diabetic kidney disease (DKD) is the most common microvascular complication of type 2 diabetes mellitus (2-DM). Currently, urine
and kidney biopsy specimens are the major clinical resources for DKD diagnosis. Our study proposes to evaluate the diagnostic value of blood in
monitoring the onset of DKD and distinguishing its status in the clinic.
Methods: This study recruited 1,513 participants including healthy adults and patients diagnosed with 2-DM, early-stage DKD (DKD-E), and
advanced-stage DKD (DKD-A) from 4 independent medical centers. One discovery and four testing cohorts were established. Sera were collected
and subjected to training proteomics and large-scale metabolomics.
Results: Deep profiling of serum proteomes and metabolomes revealed several insights. First, the training proteomics revealed that the
combination of a2-macroglobulin, cathepsin D, and CD324 could serve as a surrogate protein biomarker for monitoring DKD progression. Second,
metabolomics demonstrated that galactose metabolism and glycerolipid metabolism are the major disturbed metabolic pathways in DKD, and
serum metabolite glycerol-3-galactoside could be used as an independent marker to predict DKD. Third, integrating proteomics and metab-
olomics increased the diagnostic and predictive stability and accuracy for distinguishing DKD status.
Conclusions: Serum integrative omics provide stable and accurate biomarkers for early warning and diagnosis of DKD. Our study provides a rich
and open-access data resource for optimizing DKD management.

� 2021 The Author(s). Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. INTRODUCTION

Diabetes mellitus (DM) affects 463 million people worldwide and this
number may increase to 700 million by 2045 [1]. The increasing
prevalence of DM is associated with many factors such as de-
mographic, socioeconomic, environmental, and genetic factors [2,3].
Society has made robust efforts to establish effective DM management
systems. However, preventing the incidence of DM complications,
such as damage to kidneys and other organs, remains an issue.
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Diabetic kidney disease (DKD) is the most common microvascular
complication of type 1 and type 2 DM [4]. Surpassing glomerulone-
phritis, DKD has become the leading cause of chronic kidney disease
(CKD) and end-stage renal disease (ESRD) [5,6]. Progression of DM to
DKD and ESRD is considered inevitable even when glucose is
controlled [7]. Despite the progess made in this field, many aspects of
DKD pathogenesis have not been addressed. For instance, in 2-DM
patients, it’s unclear whether the current gold-standard marker
microalbuminuria or urine albumin-to-creatinine ratio (UACR) are the
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Abbreviations

DKD Diabetic kidney disease
CKD Chronic kidney disease
ESRD End-stage renal disease
UACR Urine albumin-to-creatinine ratio
KDIGO Kidney disease improving global outcomes
a2-M a2-macroglobulin
FABP1 Fatty acid binding protein 1
PLTP Phospholipid transfer protein
SHBG Sex hormone-binding globulin
TIMP-1 Tissue inhibitor matrix metalloproteinase 1
PLS-DA Partial least squares discriminant analysis
LDA Linear discriminant analysis

SVM Support vector machine
RF Random forest
Logi Logistic regression
ROC Receiver operating characteristic
AUC Area under the curve
DAG Diacylglycerol
GT Galactosyltransferase
Gly3P Sn-glycerol-3-phosphate
GK Glycerol kinase
TAG Triacylglycerol
LPA 1-Acyl-sn-glycerol-3-phosphate
PA 1,2-Diacyl-sn-glycerol-3-phosphate
PAP Phosphatidate phosphatase

Original Article
ideal parameters for monitoring DKD onset. It is also unknown whether
pathological factors or biological processes in the circulation would
help predict DKD progression from early to advanced stages, as
physicians are challenged with differentiating true DKD, non-DKD, and
a mixed form of DKD [8]. A meta-analysis of 48 studies revealed that
non-DKD is highly prevalent in DM patients. The probability of an
inaccurate DKD diagnosis reaches 49.2% if based on clinical infor-
mation alone [9]. Therefore, rigorous and unbiased evidence from
high-throughput analyses of multiple biological domains, including the
genome, proteome, and metabolome, may be needed for precise DKD
diagnosis and intervention.
Remarkable developments have been made in our capabilities to
analyze omics data in large patient populations. Compared with ge-
nomics, proteomics and metabolomics have the potential to provide
novel mechanistic insights into DKD progression [10,11]. Proteomics is
a powerful approach for broadly profiling proteins [12], and metab-
olomics can broadly identify metabolites [13]. While combining these
analyses could enhance DKD diagnosis, this remains untested. To this
end, we integrated proteomics and metabolomics to identify bio-
markers and evaluate their diagnostic values for DKD. This prospective
study provides a rich, open-access resource that supports further
mining of the metabolic changes in DKD patients.

2. METHODS

Detailed methods are provided in the Supplemental Methods and
Materials. This clinical trial was registered in the Chinese Clinical Trial
Registry (ChiCTR2000028949). It was conducted in compliance with
the principles of the 1975 Declaration of Helsinki and was approved by
the Ethics Committees of the Affiliated Hospital of Nanjing University of
Chinese Medicine (2019NL-109-02). All participants signed the con-
sent forms to allow the extra samples to be used for academic
purposes.

3. RESULTS

3.1. Cohort characteristics, sample collection, and multiple
measures
To ensure rigor, we invited the participation of four independent
medical centers: one primary center (N.J.) and three subcenters (C.S.,
T.J., and X.M.). In each center, according to the albuminuria category
classified by the Kidney Disease: Improving Global Outcomes (KDIGO)
Diabetes Work Group [14], four candidate/patient groups were
enrolled: healthy control (HC), 2-DM (UACR＜30 mg/g), early-stage
DKD (DKD-E, 30�UACR�300 mg/g), and advanced-stage DKD
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(DKD-A, UACR＞300 mg/g). All recruited 2-DM patients were clinically
diagnosed for �10 years. Participants recruited from the primary
center (N.J.) were designated the discovery cohort; 1,102 total in-
dividuals were included. As a prospective study, we set up an internal
testing cohort at the primary center; 174 total candidates were
included. Serum samples were collected from all individuals. Mean-
while, 237 participants were recruited from three subcenters, C.S.,
T.J., and X.M., and designated as three independent external testing
cohorts (C.S. has HC cases). Demographic and clinical characteristics
of the discovery and testing cohorts were collected (Table 1 and
Supplementary Table S1). The discovery cohort comprised 513 fe-
males and 589 males, 20e75 years old, with body mass index (BMI) in
the 16.22e40.7 kg/m2 range. There were no significant differences in
the levels of hemoglobin A1c (HbA1c), blood glucose, cholesterol,
triglycerides, high-density lipoprotein, and low-density lipoprotein
between patients (Table 1), but DKD-A patients had a significantly
decreased estimated glomerular filtration rate (eGFR), and elevated
blood urea nitrogen levels, serum creatinine, and urinary albumin
versus 2-DM and DKD-E patients.
We applied a multi-omics approach to identify biological markers in the
blood of 2-DM and DKD patients (Figure 1). First, we randomly selected
30 serum samples in each group from the discovery cohort and used
proteomics to identify the protein biomarkers of DKD. Second, we
measured metabolites across the discovery cohort, and validated
findings in the internal testing and three external testing cohorts. We
then used the proteome or metabolome identified by differential
expression analyses in the discovery cohort to train machine learning
models, which were applied to the testing cohorts for predicting DKD
status. Finally, we performed integrative analyses combining prote-
omics and metabolomics data. This analysis highlighted the potential
biomarkers for the clinical diagnosis of DKD and the pathways involved
in the onset and progression of DKD.

3.2. Proteomics deciphered DKD progression in 2-DM patients
For an unbiased understanding of the underlying molecular de-
terminants that modulate the onset and progression of DKD in circu-
lation, we first performed a training, global-scale serum proteomic
analysis. For each group, 30 serum samples were randomly selected.
Sets of 10 serum samples were then mixed into 1 loading sample,
resulting in 3 loading samples per group (Figure 2A). In total, 1,187
proteins were quantified across all 12 loading samples (4 groups).
After pre-processing and missing value filtering, 581 proteins were
used for further analysis (Supplementary Table S2). To define proteins
altered in response to the change from HC to DKD, differential
expression analysis was performed on all the pairwise comparisons
his is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1: Summary of the study design and cohort details. This clinical study recruited 1,513 participants from four independent medical centers, which includes 503 HC, 593
2-DM, 230 DKD-E, and 187 DKD-A patients in one discovery and four testing cohorts. Sera were collected and subjected to training proteomics and large-scale metabolomics. HC:
healthy control; 2-DM: type 2 diabetes mellitus; DKD-E: early-stage diabetic kidney disease; DKD-A: advanced-stage diabetic kidney disease.

Table 1 e Demographic Characteristics of the Participants for Metabolomics (Discovery Cohort).

HC 2-DM DKD-E DKD-A

Age (Years) 33.24 � 9.08 54.88 � 10.28 54.50 � 11.30 59.62 � 9.30
Gender (F/M) 259/182 166/280 59/62 29/65
Body Mass Index (kg/m2) 21.67 � 3.58 25.34 � 3.4 26.13 � 3.82 26.15 � 3.67
Hemoglobin A1c (%) n/a 8.30 � 2.00 9.26 � 2.29 8.00 � 2.06
eGFR (ml/min/1.73m2) n/a 99.29 � 14.64 100.18 � 19.03 40.34 � 29.97
Lp-PLA2 (mg/L) n/a 106.55 � 36.49 97.74 � 34.76 125.66 � 61.91
Albumin (g/L) 44.02 � 3.65 39.03 � 3.10 38.86 � 3.56 31.30 � 4.54
Blood Urea Nitrogen (mg/dL) 6.48 � 20.41 6.65 � 1.67 6.87 � 2.10 14.91 � 7.92
Serum Creatinine (mmol/L) 67.11 � 13.09 66.78 � 15.95 63.92 � 19.22 244.78 � 189.79
Glucose (mmol/L) 4.85 � 0.41 7.46 � 2.82 9.01 � 3.81 7.13 � 3.35
Uric Acid (mg/dL) 276.64 � 68.30 301.51 � 92.31 302.79 � 98.42 444.39 � 126.99
Cholesterol (mmol/L) 4.43 � 1.12 4.40 � 1.19 4.63 � 1.23 4.83 � 1.95
Triglycerides (mmol/L) 1.03 � 1.34 2.10 � 2.59 2.45 � 2.60 2.11 � 1.52
High-density Lipoprotein (mmol/L) 1.59 � 0.3 1.44 � 3.82 1.26 � 0.33 1.30 � 0.41
Low-density Lipoprotein (mmol/L) 2.50 � 0.43 2.95 � 0.95 3.24 � 1.04 3.07 � 1.49
Urine Creatinine (mmol/L) n/a 9453.14 � 3853.35 7721.95 � 4642.14 4973.57 � 2694.35
Albumin to Creatinine Ratio (mg/g) n/a 13.47 � 9.78 63.79 � 46.99 2597.68 � 1896.45
Fasting C-peptide (ng/mL) n/a 1.55 � 0.93 1.49 � 1.04 1.72 � 1.00
Fasting Insulin (mU/mL) n/a 12.25 � 11.98 17.23 � 16.28 11.63 � 7.75
(Supplementary Figure S1). Based on pairwise two-sample t-tests, 47
proteins were identified across four groups (Figure 2B), which were
grouped into four clusters by Euclidean distance matrix hierarchical
clustering based on the protein expression. Each group was graphed
by average expression across the four disease subtypes. (Figure 2, Ce
F). We also marked differentially expressed proteins on the volcano
plots of pairwise comparisons within HC, 2-DM, DKD-E, and DKD-A
groups (Figure 2, GeK). Ingenuity pathway analysis (IPA) indicated
that these differentially expressed proteins are involved in liver X
MOLECULAR METABOLISM 54 (2021) 101367 � 2021 The Author(s). Published by Elsevier GmbH. This is an open
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receptor/retinoid X receptor (LXR/RXR) activation, farnesoid X receptor/
retinoid X receptor (FXR/RXR) activation, and acute phase response
signaling (Supplementary Figure S1). These proteins were pooled for
pathway analysis, the top six pathways were selected (Figure 2L), and
the involved proteins were defined as nodes. Interestingly, it was
observed that among these pathways, activation of LXR/RXR signaling
inhibits cell proliferation and induces apoptosis in pancreatic b-cells.
To test whether these proteins could determine DKD status, eight
significant proteins were validated by enzyme-linked immunosorbent
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 3
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Figure 2: Proteomics deciphered the status of DKD. (A) Working pipeline for proteomics data collection from the participants. (B) Heatmap for biomarker detection from the
proteomics data. Each row represents a protein marker, and each column represents a loading sample across the four groups, including HC, 2-DM, DKD-E, and DKD-A. Protein
markers are grouped into four clusters via hierarchical clustering. (CeF) Protein expression corresponding to the four clusters shown in Figure 1B. The four clusters showed out-
down, up-flat, up, and down-up patterns, respectively. (GeK) Volcano plots of the proteomics data for each pairwise comparison. The x-axis is log2 fold-change and the y-axis
represents the minus log10 p-value. Overexpressed and underexpressed proteins are marked with red and blue colors, respectively. (L) Network plot illustrating the enriched
pathways detected by the differentially expressed proteins. Each node represents a protein, and the proteins are connected by their involved pathways. (M) Partial least squares
discriminant analysis based on the ELISA markers. (N) Violin plots illustrate the concentration of a2-macroglobulin, cathepsin D, and CD324 in each group by ELISA. (OeS)
Receiver operating characteristic (ROC) curves for each pairwise prediction by four different machine learning methods. Redline for linear discriminant analysis (LDA), blue line for
support vector machine (SVM), orange line for random forest (RF), and green line for logistic regression (Logi). AUC: the area under the curve; Accu: accuracy; Youd: Youden index.
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assay (ELISA): adiponectin, a2-macroglobulin (a2-M), cathepsin D,
CD324, fatty acid binding protein 1 (FABP1), phospholipid transfer
protein (PLTP), sex hormone-binding globulin (SHBG), and tissue in-
hibitor matrix metalloproteinase 1 (TIMP-1). These markers were
tested in 88 participants (HC ¼ 23, 2-DM ¼ 23, DKD-E ¼ 20, and
DKD-A ¼ 22) from the discovery cohort across the four groups
(Supplementary Table S3). Partial least squares discriminant analysis
(PLS-DA) revealed that these eight proteins could differentiate the four
groups (Figure 2M). Expression levels and frequency distributions of
each protein were compared across all groups (Figure 2N and
Supplementary Figure S2), and the panel of a2-M, cathepsin D, and
CD324 showed strong differential patterns across the four groups. We
then used these three markers to predict DKD stages: a 5-fold cross-
validation was performed on all pairwise predictions and four machine
learning algorithms were employed: linear discriminant analysis (LDA),
support vector machine (SVM), random forest (RF), and logistic
regression (Logi). The receiver operating characteristic (ROC) curves
revealed that these three markers could predict HC versus 2-DM, DKD-
E, or DKD-A, 2-DM versus DKD-A, and DKD-E versus DKD-A, as well
as balance the sensitivity and specificity rates (Youden index) (Figure 2,
OeS). Together, our proteomic analyses and validation data suggest
Figure 3: Detection of differentially expressed metabolites by pairwise comparison
Representative box plots for the top downregulated metabolites. (KeO) Partial least squa
significant functional pathways involved according to the differentially expressed metabol
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that a2-M, cathepsin D, and CD324 represent a potentially valuable
biomarker panel for monitoring DKD progression. However, accurately
differentiating 2-DM and DKD-E remained a challenge (Supplementary
Figure S3).

3.3. Pairwise comparison of differentially expressed metabolites in
serum
Considering that DKD is a common metabolic disease, we hypothesize
that serum metabolite profiles will reflect the DKD status more directly
and accurately than current methods. To test this, we performed
metabolomics analysis, which identified 349 serum metabolites. After
removing exogenous metabolites identified by the untargeted database
of GCeMS from Lumingbio, 207 metabolites were further analyzed.
We then measured the metabolite intensities across 1,102 patients in
all four groups in the discovery cohort.
To identify differentially expressed metabolites by pairwise compari-
sons, a non-parametric Wilcoxon rank-sum test was performed on
each metabolite (Supplementary Figures S4eS8 and Supplementary
Table S4). Analysis of the top up- and down-regulated metabolites
per comparison (Figure 3, AeJ), identified lactic acid, glycerol-3-
galactoside, meso-erythritol, D-(þ)-xylose, glyceric acid, and (þ-)3-
of DKD status. (AeE) Representative box plots for top upregulated metabolites. (FeJ)
res discriminant analysis based on the differentially expressed metabolites. (PeT) Top
ites.
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methyl-2-oxovaleric acid. As a glycerolipid synthesis metabolite,
glycerol-3-galactoside levels could reflect changes in glycerolipid
synthesis. Also, 3-methyl-2-oxovaleric acid, a 2-oxo monocarboxylic
acid, is a clinical marker for maple syrup urine disease [15]. We then
applied a PLS regression analysis to these metabolites and found that
they could effectively separate pairwise groups (Figure 3, KeO).
We then performed pathway analyses to determine the biological
significance of these metabolites in 2-DM and DKD. We generated
bubble plots to illustrate the top significant pathways enriched by these
biomarkers for each pairwise comparison (Figure 3, PeT). For HC
versus 2-DM, metabolism changed for pentose and glucuronate in-
terconversions, glycerolipid, and galactose; for HC versus DKD-E,
glycerolipid metabolism changed; for HC versus DKD-A, glycerolipid
metabolism, pentose, and glucuronate interconversions, and purine
metabolism changed; for 2-DM versus DKD-A, arginine biosynthesis,
starch and sucrose, and pentose and glucuronate interconversions
changed; for DKD-E versus DKD-A, arginine biosynthesis, starch and
sucrose metabolism, pentose and glucuronate interconversions, and
Figure 4: Metabolite biomarker identification of DKD. (A) Hierarchical clustering of diff
group are presented in the heatmap. (B) Partial least squares discriminant analysis of t
metabolites. (D) Network analysis based on the differentially expressed metabolites. Eac
metabolites. The metabolites highlighted are further grouped into metabolism pathways.
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galactose metabolism changed. Our analyses clearly indicate that
glycerolipid metabolism, pentose and glucuronate interconversions,
and galactose metabolism were the most affected pathways.

3.4. Correlation network of differential metabolites in serum
To explore the impact of metabolite alterations in response to
different stages of DKD, pathway and network analyses were per-
formed. Figure 4A shows the median expression of the 58 differ-
entially expressed metabolites in the HC, 2-DM, DKD-E, and DKD-A
groups. These biomarkers were generally split into two groups. In the
first group, 40 metabolites showed comparatively lower expression in
HC, 2-DM, and DKD-E but higher intensities in DKD-A patients. In the
second group, 18 metabolites showed a reversed pattern, with higher
expression in HC and DKD-E patients but lower expression in DKD-A
patients. These metabolites were further analyzed by PLS-DA, which
indicated that the four groups could be successfully separated,
especially the HC and DKD-A patients (Figure 4B). The pathway
analyses revealed that pentose and glucuronate interconversions,
erentially expressed metabolites. The median expression levels of metabolites for each
he four groups. (C) Top significant pathways detected by the differentially expressed
h node represents a metabolite, and the edges indicate the correlations between the
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galactose metabolism, and glycerolipid metabolism were ranked at
the top (Figure 4C). Consistently, our network analyses showed that
many key metabolites linked to 2-DM and DKD development,
including glycerol, glyceric acid, galactose, D-(�)-fucose, sucrose,
and glucose-1-phosphate, were significantly altered across the four
groups (Figure 4D).

3.5. Machine learning for pairwise predictions of DKD from the
expression of metabolites in serum
To verify the values of the identified metabolites in predicting DKD
status, five machine learning algorithms were employed: LDA, SVM,
RF, Logi, and partial least squares discriminant analysis (PLS-DA). We
Figure 5: Prediction of the DKD status via machine learning algorithms of the metab
prediction by five different machine learning methods. (FeJ) Top prediction features selecte
random forest algorithm. The best cutoff was trained from the discovery cohort and appl
Validation; Ext. Val. ¼ External Validation.

MOLECULAR METABOLISM 54 (2021) 101367 � 2021 The Author(s). Published by Elsevier GmbH. This is an open
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generated ROC curves from a 5-fold cross-validation for all pairwise
predictions in the discovery cohort, and determined prediction accu-
racies of 75% in HC versus 2-DM, 82% in HC versus DKD-E, 93% in HC
versus DKD-A, 90% in 2-DM versus DKD-A, and 84% in DKD-E versus
DKD-A (Figure 5, AeE). As the five algorithms showed similar per-
formance, RF was chosen to illustrate the results. In the RF model, the
“importance” measurement is an evaluation of how the features
(metabolites) can decrease the impurity in the tree splitting, where
features with a higher importance score indicate a stronger contri-
bution of the metabolites in the prediction model. We then ranked the
metabolites by their importance/impurity scores for each pairwise
prediction, and the top 10 are shown in Figure 5, FeJ. Compared with
olomics data. (AeE) Receiver operating characteristic (ROC) curves for each pairwise
d by random forest impurity measurements. (KeO) Prediction probabilities based on the
ied to testing cohorts for prediction. Dis. Coh. ¼ Discovery Cohort; Int. Val. ¼ Internal
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HC, D-(þ)-xylose, glyceric acid, and lactic acid were the top 3 me-
tabolites in 2-DM patients without kidney injury (Figure 5, FeJ). These
metabolites directly reflected the dysregulation of glucose and lipid in
2-DM patients. On entering DKD, glycerol-3-galactoside and glucose-
1-phosphate predicted kidney injury. Significantly, glycerol-3-
galactoside was one of the top features in all pairwise predictions
for DKD-E patients, while glucose-1-phosphate was for DKD-A pa-
tients. We also generated a binary split tree by applying all the patients
in the discovery cohort to train one model (Supplementary Figures S9
and S10).
Besides the discovery cohort in the primary center, we measured the
metabolite expression in the internal cohort and three external testing
cohorts. For each pairwise prediction, classifiers trained from the
discovery cohort were applied to these testing cohorts to evaluate
model performance. Dot plots illustrate the probabilities of RF pre-
diction on each patient across the discovery and testing cohorts, where
the dashed-line cutoff indicates the binary split of the prediction
(Figure 5, KeO). All prediction results in the testing cohorts are shown
in Supplementary Table S5. Based on the highest prediction probability
of the ROC in the discovery phase, the optimal cutoff values were
0.498 for HC versus 2-DM, 0.433 for HC versus DKD-E, 0.464 for HC
versus DKD-A, 0.494 for 2-DM versus DKD-A, and 0.466 for DKD-E
versus DKD-A. The cutoff values were then applied to predict the
different stages of DKD in both internal and external testing cohorts.
For HC versus 2-DM, the prediction accuracy was 64.3% in the internal
testing cohort but low in the external C.S. cohort (Figure 5K and
Supplementary Table S5). Similar to the prediction between HC and
DKD-E (Figure 5L), the C.S. cohort showed 62.5% prediction accuracy,
but the internal testing cohort showed lower accuracy. Consistent with
protein markers, metabolites could not clearly distinguish 2-DM versus
DKD-E (Supplementary Figure S11). All the other three binary pre-
dictions showed high performance. When comparing HCs and DKD-A,
the prediction accuracy reached 73.4% (63.0% sensitivity; 87.9%
specificity) for the internal testing cohort and 94.5% (88.5% sensitivity;
100% specificity) for the external C.S. cohort (Figure 5M). For 2-DM
versus DKD-A, a prediction accuracy of 72.2% (47.8% sensitivity;
94.1% specificity) was achieved for the internal testing cohort and
accuracies of 82.3%, 87.0%, and 88.9% were achieved for the three
external testing cohorts (Figure 5N). Similar results were observed for
DKD-E versus DKD-A (Figure 5O), and the prediction accuracy ranged
from 66.7% to 84.6% for the four testing cohorts. The prediction re-
sults from the internal and external testing cohorts are presented in
Supplementary Figure S12. Intriguingly, by employing six clinical pa-
rameters (glutamic acid decarboxylase [GAD] autoantibodies, age at
diabetes onset, HbA1c, BMI, and measures of insulin resistance and
insulin secretion), a recent study classified 2-DM into 5 new subtypes:
severe autoimmune diabetes (SAID), severe insulin-deficient diabetes
(SIDD), severe insulin-resistant diabetes (SIRD), mild obesity-related
diabetes (MOD), and mild age-related diabetes (MARD) [16]. To
further verify our findings, we regrouped our enrolled candidates by
using this new subclassification system. As illustrated in
Supplementary Figure S13, 30 differentially expressed metabolites
were identified across the four 2-DM subtypes and the healthy con-
trols. The serum metabolite distributions displayed distinguishing
features within the five groups. The ROC curves also determined that
the prediction accuracy could reach 91.9% in the SIDD vs the SIRD
group, 61.5% in the SIDD vs the MOD group, 72.6% in the SIDD vs the
MARD group, 90.3% in the SIRD vs the MOD group, 82.6% in the SIRD
vs the MARD group, and 65.4% in the MOD vs the MARD group. These
results indicate that select metabolites can successfully predict the 2-
DM and DKD status, especially those in advanced and early stages.
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3.6. Integrating proteomics and metabolomics improves the
diagnostic value for DKD
We next performed an integrated analysis to determine whether
combining proteomics and metabolomics could enhance the accuracy
of DKD diagnosis, compared with proteomics and metabolomics alone.
We combined the top biomarkers from proteomics and metabolomics
data in a pathway analysis (Figure 6A) and identified several pathways:
galactose metabolism, pentose and glucuronate interconversions,
citrate cycle, and pyruvate metabolism. We then combined protein and
metabolite markers to predict the DKD status.
Five machine learning models performed on protein markers only,
metabolite markers only, and their combination revealed that the
combinational model improved the accuracy and stability of DKD
prediction. Taking the RF model results as an example, in the binary-
outcome prediction (Figure 6B), the combination of proteins and me-
tabolites led to no worse or slightly better accuracy than a single-omics
marker. A contingency heatmap of the ratios of the actual diagnosis to
the predicted diagnosis for all comparisons clearly showed that the
combining proteins and metabolites improved the prediction accuracy
over each individual marker alone (Figure 6C). The combined model
especially provided a more robust separation of the 2-DM and DKD-E
status. In the protein model, 48.4% of the DKD-E patients were
wrongly predicted as 2-DM; however, the combined model increased
the prediction accuracy of 2-DM and DKD-E to 59.6% and 42.6%,
respectively. In addition, the multi-omics model successfully achieved
81.4% prediction accuracy for DKD-A patients. We also constructed a
binary split tree by the RF model for the four-outcome predictions
(Figure 6D), and we ranked the top markers by impurity (Figure 6E).
These results suggested that a2-M, cathepsin D, and CD324 proteins,
and methylamine are the top markers for DKD identification. For the
prediction between 2-DM and DKD-E, the combined model showed
comparable results with protein-only or metabolite-only models
(Figure 6F). Collectively, the combined multi-omics model presented a
robust approach for enhancing the diagnostic value of protein and
metabolite markers in DKD patient blood.

3.7. Glycerol-3-galactoside is a biomarker for monitoring DKD
development
The diagnostic value of serum metabolites in DKD development are not
yet known. To address this, we systemically analyzed the correlations
between differentially expressed metabolites and clinical parameters
of each patient. Impressively, we found that serum glycerol-3-
galactoside was associated with eGFR (r ¼ 0.437) and serum creat-
inine (r¼ 0.42) in patients (Figure 7, AeB). However, few metabolites,
including glycerol-3-galactoside, exhibited associations with urinary
micro- or macro-protein levels. Of particular interest, as shown in
Supplementary Figure S13A, based on the new 2-DM subclassification
system, glycerol-3-galactoside was also significantly induced in the
SIDD, SIRD, and MARD groups, which further indicated its clinical
values in 2-DM early identification. This suggested that glycerol-3-
galactoside might be an independent surrogate serum biomarker for
DKD development.
Our integrative omics analysis indicated enhanced the stability of
diagnostic values if proteomes and metabolites were combined. While
a2-M is a well-characterized glycemic control marker [17], the role of
glycerol-3-galactoside in DKD pathogenesis is largely unknown.
Glycerol-3-galactoside is synthesized from UDP-galactose and diac-
ylglycerol (DAG) by a microsomal galactosyltransferase (GT), and the
lysosomal enzyme cathepsin D helps produce UDP-galactose
(Figure 7C). Glycerol-3-galactoside is then hydrolyzed by a- or b-
galactosidase (GAL) to galactose, glycerol, or fatty acid (FA). FA can
his is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
www.molecularmetabolism.com

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.molecularmetabolism.com


Figure 6: Integrative analysis of proteomics and metabolomics data. (A) Significant pathways detected by the differentially expressed proteins and metabolites. Proteins and
metabolites are presented in blue and red nodes, respectively. Proteins or metabolites that are involved in the same pathways are connected by the edges with the corresponding
colors for each pathway. (B) Pairwise prediction accuracy based on protein features only (blue), metabolite features only (red), and integration of protein and metabolite features
(orange). (C) Heatmap for the prediction accuracy. The numbers in the heatmap cells represent the ratio of true to predicted cases. (D) Prediction tree trained by the random forest
model on all the discovery cohorts when integrating ELISA and metabolite features. (E) Top ELISA and metabolite features ranked by impurity measurements based on the random
forest algorithm. (F) Prediction accuracy to distinguish 2-DM and DKD-E based on the five machine learning algorithms when integrating ELISA and metabolomics data.
induce CD324 expression to amplify DKD progression. In the mito-
chondria, glycerol is converted to sn-glycerol-3-phosphate (Gly3P) by
glycerol kinase (GK) or potentially through a Gly3P phosphatase (GPP).
Gly3P is an essential precursor for lipid synthesis and the accumulation
of triacylglycerol (TAG) in response to nutrient starvation [18]. Gly3P is
then converted to TAG for neutral lipid storage, or through other
modifications to phospholipids, including 1-acyl-sn-glycerol-3-
phosphate (LPA) and 1, 2-diacyl-sn-glycerol-3-phosphate (PA). PA is
a prominent activator of several signaling pathways and can become
DAG through phosphatidate phosphatase (PAP) [19]. DAG is a vital
second messenger that regulates numerous physiological activities in
DKD. In addition, DAG can be acylated by DGAT to form TAG. DAG is
also a substrate for the synthesis of glycerol-3-galactoside [20].
Collectively, our data implicate that changes in serum protein a2-M/
cathepsin D/CD324 and metabolite glycerol-3-galactoside may be
effective biomarkers for determining the onset and progression of DKD.
MOLECULAR METABOLISM 54 (2021) 101367 � 2021 The Author(s). Published by Elsevier GmbH. This is an open
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4. DISCUSSION

Early detection, diagnosis, and treatment of DKD are challenging [21].
Currently, microalbuminuria alone determines DKD onset, and kidney
biopsy differentiates true DKD, non-DKD, and mixed-form DKD [9,22e
24]. Therefore, identification of non-invasive serum biomarkers could
enhance DKD management.
Facilitated by recent advances in high-throughput technologies, pro-
teomics and metabolomics have been rapidly translating into clinical
use to demonstrate how to leverage biomarkers to improve accuracy,
enhance diagnostics, and reduce errors [25,26]. Functionally, prote-
omics provides a powerful tool to rapidly identify and quantify proteins
present in cells, tissues, biofluids, or other biological samples [27,28].
In comparison, metabolomics is mainly employed to determine the
small molecule fingerprints of cellular processes [29]. As the end
products of cellular regulatory processes, the levels of metabolites are
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 9
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Figure 7: Glycerol-3-galactoside synthesis is an independent metabolic event amid DKD progression. (Ae-B) The correlations between glycerol-3-galactoside and eGFR or
serum creatinine (Scr) levels. (C) Schematic diagram depicting the process of glycerol-3-galactoside synthesis and its roles in the onset of DKD. Each color box (left to right)
indicates the normalized expression value of the corrsponding metabolite in the HC, 2-DM, DKD-E, and DKD-A groups, respectively.

Original Article
considered to be the ultimate response of biological systems to
pathophysiological changes in various metabolic disorders [30]. Me-
tabolites can closely reflect the disease phenotype to address a critical
clinical need because they represent the downstream expression of
genome, transcriptome, and proteome [31]. Indeed, the proteome and
metabolome are not disjointed. Protein levels influence the metabolic
profile, and the concentrations of the metabolites, in turn, affect protein
expression [32]. Therefore, integrative omics is expected to provide us
with unprecedented insight into biological entities such as circulating
biomarkers of 2-DM and DKD [33].
Here, we integrated the proteomics and metabolomics of serum from
1,513 HC, 2-DM, DKD-E, and DKD-A patients from four independent
medical centers. Our training proteomic analysis identified serum a2-
M, cathepsin D, and CD324 proteins as a robust biomarker panel for
monitoring DKD progression. Our full-scale metabolomics analysis
identified pentose and glucuronate interconversions as well as
galactose and glycerolipid metabolism as the key disturbed pathways
10 MOLECULAR METABOLISM 54 (2021) 101367 � 2021 The Author(s). Published by Elsevier GmbH. T
in DKD. We also identified glycerol-3-galactoside as an independent
biomarker for predicting DKD. Impressively, by integrating serum
proteomics and metabolomics, we improved the value of these bio-
markers for predicting DKD onset and progression.
Proteomics has clinical value for treating various diseases [34], but
early DKD detection using preteomics has been challenging [35]. One
proteomic study identified 273 urinary peptides differentially expressed
between healthy controls and CKD patients, which when combined as
the classifier CKD273 [36], was validated as a biomarker for CKD
stratification, CKD early endpoint determination, and progression of
DM patients with normoalbuminuria to microalbuminuria [37e41].
However, few trials have been proposed to evaluate the predictive
value of blood for the course of human DKD.
Our training proteomics data revealed the difficulties in selecting a
circulating surrogate DKD biomarker, especially for advanced DKD.
Nevertheless, among 47 serum proteins, a combined panel of a2-M,
cathepsin D, and CD324 was strongly associated with DKD diagnosis,
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indicating the role of multi-protein markers in monitoring DKD pro-
gression, especially advanced stages (Figure 2).
What are the mechanisms of these serum proteins in DKD? a2-M is a
large plasma protein mainly produced by the liver. Due to its large size,
the release of increased a2-M in urine is prevented and it is retained in
circulation in diseased bodies. Increased or decreased a2-M has no
apparent adverse effects on the physiological functions, [42] but a2-M
can inactivate various proteinases and bind many cytokines or growth
factors, such as platelet-derived growth factor, insulin, and trans-
forming growth factor-b. Cathepsin D is an aspartic endoprotease
ubiquitously distributed in lysosomes [43,44] that can regulate extra-
cellular matrix homeostasis, glomerular permeability, endothelial
function, and inflammation in kidney diseases [45]. CD324 (AKA E-
cadherin) is a cellecell adhesion protein increased during micro-
albuminuria progression after diabetes [46]. Soluble CD324 fragments
in the urine of patients with early-stage DKD is considered to be a sign
of kidney deterioration.
Surprisingly, this combinational biomarker shows modest performance
in distinguishing 2-DM and DKD-E patients (Supplementary Figure S3).
Whether glycemia-induced kidney damage is reflected in blood protein
levels remains unclear from our training proteomic analyses. There-
fore, the sensitivity and specificity of serum proteins indirectly pre-
dicting kidney damage may be a concern, especially for identifying
early-stage DKD.
Compared with serum proteins, serum metabolites can increase the
accuracy of determining the kidney’s status in DKD [47]. Across the four
groups, we identified 58 serum metabolites, most of which fell into 3
broad groups (pentose and glucuronate interconversions, galactose
metabolism, and glycerolipid metabolism), indicating broad metabolic
disturbances during DKD progression (Figures 3 and 4). Most of these
serum metabolites were upregulated or downregulated in DKD-A pa-
tients compared with healthy adults. These changes might be caused by
nephron absolute loss because increases in blood urea and creatinine
levels were observed. Under these conditions, the damaged kidney has
little ability to maintain metabolite distributions. Other diseased organs,
due to diabetes or lower glomeruli filtration rate, would also be expected
to disrupt the metabolic microenvironment in circulation.
Our original hypothesis was that we would identify protein or metabolite
biomarkers for monitoring the onset of early stage DKD. Interestingly,
lactic acid, glycerol-3-galactoside, meso-erythritol, D-(þ)-xylose, and
(þ-)-3-methoxy-4-hydroxymandelate were altered in 2-DM and DKD-E
patients, but not in DKD-A patients. Fructose, galactose, and glucose
can be metabolized to generate energy [48]. However, long-term
increased serum galactose and D-fructose, together with high lactic
acid, can cause blood pH changes, which might play etiologic roles in
diabetes and DKD. In contrast, in 2-DM and DKD-E patients, glycerol
and glyceric acid were dramatically reduced in serum, versus healthy
adults. However, changes in glucose or lipids have little correlation with
clinical parameters. In addition, when comparing healthy adults with
DKD-E patients, only the glycerolipid metabolism pathway was signif-
icantly altered. The difficulty in distinguishing 2-DM and DKD-E can be
attributed to two possible causes. One is that the specificity of the
expressed proteins/metabolites reflecting kidney damage was relatively
low, as their levels in serum were not determined by kidney dysfunction
only. The second is that we speculated that at early DKD stages, serum
proteins/metabolites were completely disorganized due to renal dam-
age causing too much noise to identify specific expression patterns.
We identified galactose and glycerolipid metabolism as the most
disturbed pathways in DKD, indicating the critical role of glycerol-3-
galactoside, the final product of these pathways. Glycerol-3-
MOLECULAR METABOLISM 54 (2021) 101367 � 2021 The Author(s). Published by Elsevier GmbH. This is an open
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galactoside is not well explored in kidney diseases. This is the first
report of glycerol-3-galactoside in non-uremic concentrations asso-
ciated with DKD onset. In serum, glycerol-3-galactoside levels were
tightly associated with eGFR and serum creatinine levels, but inde-
pendent of albuminuria and microalbuminuria levels (Figure 7). Our
training proteomic analyses indicated that several proteases were
released by lysosomes (Figure 2). As mentioned, glycerol-3-
galactoside is synthesized from UDP-galactose and DAG by micro-
somal GT, with lysosomal enzymes involved in the upstream process
(Figure 7). Glycerol-3-galactoside can then be hydrolyzed into galac-
tose, FA, and glycerol, which can induce kidney damage. The excretion
rates of glycerol-3-galactoside in urine and blood from HCs and 2-DM
and DKD patients are unknown. We speculate that glycerol-3-
galactoside can be toxic, contributing to insulin resistance and
rendering patients susceptible to more severe diabetes and its com-
plications, including DKD.
Although untargeted metabolomics revealed abundant associations in
DKD development, it’s unclear if they’re causal [49]. Pathological roles
of glycerol-3-galactoside in diabetic kidneys and other diabetes-
targeted organs should help illuminate new diagnoses and treat-
ments. In addition, metabolomics demonstrated that 2-DM versus
DKD-A and DKD-E versus DKD-A were well-predicted in internal or
external testing cohorts by the trained model in the discovery cohort.
Compared with the machine learning proteomics results, metabolome-
based prediction showed improved monitoring performance for DKD
onset in 2-DM patients. Nevertheless, the boundary of 2-DM and DKD-
E remains unsatisfactory for diagnostic purposes.
A novel aspect of this study is that we integrated serum proteomics
and metabolomics to enhance the prediction of DKD, such as for 2-DM
vs DKD-E. Integrative omics stabilized the diagnostic values for 2-DM
and all stages of DKD, and machine learning further increased the
accuracy. Our integrative approach is a new attempt to develop a
signature for personalized DKD care, but clinical translation is
expensive [50].
Our study has some limitations: 1) Because kidney damage may be
observed in 2-DM patients with normal microalbuminuria, and the
microalbuminuria levels in most of our DKD-E patients ranged from 50
to 100 mg/g, we may have missed proteome- or metabolome-based
values. 2) Although we applied five machine learning methods,
further deep mining or algorithms may be needed. 3) Our analyses
excluded some classes of lipids and amino acids in serum. 4) Prote-
ome- or metabolome-based landscapes in the serum of non-diabetic
CKD were not profiled. Thus, we could not fully determine whether
metabolite or protein changes in DKD patients are due to absolute
nephron loss or diabetes itself. Future studies should compare urine
and serum for DKD.

5. CONCLUSION

Our study illustrated that serum integrative omics provides a high
confidence interval for identifying biomarkers for the diagnosis of DKD
or biochemical insights to monitor the status of DKD. Although it is too
early to conclude that these markers will replace the invasive approach
for DKD differentiation in the clinic, our findings indeed shed light on
the development of valuable diagnostic tools for effective clinical
implementation and designing of novel therapeutic targets to achieve
earlier prevention, earlier diagnosis, and earlier treatment of DKD. We
believe that this promising serum-based integrative omics approach
will have widespread applications in the diagnosis of DKD in the clinic
after further rigorous, prospective longitudinal studies.
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