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How To Quantify a Genetic Firewall? A Polarity-Based
Metric for Genetic Code Engineering
Markus Schmidt*[a] and Vladimir Kubyshkin*[b]

Genetic code engineering aims to produce organisms that
translate genetic information in a different way from that
prescribed by the standard genetic code. This endeavor could
eventually lead to genetic isolation, where an organism that
operates under a different genetic code will not be able to
transfer functional genes with other living species, thereby
standing behind a genetic firewall. It is not clear however, how
distinct the code should be, or how to measure the distance.
We have developed a metric (Δcode) where we assigned polarity
indices (clog D7) to amino acids to calculate the distances
between pairs of genetic codes. We then calculated the

distance between a set of 204 genetic codes, including the 24
known distinct natural codes, 11 extreme-distance codes
created computationally, nine theoretical special purpose codes
from literature and 160 codes in which canonical amino acids
were replaced by noncanonical chemical analogues. The metric
can be used for building strategies towards creating semanti-
cally alienated organisms, and testing the strength of genetic
firewalls. This metric provides the basis for a map of the genetic
codes that could guide future efforts towards novel biochemical
worlds, biosafety and deep barcoding applications.

1. Introduction

The wealth of natural biodiversity of an estimated 10 million
species[1] is surprisingly uniform and highly conserved on a
deep biochemical and informational level. All species described
so far, for example, store genetic information in just one very
specific biopolymer (DNA) and the translation from RNA to 20
(22) amino acids is carried out predominantly by just one,
“standard”, genetic code.

The genetic code provides the rule for the correspondence
between nucleic acid and protein sequences (Figure 1A). It is
often considered a universal principle or language, a lingua
franca, that unites species on the planet into a massive
superorganism. Due to the genetic code universality, viruses
can be transmitted between different species, as we learned
from the outbreaks of viral diseases of animal origin.[2] Another
outcome of the code universality is the ability to spread
fragments of genetic information between species in the course
of the horizontal gene transfer. The latter is believed to be
among the mechanisms behind the spread of antibiotic

resistance in pathogenic bacteria, which causes severe health
threats for humanity.[3] The scope of gene transfer, however,
extends far beyond disease-causing organisms. In fact, ex-
change of genes-between bacteria but also between bacteria
and eukaryotes-has shaped the web of life and is one of the
most important factors in evolution.[4] Uncontrolled horizontal
gene transfer between released genetically modified organisms
and wild-type organisms is also a biosafety concern.[5]

Not surprisingly, researchers have been tempted by the idea
of breaking the code via genetic code engineering. Eventually,
a complete organism-wide (genome and proteome) genetic
code engineering should yield genetically recoded organisms.
This is one of the key targets of the xenobiological endeavor,
which aims to create and study artificial biodiversity.[6] One can
expect to diverge species from extant natural versions by
modifying the base,[7] and backbone[8] of the nucleic acids.
Similarly, attempts to modify and enlarge the proteinogenic
amino acid portfolio are well underway.[9]

As one of the main and striking features of the biochemis-
try, the genetic code universality represents one of the most
intriguing targets for manipulation. Nonetheless, one should
note that minor variations in the genetic code do occur in
nature. Currently 25 natural genetic codes have been
identified,[10] many in cell organelles. They reveal an extreme
uniformity, with a mean modification of just 2.43 (min:1, max: 5)
out of 64 codons;[11] the natural code #25 was only published in
2019. Future research might discover more natural genetic
codes.[12] Nonetheless, it is already clear that the natural codes
represent an infinitesimal fraction out of the astronomical sized
combinatorial space. For example, 4.18×1084 possible genetic
codes can be generated from 64 codons, 20 amino acids and at
least one stop codon.[13]

Even when acknowledging that the vast majority of
potential codes in the full combinatorial space is useless,[14] the
set of “viable” codes is still much larger than the set of known
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natural codes. It has been shown that even in a massively
reduced set of potential codes that maintain, for example, the
same codon block distribution as in the standard code (when
64 codons of the genetic code are divided into 21 synonymous
codon sets, 20 for sense codons and 1 for stop codons) will
result in 2.43×1018 possible codes of which only one in a
million (ca. 1012 codes) have the same or a better error
robustness.[15] By robustness we mean the error tolerance of the
genes in case of single nucleotide replacements, and the effect
of the resulting amino acid change. A robust genetic code is
characterized by the high ability to generate similar, neutral or
silent substitutions from single mutations (Figure 1B).

The study of the key features of the genetic code is of great
interest for understanding the origin of biochemical mecha-
nisms of life. At the same time, the experimental engineering of
the genetic code holds a tremendous potential for creating
novel biopolymers and biochemical reactions. Enhanced chem-

ical versatility of the organisms operating under novel genetic
codes might be useful in medicine, industrial biotechnology or
bioremediation. It might also contribute to the future bio-
technological age endowed with superior biosafety features. In
particular, generation of biological systems with distinct genetic
codes would allow for better control of the exchange of genetic
information with natural organisms through horizontal gene
transfer.[4c,5,17]

In 2009, Marlière wrote “The farther, the safer: a manifesto
for securely navigating synthetic species away from the old
living world”,[17a] describing how estrangement can lead to less
interaction and more safety. The isolation (or orthogonalization)
strategy between natural and xeno-organism will eventually
lead to a genetic firewall.[18]

Conceptually, the metaphor of “distance” or “firewall” seems
easy to parse, but the question of course is: what is the strength
of the genetic firewall, and how can it be made stronger? This
question points to the lack of a standardized way to measure
the distance or strength of the genetic firewall. To address this
weakness, a metric space for genetic code engineering was
recently proposed. The idea of the metric space is to quantify
the distance, or firewall strength between any two codes. The
calculation was done comparing codon assignments of two
codes by calculating the mean difference value of the different
amino acid polarity values[13] (Figure 1C). The underlying
principle of this metric is inspired by the calculation of the
mutational robustness.[19] The metric space approach suggests
repurposing of these calculations towards a metric or a scale
that would allow to enumerate a distance between any two
genetic codes. Thus, the metric space approach deals with the
disturbance that should occur in the proteome, due to the
differences in the genetic codes.

Numerical1 values can be generated by taking known amino
acid values such as polar requirement[20] and hydropathy.[21] The
use of these values has become a common standard in the
research field that calculates mutational robustness.[19,22] None-
theless, these values are only available for the 20 canonical
amino acids, and for the wealth of the other potential amino
acid substrates they are lacking. As the result, a metric based on
these values would neglect a whole research branch dedicated
to the integration of the artificial chemical components into the
protein repertoire. It would be far more beneficial, to base a
genetic code metric on a value that would readily integrate
various canonical and noncanonical substrates, that are existent
or even hypothetical.

Herein we propose the use of an empiric partitioning based
scale (clog D7) for parametrization of the codes. We show that
this scale works as good as the former ones in predicting code
similarity, yet it can readily integrate virtually any noncanonical
amino acid. By using this approach, we generate a map of
viable and distant genetically recoded organisms that may
allow for the construction of a network of genetic firewalls. A

Figure 1. A) The standard genetic code. The code prescribes correspond-
ences between the 64 coding elements in the mRNA sequence (codons) and
20 amino acids in the protein sequence. Nonpolar amino acids are
highlighted in red, polar in green. B) In the natural genetic code, the codon
UCU codes for serine, which is a polar amino acid. Mutations in this codon
have different effects. Those that do not change the resulting amino acid are
called silent. Those that lead to substitution with other amino acids of similar
polarity are called neutral, here the polarity difference is low. Adverse
mutations appear when the resulting amino acids have significantly different
polarity. Robustness is a parameter that shows the mean square value of the
polarity differences of all possible single point mutations.[16] C) Comparison
between two different genetic codes (all 64 codons) yields a distance
parameter. If two codons stand for amino acids with the same polarity, the
contribution to the distance is zero; the higher the difference between the
polarities, the higher the contribution to overall genetic code distance.[13]

1 The calculation for mutational robustness compares 288 codon pairs,
representing all possible changes that could be triggered by single base
mutations, while the genetic code distance compares amino acids value
pairs of 64 codons in two different codes. For more details, see Ref. [13].
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genetic firewall is meant to massively reduce or even
completely block any horizontal gene transfer between engi-
neered organisms, and a genetic firewall metric is a way to
quantify the strength of the genetic firewall. We believe that
our approach will help to rationalize existing and future efforts
towards deep artificial biodiversity. Our method enables us to
propose a network of artificial biodiversity and map efforts
towards a novel form of biocontainment. While biocontainment
is typically understood as the physical isolation of organisms,[23]

in our case it is a semantic isolation, hence a form of semantic
biocontainment.

2. Results and Discussion

2.1. Design of the study

We designed the study with the aim to measure the distance
between any two given codes following a single principle. In
the core of our approach, we assume that a gene may be
transferred from an organism #1 operating under genetic code
1 to an organism #2 operating under genetic code 2. In the
organism #2, the translations of this gene is likely to produce a
functional protein if the amino acid assignments prescribed by
the codes are similar. Conversely, translation is likely to produce
a nonfunctional (nonsense) protein if the amino acid assign-
ments are different (Figure 1C). For this reason, we needed a
numerical value that would reflect the (dis)similarity between
the amino acids. The simplest and first parameter to character-
ize the amino acids is their polarity. It is well known that the
folding of globular proteins relies on the “nonpolar in – polar
out” principle, whereas membrane proteins follow an opposite
“polar in – nonpolar out” principle. Thus, any exchange of an
amino acid residue with another one having a distinct polarity
is likely to yield detrimental effects onto the protein structure.
The differences in the polarities between the codon assign-
ments in the codes 1 and 2, is what will be used to characterize
the distance between the codes. Our approach does not take
into account potential reading of specific functional residues
such as catalytic residues in the enzymes, or backbone folding,
for example, secondary structure propensities.

After we choose the physicochemical principle behind our
approach, we then have to select a reliable numerical scale that
reflects the polarity of amino acid side chains. We aim to
operate with a numerical value that can be found for both
canonical and noncanonical amino acids. After having polarity
values assigned to the amino acid residues, we can calculate
the distance between any two given codes numerically. We
then set out to compare the standard genetic code with other
possible codes, that can be generated by either 1) reshuffling of
the amino acid assignments; or by 2) replacing canonical with
noncanonical residues. With additional assumptions, the meth-
od will integrate genetic codes made by 3) changing the stop
codon assignments; or 4) introducing empty codons that lack a
corresponding tRNA match.

The method we choose to calculate the distance, or
dissimilarity, between two codes is expressed according to
Equation 1:

Dcode ¼

Pn
k¼1 xk � ykj j

n (1)

where xk is the (polarity) value for the kth amino acid in code x
and yk the (polarity) value for the kth amino acid in code y,
while n is the total number of compared codons, so 64.

There is also another method to compare different genetic
codes, which is based on the formula used to calculate
mutational error robustness und which uses mean square
values.[13,19c] This formula however doesn’t allow the establish-
ment of a universal metric space.2

2.2. Choice of the polarity scale

Polar requirement and hydropathy have been previously used
in the calculations of the genetic code parameters such as their
robustness. As long as one uses only the 20 canonical amino
acids in the genetic repertoire these values work just as well to
calculate the genetic code distance between any two codes.
The limitations of these values appear once we attempt to
integrate amino acids beyond the set of 20, so-called non-
canonical amino acids. As a matter of fact, corresponding
experimental values for noncanonical amino acids are lacking.
For example, the polar requirement values for 20 canonical
amino acids were generated in mid 1960s using a rather
primitive chromatographic approach, which is no longer in use
in modern labs.[20] Thus, in order to generate a universal genetic
code metric that can integrate canonical and noncanonical
amino acids, polarity scales need to be analyzed.

At first, we surveyed the common bioinformatics resource
used for mapping properties of the protein sequences.[24] We
found over 60 common scales that allow to evaluate a
sequence composed by the set of 20 canonical amino acid
substrates. They reflect different parameters of the residues,
such as bulkiness, hydrophobicity, accessibility in a protein
structure, propensities to adopt secondary structures and more.
Among these, we decided to analyze those scales that reflect
polarity of the amino acids in one way or another. In fact, there
are 31 scales that can be related to polarity, with 27 scales that
can be considered non-redundant. Closer look shows that these
scales can be grouped in a three large groups dependent on
the physical phenomenon they are based upon:

2 In this other formula the mean square (MS) value of all 64 codon

differences between any two codes are calculated: D2 ¼

Pn

k¼1
ðxk � yk Þ

2

n where
xk is the (polarity) value for the kth amino acid in code x and yk the (polarity)
value for the kth amino acid in code y, while n is the total number of
compared codons, so 64. While the mean square values work fine for one-
dimensional scales ref. [13], some genetic code triples (three ~code values
between three codes) might not comply with the fourth requirement of the
metric space, namely the triangle inequality. Thus, we did not use the
squared but the absolute difference as a basis for our calculations.
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Type 1: statistical use of a certain type of residues in known
proteins. This would usually be based either on the known
protein crystal structures or immunology data (antibody
recognition fragments). The residues enriched in the protein
cores and transmembrane domains are commonly considered
more hydrophobic than those exposed to water. In this way
these scales reflect the polarities of the residues.

Type 2: chromatography. Here, the oldest values are based
on paper chromatography retention factors, more recently they
were generated by detecting reversed-phase HPLC retention
times. Chromatography is fundamentally based on multiple
extraction, thereby it reflects the polarity of the substrates:
amino acids, and peptides or proteins built from them.

Type 3: partitioning. These scales are based on calculating
the energy of transfer of a substrate from a polar medium,
which is usually water, to a nonpolar medium. The later can be
water-air interface, protein interior, or organic solvent (ethanol
or octanol).

The hydropathy scale stands out from this classification. It is
a so-called amalgamated scale, that was generated by averag-
ing a number of other scales available by 1982, and assigning
arbitrary values to a few residues, such as glycine and
arginine.[21] It is therefore in principle not possible to extend this
scale to noncanonical substrates. The same is true for the scales
that are based on structure statistics (type 1), because these
statistics are simply not available for most noncanonical
residues. The chromatography and partitioning based values
are more convenient. These are single-phenomena based
values, and can be found experimentally. We focused on the
octanol/water partitioning based scale, since they can be
evaluated both experimentally[25] and can be calculated[26] using
available empirical calculations. The results of octanol/water
partitioning are commonly designated as logP, which is the
partitioning value expressed on a logarithmic scale. The P value
is a ratio between the substrate concentration in octanol
(nonpolar phase) and its concentration in water (polar phase) at
an equilibrium (Figure 2A). There are large databases of the
partitioning data both commercially and publicly available, that
allow calculation of the logP values for virtually any organic
molecule. Resulting values are designated as clogP values,
where “c” indicates that the value is not experimental but
computed. The clogP calculations are simple and can be
performed using a desktop or web-client on a click. The
problem with the logP scale is that it does not take into
account ionization of a substrate when this is transferred to
water. To correct for the ionization that occurs at certain pH
values, another value is used, logDpH, where D is distribution
coefficient. For non-ionizable molecules logP= logD.

For our calculations, we choose the clogD7 scale from the
ChemAxon website,[27] which is one of the most widely used
public databases for calculating the partitioning values. clogD7

indicates the partitioning of a substrate between octanol and
water buffered at pH 7, and the value is calculated from an
empiric dataset. We thus can assign any amino acid structure
with a clogD7 value, and use this for our scale. A few problems
remained though. One of them is the impact of stereochemistry
on polarity, which is not taken into account by state-of-the-art

logP/logD calculation algorithms. Another problem is a large
polar contribution of the backbone groups. Most of the
canonical amino acids share same backbone features with only
the side chains varying. The backbone is very polar, and its
contribution cannot be neglected when calculating features of
amino acids in peptides and proteins.[28] Secondary structure
transitions lead to differences in the backbone exposure to the
medium, thereby the polarity of a particular residue can differ
depending on the context of the secondary structure. For our
calculations, we neglected the backbone contribution to polar-
ity. For this reason, we choose a simple and conservative amino
acid derivative: methyl esters of N-acetyl amino acids (Fig-
ure 2B). Calculations of the clogD7 values for these molecules
yield positive values (more substrate in octanol) in case of
hydrophobic side chains, and negative values (more substrate
in aqueous buffer) for hydrophilic side chains, when the
backbone is based on an alanine structure. One should be
careful though, comparing amino acids with distinct backbone
features, especially proline and glycine. For example, proline
has a significantly distinct backbone (secondary amino group),
as well as the secondary structure propensities. Therefore,
comparison of the common alanine-based amino acids and
proline and its analogues cannot be accurate, and should be
avoided. This is not only true for the clogD7 scale, but also for
other scales.

With this in mind, we assigned 20 canonical amino acids
with the clogD7 values that reflect the polarity of their side

Figure 2. A) LogD7 is a value that characterizes the distribution of a substrate
between octanol and aqueous buffer with pH 7. Hydrophobic substrates
exhibit positive values. B) Methyl esters of N-acetyl amino acids are the
derivatives of amino acids that are used for clogD7 calculations in this study.
For most substrates (except glycine and proline analogues) the backbone
part remains constant, with only the side chain varying. C) Correlation
between the calculated clogD7 values and the available experimental logP
shows a good agreement between the experiment and prediction
(correlation coefficient R=0.9824).
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chains. The found values correlate with the experimental logP
fairly well (Figure 2C).[29] We also correlated the existing hydro-
phobicity scales to the clogD7 scale including the hydropathy
and polar requirement scales (Table 1). The largest discrepan-
cies were found for cysteine and tyrosine residues, that can be
listed as hydrophobic/buried in some scales, and hydrophilic/
exposed in others. Overall, the new clogD7 scale correlates to
the former hydrophobicity scales in a similar way as the former
hydrophobicity scales correlate between each other, and
enables to distinguish the amino acid side-chains by their
polarity features. Note that clogD7 provides a formal accuracy
of 10 � 2 with three significant digits, while the hydropathy and
polar requirement values only produce two significant digits.
Nonetheless, since the values were generated by entirely
different methods, we can compare values between scales but
not their actual accuracy or error.

2.3. Distant genetic codes generated by reshuffling of codon
assignments

After having chosen the type of the values, we carried out the
distance calculations. We first set up to examine possible distant
genetic codes generated by the reshuffling of the same
portfolio of 20 canonical amino acids. First, an algorithm was
carried out in the reduced genetic code search space that have
the 20 canonical amino acids distributed in standard canonical
codon blocks, leaving the three stop codons unchanged
(combinatorial space=2.43 x 1018 codes[19c]). The genetic algo-
rithm is identical to that described in ref. [13], which applies
codon block swap operations[30] selecting the most distant
genetic codes for 50 consecutive generations, while controlling
for mutational error tolerance relative to the standard code. The
mutational error tolerance was calculated as the average mean
square difference of all 288 possible single nucleotide muta-
tions, with i=1 as the normalized value for the standard code
error tolerance, with for example, 1.1 meaning that the error
tolerance value is allowed to be higher than 110% of the
standard code error tolerance[22a] (Figure S1). The codes gen-
erated in this way where called X01< ?_>unlimited (i un-
limited), X02< ?_>1< ?_>1 (i=1.1), X03< ?_>1< ?_>01 (i=
1.01) etc. Second, the restrictions on the codon blocks were
lifted, meaning that the 20 canonical amino acids are
distributed over all 61 sense codons, resulting in the codes
called X11< ?_>unlimited, X12< ?_>1< ?_>5, X13< ?_>1<
?_>25, X14< ?_>1< ?_>1 and X15< ?_>1. Third, for code
X21< ?_>unlimited, only one stop codon (UAA) was conserved
while the other 63 codons were available for 20 amino acids or
were left empty (unassigned). Finally, for X31< ?_unlimited, 20
amino acids and one stop where randomly assigned over the
64 codons, the remaining 43 codons populated with either
canonical amino acids, stop or empty codons.

The difference from the method used previously[13] is that
instead of using the values for polar requirement and hydro-
pathy, the clogD7 values were used to quantify amino acids,
and that the method used to calculate Δcode was not mean
square but mean absolute difference.

Figure S2 shows the evolution of distant codes following
the genetic algorithms described above. Table 2 summarizes
key values of the different extreme distance genetic codes. The

Table 1. Comparison of some traditionally used amino acid values for
polar requirement and hydropathy, and the clogD7 values.[a] Ordered by
clogD7 value.

Amino acid
1 letter

Amino acid
3 letters

clogD7 Hydropathy Polar requirement

W Trp +1.14 � 0.9 5.2
F Phe +1.04 2.8 5
Y Tyr +0.74 � 1.3 5.4
I Ile +0.72 4.5 4.9
L Leu +0.64 3.8 4.9
V Val +0.27 4.2 5.6
M Met +0.04 1.9 5.3
P Pro � 0.34 � 1.6 6.6
C Cys � 0.57 2.5 4.8
A Ala � 0.61 1.8 7
H His � 1.16 � 3.2 8.4
G Gly � 1.18 � 0.4 7.9
T Thr � 1.24 � 0.7 6.6
S Ser � 1.66 � 0.8 7.5
Q Gln � 1.77 � 3.5 12.5
N Asn � 2.06 � 3.5 10
K Lys � 3.56 � 3.9 10.1
E Glu � 3.74 � 3.5 8.6
R Arg � 3.94 � 4.5 9.1
D Asp � 4.14 � 3.5 13

[a] Correlations: 1) hydropathy vs. polar requirement R= � 0.786, 2) clogD7

vs. hydropathy R=0.765, 3) clogD7 vs. polar requirement R= � 0.824.

Table 2. Key results of most distant codes in different search spaces with increasingly relaxed robustness ratios. In general, the fewer restrictions on
robustness and search space, the faster and the higher Δcode values are reached. All results are based on clogD7 values.

Code name robustness, i upper limit Δcode max to Standard Code # of codes in combinatorial space Restrictions for combinatorial space

X01_unlimited unlimited 2.9446 2.43×1018 stop codons unchanged.
20 codon blocks unchangedX02_1_1 1.10 2.8764

X03_1_01 1.01 2.8268
X04_1 1.00 2.8178
X11_unlimited unlimited 3.1475 9.42×1078 3 stop condons unchanged.

20 AA assigned to 61 sense codonsX12_1_5 1.50 3.2375
X13_1_25 1.25 3.3441
X14_1_1 1.10 3.1365
X15_1 1.00 2.9578
X21_unlimited unlimited 4.4876 7.73×1082 1 stop codon unchanged.

20 AA+empty codons assigned to 63 codons
X31_unlimited unlimited 4.8283 2.74×1085 Stop, empty and 20 AA assigned to 64 codons
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more relaxed the error tolerance (the higher the robustness
ratio, i) the higher the final distance from the standard code
and the shorter it takes to reach the final distance. The search
space for i=1 is estimated to be in the order of 1012 compared
to 1018 for i=1000, and still the most distant code for i=1
reaches 95.7% of the full distance i=unlimited (Table 2).

While it cannot be known for sure that the resulting codes
are indeed the most distant (local maximum vs. global
maximum) we can see a clear inversion—an indicator of
distance—of the clogD7 values in the codon assignment of
most distant codes compared to the standard code (Figure 3).
These most distant codes represent the strongest possible
genetic firewalls vis-à-vis the standard code under different
conditions, such as whether the same 20 sense codon blocks
are used or not, whether the three stop codons remain
unchanged or not, or whether the occurrence of empty codons
that do not code for an amino acid is permitted or not. These
distant codes could serve as a genetic firewall reference point
to other genetic codes presented here.

2.4. The distance between codes when using different
polarity scales

Before leaving the traditional amino acid scales (polar require-
ment and hydropathy) behind and taking up the new clogD7

scale, we compared the two scales in order to find out how this
transition affects the assessment of the two sets of extreme
distant and natural codes. To do so we used the set of known
natural codes,[10] the set of extreme codes identified running
the genetic algorithm with the underlying polar requirement
and hydropathy scales, taken from ref. [13], and the set of
extreme distant codes generated with the underlying clogD7

scale (Figure 4). While in the two sets of extreme codes only
changes between sense codons were performed, the situation
is different in many natural codes. There are some cases where
it is not trivial to calculate the distance value, namely in the
case of: 1) changes between sense and stop codons, 2)
ambiguous codons; and 3) unassigned codons.[13] In natural
codes there are several cases of sense to stop codon changes
and also a few ambiguous codons.

Of the 24 nonstandard natural codes, 20 involve a stop to
sense codon reassignment, and three harbor ambiguous
codons, for example, in the karyorelict nuclear code, UGA can
code for either stop or Trp. For the sense to stop codon
changes we follow ref. [11]. Thus, we assigned the largest
possible difference between any two canonical amino acids, in
the case of clogD7 this is � 4.14 (Asp) and +1.14 (Trp), which is
5.28 and the value assigned in case of a stop to sense or sense
to unassigned (empty) codon change. In the case of ambiguous
codes, two codes were generated. For example, karyorelict
nuclear code N19 A_27 A with UGA read as Trp and hence a
stop-sense codon change, and karyorelict nuclear code N19B_
27B with UGA left as the stop codon. Average values were not
calculated but both subcodes were used in the calculations in
order to provide a lower and upper bound. Unassigned

Figure 3. Tables of the standard and extreme distant codes, allowing for
different error tolerance robustness ratios (see Figure S2 and Table 2 for
details). The position of each codified amino acid is shaded on a gray scale
representing its clogD7 value (light gray: negative values, dark gray: positive
values). Note the different gray shades in the four columns between the
standard and extreme codes.
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(emancipated) codons are not known in natural codes, only in
engineered codes.[31]

For all natural codes the Δcode values to the standard code
were calculated, using the traditional amino acid scales (polar
requirement and hydropathy) and the new clogD7 scale
(Table 3). Results were plotted against each other and the
correlation coefficients were calculated (Figure 4). The Δcode

values for natural codes are highly similar, with a correlation
coefficient of at least 0.93099. This illustrates an excellent
agreement between the analysis based on different polarity
scales. Thus, the clogD7 values can be utilized just as well as

others to show polarity distances, and parametrize the genetic
firewalls.

2.5. Genetic codes generated by incorporation of
noncanonical amino acids

Genetic code engineering provides various opportunities for
integrations of novel amino acids in the translation set. These
amino acids are called noncanonical, thus disobeying the
genetic code “rule” (Greek kanon-rule, norm). In contrast, the 20
common amino acids are called canonical. The use of the

Figure 4. Comparison of the Δcode values between the standard and all other natural codes using three different amino acid value sets. Correlation between
clogD7 and hydropathy is 0.97970, for clogD7, the polar requirement is 0.93099, and polar requirement vs. hydropathy is 0.91284.

Table 3. Comparison of some traditionally used amino acid values for polar requirement and hydropathy, and the clogD7 vales
[a] . Ordered by clogD7 values

rounded to four significant digits).

Natural code name Δcode to Standard code based on
clogD7 Hydro

pathy
polar
requirement

N00_1 The Standard Code [a] 0 0 0
N08_11 The Bacterial, Archaeal and Plant Plastid Code [a] 0 0 0
N20B_28B Condylostoma Nuclear Code (ambivalent) [a] 0 0 0
N18_26 Pachysolen tannophilus Nuclear Code 0.01953 0.03125 0.03281
N09_12 The Alternative Yeast Nuclear Code 0.03594 0.07187 0.04062
N03_4 The Mold, Protozoan, and Coelenterate Mitochondrial Code
and the Mycoplasma - Spiroplasma Code [b]

0.0825 0.1406 0.1281

N23B_31B Blastocrithidia Nuclear Code (ambivalent) [b] 0.0825 0.1406 0.1281
N07_10 The Euplotid Nuclear Code 0.0825 0.1406 0.1281
N12_16 Chlorophycean Mitochondrial Code 0.0825 0.1406 0.1281
N15_23 Thraustochytrium Mitochondrial Code 0.0825 0.1406 0.1281
N17_25 Candidate Division SR1 and Gracilibacteria Code 0.0825 0.1406 0.1281
N16_24 Pterobranchia Mitochondrial Code 0.1241 0.2078 0.1687
N04_5 The Invertebrate Mitochondrial Code 0.1644 0.2969 0.1844
N05_6 The Ciliate, Dasycladacean and Hexamita Nuclear Code 0.1650 0.2812 0.2562
N14_22 Scenedesmus obliquus Mitochondrial Code 0.1650 0.2812 0.2562
N19B_27B Karyorelict Nuclear Code (ambivalent) 0.1650 0.2812 0.2562
N21_29 Mesodinium Nuclear Code 0.1650 0.2812 0.2562
N22_30 Peritrich Nuclear Code 0.1650 0.2812 0.2562
N06_9 The Echinoderm and Flatworm Mitochondrial Code 0.1772 0.2625 0.1797
N10_13 The Ascidian Mitochondrial Code 0.1794 0.3094 0.1719
N13_21 Trematode Mitochondrial Code 0.1878 0.3031 0.1859
N24_33 Cephalodiscidae Mitochondrial UAA-Tyr Code 0.2066 0.3484 0.2969
N02_3 The Yeast Mitochondrial Code 0.2106 0.4625 0.2406
N19 A_27 A Karyorelict Nuclear Code (ambivalent) [c] 0.2475 0.4219 0.3844
N20 A_28 A Condylostoma Nuclear Code (ambivalent) [c] 0.2475 0.4219 0.3844
N23 A_31 A Blastocrithidia Nuclear Code (ambivalent) 0.2475 0.4219 0.3844
N01_2 The Vertebrate Mitochondrial Code 0.2581 0.4625 0.3906
N11_14 The Alternative Flatworm Mitochondrial Code 0.2597 0.4031 0.3078

Codes marked with [a], [b], or [c] are identical.
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noncanonical amino acids provides an opportunity to replace
any given amino acid in the code with a set of analogues with
various polarity features. In our next step, we identified the
noncanonical replacements to the set of canonical counterparts.
The replacement structures were suggested using chemical
analogy. For example, for arginine (clogD7 � 3.94), a potential
replacement would include a number of arginine and ornithine-
based structures such as citrulline, canavanine and more, that
span the set of clogD7 values from � 4.54 to +0.48 (Figure 5). In
a similar fashion we identified the replacements for other amino
acids, except alanine and glycine. The latter two are generic
structures, and these cannot be assigned any specific set of
analogues. Amino acids with hydrophobic side chains, isoleu-
cine, valine and leucine were not considered separately, but
they were assigned with analogues having different number of
carbon atoms in the aliphatic side chain. Proline analogues
represent their own separate set of structures due to the
different backbone of proline, however, in our approach they
were treated in the same way as other amino acid analogue
sets.

By suggesting a replacement, we aim to mimic a situation
of a genetic code where a canonical amino acid is replaced with
an analogue with either higher or lower polarity indices. This
generates a code that is distant to the starting (standard) code
by the value Δcode. The higher is the value, the stronger is the
corresponding genetic firewall between the codes. The struc-
tures of the amino acid analogues were selected by considering
natural and artificial amino acids. We selected some candidates
that we considered interesting from the experimental point of
view (Table S1). However, the reader is encouraged to try out
the Δcode calculations for their own structure of interest by
pasting the clogD7 values from the web resource[27] into
Equation (1).

Figure 6 shows Δcode values for some structures that are
readily used in organisms as either toxic antimetabolites (e.g.,
canavanine) or post-translationally installed residues (e.g.,
phospho-serine).[32–34] There is also a rich set of structures that
have been incorporated into single protein structures using the
genetic code expansion and selective pressure incorporation
approaches.[35] Especially rich is the set of analogues for
aromatic amino acids. Large portfolio of aromatic amino acids
originates from the fact that many experimental genetic code
expansion systems are derived from the systems that incorpo-
rate tyrosine or phenylalanine in their natural environment.
Finally, experiments reported proteome wide replacement of
canonical amino acids. In these experiments, tryptophan was
replaced with flurotryptophans or thienopyrrolylalanine.[9a,36]

The full set of the analyzed 160 amino acid replacements is
listed in the supplementary information (Table S1).

By using the clogD7 indices of the replacement amino acids,
we calculated the corresponding Δcode values. We considered
that the estranged genetic codes should contain 19 amino acid
and all stop assignments unchanged, but one amino acid (e.g.,
arginine) would be replaced with its analogues counterpart
(e.g., citrulline) at all its codons. Results of these calculations are
shown in Figure 6. The largest Δcode to the standard genetic
code was found for code R_Leu_10 with leucine replaced by
mirystyl-glycine (Δcode= 0.4313), while the shortest distance
found, was code R_Met_5 with methionine replaced by
homopropargylglycine (Δcode=0.0007813). Between R_Leu_10
and R_Met_5 the Δcode distance spans three orders of
magnitude demonstrating the ability to fine tune Δcode distance
with noncanonical replacements.

Table 4. Typical values for the parameters used in the program: codes:
name of codes. n: total number of program runs; x: number of offspring
codes per generations; i: maximum allowed mutational robustness
(normalized for the standard code); y: ratio of retained codes in each
generation; gmax: maximum number of generations. P: relative weight
(function) that a certain code (based on its ranking according to Δcode) is
used in the next generation to generate offspring codes.

Code n x i y gmax P

X01_unlimited

480 400

unlimited

0.1 50

=0.4*((1–0.4)
Δcode_Rank) α

X02_1_1 1,1
X03_1_01 1,01
X04_1 1
X11_unlimited

480 400

unlimited

0.1 120
X12_1_5 1,5
X13_1_25 1,25
X14_1_1 1,1
X15_i_1 1
X21 480 400 unlimited 0,1 120
X31 480 400 unlimited 0,1 120

α with Δcode_Rank being the rank the new code has according to Δcode to the
standard code. In each generation the code with the highest Δcode has rank
0, so the value for the first code to serve as parent to new codes is thus 0.4.
For the second ranked code P is 0.24 for the third 0.144, fourth 0.0864, etc.

Figure 5. The set of arginine analogues sorted by their polarity values. This set of analogues was considered for replacement of arginine in the genetic code.
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Analysis of the values for arginine, for example, shows that
the largest Δcode (0.4144) is for replacement of arginine with N-
benzoyl ornithine, which lacks a charge, and contains a large
aromatic group that effectively inverts the polarity of the
residue. Very notably, large distance to the natural code can be
obtained even with the maintenance of the positive charge in
the side chain, as can be seen for N-benzyl-ornithine (Δcode=

0.2456). Replacement of arginine with natural metabolic amino
acids such as N-acetyl-ornithine and citrulline generate codes
with Δcode 0.2409 and 0.2091 respectively. Canavanine represent
an interesting example of a natural amino acid, which causes
toxic effects due to its misincorporation into proteins[37] as well
as the impairment of the nitric oxide metabolism.[38] The toxicity
originates partially from promiscuity of the natural arginine-
tRNA synthetase and the translation machinery, which leads to
statistic incorporation of canavanine in places meant to be
occupied by arginine. As this replacement is evidently toxic in
nature, meaning that proteins with canavanine are dysfunc-
tional, one can take it as an example of a natural firewall.
Although, the polarity change in proteins might be not the
exact mechanism of the toxicity, the change in the clogD7

reflects the chemical change upon the amino acid substitution.
The Δcode distance value for the arginine-to-canavanine replace-
ment found in our study was as low as 0.02531. This result
suggests that the firewall does not have to be extreme in value
to readily generate dysfunctional proteomes. Even relatively
low Δcodes may suffice to estrange organisms operating with
noncanonical amino acid substrates in their genetic repertoire.

To illustrate other replacement cases, we selected a few
more noncanonical substitutes with their respective clogD7 and
Δcode, as presented in Figure 7. For example, methionine is often
oxidized into a more polar methionine sulfoxide residue
(Δcode=0.03719) in natural proteins, which is a part of an
oxidative damage that renders proteins dysfunctional.[39] Homo-
propargylglycine (0.0007812), and azidohomoalanine (0.01453)
are common methionine substitutes in proteins employed for
click chemistry applications.[40] Some other methionine ana-
logues represent interesting targets for proteome wide replace-
ment. For instance, norleucine (0.01187) or ethionine (0.0039)
seem to produce moderate Δcode values that might not be
sufficient for a firewall. The phenylalanine analogues shown in
Figure 7 are those that have been used in complete genome-

Figure 6. ClogD7-based Δcode values between standard code and 155 replacement codes, arranged by amino acid and numbered replacement noncanonical
amino acids (see Tables S1 and S2 for details). Replacement Δcode distances span three orders of magnitude, from 7.8×10� 4 (minimal value) to 4.3×10� 1

(maximal value), whereas in natural codes it spans only one order of magnitude, from 2.0×10� 2 to 2.6×10� 1, thus highlighting the opportunity to fine tune
Δcode values with noncanonical amino acid replacement. Note that no replacements were assigned for alanine and glycine. Only those codes that replaced
amino acids throughout their respective codon blocks were included, five codes (R_AGA_1, R_Stop_1, R_Stop_2, R_M_1, R_M_2) are not included in the
figure.
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wide recoded organisms.[9b–d] Interestingly, further analysis of
the Δcode values shows that substitution of phenylalanine with
its acetyl- (0.01375) and acetylamino-containing analogues
(0.02375) did not generate high Δcode values, while substitution
with biphenyl-alanine (0.05156) produced slightly higher value
that may secure a firewall. In addition, the replacement of
tyrosine with acetyl-phenylalanine (0.004375) produces a rather
low Δcode, which is lower when the same amino acid is
supposed to replace phenylalanine (0.009687). The amino acids
fluorotryptophan and thienopyrrolyl-alanine have been incor-
porated proteome-wide in place of tryptophan in course of an
adaptive laboratory evolution.[9a,36a,c] Interestingly, the proteome
wide tryptophan replacements exhibit relatively low Δcode

values, thus the genetic firewall strength is weak if present at all
in these cases. Indeed, it has been observed that the
fluorotryptophan adapted E. coli strains, can still grow on a
tryptophan supporting media, thus a genetic firewall with such
low values (Δcode=0.002188) seems clearly inefficient in imped-
ing gene functionality and horizontal gene transfer.[9a,36a, 41]

Dihydroxyphenylalanine is a common tyrosine post-transla-
tional derivative, and a constitute of the proteins in patients
treated with levodopa,[42] whereas nitro-tyrosine is a common
oxidation stress marker generated from the tyrosine residues in
the presence of nitric oxide.[43] Hydroxyproline is a common

natural post-translationally[44] generated proline substitute,
which can also be incorporated translationally, so as
fluoroproline.[45] For all these cases the metric space approach
allows to establish a numerical estimate for the estrangement
of the genetic code containing the noncanonical substitutes.
Considering evidently detrimental effects from canavanine,
methionine-sulfoxide, and nitro-tyrosine, we conjecture that the
lower bound for a robust genetic firewall is Δcode 0.02.

2.6. Mapping the complete graph of all codes

So far, we have only given one dimensional Δcode distance
values of natural codes, extreme codes and replacement codes
relative to the standard genetic code. But of course, the Δcode

distance can be calculated between any two codes. With more
than just one dimension it is important that the distance metric
fulfills the criteria of a metric space,3[13] defined as:[46]

Figure 7. Selected noncanonical amino acid replacement structures from Figure 6.

3The triangle inequality, in particular, was the reason we discontinued to
square the differences in hydrophobicity values, but used the absolute
difference instead. Imagine that three points A, B and C lie on a straight line.
When the distance from A to B is 5 and B to C is 10 the distance from A to C
is 15. By squaring these values the distance A to B becomes 25, and B to C
100, which is less than the squared distance A to C, namely 225, which is a
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1) Identity: the distance from a point (code) to itself is zero
2) Non-negativity: the distance between two distinct points

(codes) is positive (and hence never negative)
3) Symmetry: the distance from A to B is the same as the

distance from B to A, and
4) Triangle inequality: the distance from A to B (directly) is less

than or equal to the distance from A to B via any third point
C.
This means that a metric space is an ordered pair (M,d)

where M is a set and d is a metric, such that for any x, y, z 2 M,
the following holds:[46]

1) d(x, y)=0⇔ x=y identity of indiscernibles
2) d(x, y)=d(y, x) symmetry
3) d (x, z)�d(x, y)+d (y, z) triangle inequality

From the above three axioms it follows that d(x, y)�0 for
any x, y 2 M.

We used a set M of 204 discernible genetic codes (24
natural codes, 20 extreme codes and 160 replacement codes),

summarized in Tables S1 and S2, and calculated all 20706
possible Δcode distances between them)4.

Figure 8 provides a two-dimensional graphical visualization
of this 203 (n� 1) dimensional space, giving an overview of
distance relations between all codes.

Within the 20706 Δcode values we found two that are in fact
zero, that is between R_Phe_01 and R_Phe_06 (phenylalanine
replaced by fluorophenylalanine and ethynyl-phenylalanine
that have identical clogD7 value of +1.19); and R_Trp_02 and
R_Trp_07 (tryptophane replaced by 4-aminotryptophan and 4-
azatryptophan, both with clogD7 value +0.31). Different amino
acids with identical clogD7 values point to the limits of
resolution to the Δcode metric space. They also point out to the
fact that parametrization of amino acids by just one parameter
cannot reflect the changes in the underlying chemical structure
in its entirety. In spite of this, the polarity index clogD7 is very
sensitive to the changes in the molecules, such as replacement
of a carbon atom with a heteroatom, or changes in the
constitution. For comparison, when considering the molecular
weight, the chance of obtaining same values is much higher.
For example, ornithine, fluoroproline, methoxinine, homo-
threonine all have the same molecular weight. At the same
time, they have differences in polarities that allow to distinguish
between the structures. See supporting Tables S3 and S4 for
comparing molecular weight with clogD7.

violation of the triangle inequality. Using a metric that is based on the
absolute difference instead of the squared difference, fulfills all criteria of the
metric space.
4 In mathematics this is known as a complete graph, which is a graph in
which each pair of graph vertices (codes) is connected by an edge (~code
distance). A complete graph with n graph vertices has 0ptn2ð Þ ¼ n* n� 1

2
edges.

Figure 8. Two-dimensional re-presentation of the complete graph of 204 distinct genetic codes based on graph drawing by force-directed placement. The
farther away two codes are the more different they are. Large blue circle: standard code N00_1, pink: natural codes (N); brown: selected replacement codes
(R); green: extreme distance codes (X). For better visibility, not all codes are labeled. Note that this is a 2D representation of a 203 dimensional space, which
means the length of the 20706 edges (gray lines) is not exactly the same as the real values, but an approximation based on the error minimization
Fruchtermann and Reingold algorithm.[59] For an interactive 3D representation of the graph, see ref. [47].
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Since clogD7 gives a precision of two digits behind the
comma, the smallest theoretically possible Δcode is as in
Equation (2) and every Δcode is a multiple of this.

Dcode min ¼
0:01
64 ¼ 0:00015625 (2)

In our set of codes, we indeed found one pair that has
exactly the Δcode min namely between R_Trp_05 and R_Trp_13,
where tryptophane was replaced by 5-bromotryptophan and
benzothiophenyl-alanine with clogD7 values of +1.91 and
+1.92, respectively.

The highest Δcode value in our set of codes was 5.0439
between X31_unlimited and R_Leu_10 (leucine replaced by
mirystyl-glycine), which is 32281 times Δcode min, so Δcode values
span a total of four orders or magnitude in our code set.

2.7. Using the Δcode metrics

In mathematics a complete graph is a graph in which each pair
of graph vertices (codes) is connected by an edge (Δcode

distance). A complete graph with n graph vertices has

n

2

 !

¼ n*
n � 1
2

edges.
Right now, it is not known, how large Δcode has to be in

order to bring the horizontal gene transfer below a certain
probability or acceptable level. We can assume, however, that

Δcode values below 0.002 -as in the case of proteome wide
tryptophan replacements with fluorotryptophan in adapted E.
coli strains- should definitely be too low to guarantee a gene
transfer impediment. Arginine-to-canavanine so as methionine-
to-methionine sulfoxide replacement, that form dysfunctional
proteins and are thus toxic to cells, yield Δcode values of about
0.02-0.04 and might be a first hint of a lower bound for a
genetic firewall.

With the Δcode metric space, we provide a metric that is not
restricted to canonical amino acids but open to noncanonical
amino acids. Here, we suggest a metrological basis to design
and carry out dedicated future experiments to measure
horizontal gene transfer depending on Δcode distance (Figure 8
in 2D and ref. [47] in 3D). We suggest that the difference
between two genetic codes should reach a sufficient Δcode value
in order to reach a genetic isolation between corresponding
organisms. We expect this to happen when one or several
codons are recoded with amino acids that are distinctly
different in its polarity to the original canonical one.

As an example, arginine and serine are coded by six codons
each. A substitution of arginine (clogD7� 3.94) with homoargi-
nine (� 3.49) has been previously accomplished at one codon.[48]

Here, the difference between the amino acid structures is only
one methylene unit, and this is reflected in a rather small
difference between the polarities of two amino acids. When
taken at just one arginine codon (Δcode=0.007031), this replace-
ment is not expected to reach the firewall threshold level.
Conversely, when taken at all six codons (Δcode=0.04218), this
replacement may produce a Δcode value that may operate as a
(weak) firewall (Figure 9A). In the case of serine, a replacement
with very distinct amino acids, such as recoding serine
(clogD7� 1.66) with phospho-serine (� 4.89) should yield a

Figure 9. Examples of amino acid replacement strategies towards genetic isolation of organisms that can be experimentally scrutinized.
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higher Δcode value even with one codon re-assignment (Δcode=

0.05; Figure 9B).
Another example we would like to discuss is the substitu-

tion of tryptophan with its analogues containing additional
moieties. It has been mentioned that replacement of trypto-
phan with fluorotryptophan does not result in a large Δcode due
to relatively low polarity differences between the amino acid
structures. However, we would like to propose to alienate the
adapted strains further in a stepwise manner. Since fluorotryp-
tophan (clogD7 +1.28) is more hydrophobic compared to
tryptophan (+1.14), the next substitution should proceed
towards even more hydrophobic analogues: methyltryptophan

(+1.65), bromo-tryptophan (+1.91), trifluoromethyltryptophan
(+2.02), tert-butyl-tryptophan (+2.69), but not hydroxytrypto-
phan, which is more hydrophilic compared to the parent
structure (+0.84). While an immediate replacement of an amino
acid with a distinctly different analogue might be too difficult
to achieve, its stepwise replacement seems to be more practical
(the same principle is applied for example in fish ladders).
Eventually, tert-butyl-tryptophan might yield an isolation level
(Δcode 0.024) with a significant reduction in horizontal gene
transfer efficiency (Figure 9C).

Another potential option is the step wise alienation of
several amino acids, one after another to generate higher and
higher Δcode values, and thus more alien genetic codes. As a
mind experiment, we could suggest replacement of tryptophan
with hydroxytryptophan, tyrosine with fluorotyrosine, phenyl-
alanine with acetylphenylalanine, methionine with ethionine,
lysine with N-methyl-lysine. Each of these substitutions alone
generates a rather small difference in the genetic code that
would probably be insufficient for genetic isolation. However,
when taken together, these can actually feature the Δcode value
needed to reach the firewall (0.032; Figure 9D). In this way,
consideration of the Δcode value might help to build exper-
imental strategies for genetic code engineering.

In the distant future, the Δcode map could be very useful
when it is necessary to locate existing and new codes with
required minimal distances to the existing set of codes. For
example, it could be required to keep a certain Δcode distance to
all the natural codes and engineered codes that have been or
are foreseen to be released into the environment in order to
impede horizontal gene transfer between them, maintaining
existing genetic firewall strength of existing codes. These
restricted areas around existing codes would make sure that no
intermediate code “stepping stones” are established that would
weaken existing genetic firewalls, like a fish ladder helps fish
overcome a steep dam. For a related albeit inverse example in
ecology, see “ring species”.[49]

The map could also help to point out empty areas, genetic
code voids, that could be colonized without risking the
proximity of close neighbors and thus horizontal gene transfer.

Yet, another future application of the Δcode metrics is
making available a highly secure barcoding of synthetic biology
agents in order to facilitate unique identification, tracing and if
necessary, forensics. So far, the concept of genetic barcoding is
based on incorporation of specific genetic “watermark” sequen-
ces into the genome that could later be sequenced to identify
the strain. These barcoding sequences, however, might get lost
due to mutation and selection pressure.[50] For what we know,
genetic code seems highly conserved and extremely stable over
long evolutionary timescales, certainly more stable and long-
lasting than a genetic sequence. Given the almost limitless
amount of potential genetic codes, future advances in modify-
ing the genetic code will open the door to use the genetic code
itself as the barcode. The Δcode based genetic code map could
support the rational allocation of genetic codes to serve as a
form of barcoding that is deeply embedded in the organisms
and extremely difficult to shed off or lose, hence the term
“deep barcoding”.[51]

Figure 10. Overview of the program routine to identify extreme distance
codes. For more details on the parameters, see Table 4. Each time the
program reaches Stop, the total number of runs (n) is increased by 1.
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2.8. Generalization to other types of codes: expansion and
limitations

The metric is applicable for all codes who share the same base
alphabet (e.g., A, U, G, C) and codon length (e.g., 3) resulting in
43=64 codons. Alternative approaches to genetic code engi-
neering involve modification of: codon length, such as in
quadruplet codons,[52] the nucleic acid structure,[8a] and different
base pairs.[53] All these examples employ a different chemical
principle to build genetic isolation. The Δcode metric only
considers what happens on the level of the proteome, and
cannot easily integrate phenomena that occur on the level of
the nucleic acid and decoding principles. For example, the
metric cannot be used to compare a AUGC triplet with a AUGC
quadruplet code.[52,54] However, the metric can indeed be
adapted to compare all codes within the quadruplet combina-
torial code space, by enlarging the number of codons from 64
to 256.

Although direct comparison of quadruplet to triplet codes is
not possible, triplet to triplet codes with distinct base pairs is
feasible. Take, for example, an extended genetic alphabet with
three instead of two base pairs (the two canonical base pairs
plus one noncanonical one) organized in triplets.[53,55] The
resulting 63=216 codons contain the 64 canonical triplets plus
152 codons that contain one or both of the new bases. Within
this larger codon set, the standard code can be notated as
having the 64 canonical codons assigned as stop and sense
codons, and the remaining 152 codons assigned as empty. All
distance calculations performed in this manuscript can also be
performed in the 63 codon space. All Δcode values presented in
this manuscript would have to be multiplied by 64/216 and all
distance relations would remain the same.

Yet another situation is the modification of the nucleic acid
backbone[8a,c, 56] resulting in xeno nucleic acids (XNA), such as
hexitol nucleic acid[57] or cyclohexenyl nucleic acids.[58] It is not
possible to directly link chemical modifications in the protein
structure with the structure of the XNA. Additional complica-
tions arise from the fact that the genetic information operates
via two nucleic acids: a transcription messenger (DNA) and a
translation messenger (RNA).

It remains to be seen how potential future organisms with
XNAs will interact with DNA/RNA and other XNA based
organisms. The design or directed evolution of (reverse) tran-
scriptases that convert either between different XNAs, between
XNA and DNA, or between XNA and RNA[8a] has already started
and could at one point overcome the orthogonality of the
different XNA organism. In this case the different nucleic acid-
based organisms could be made accessible to a unified Δcode

metric.
The fact that (reverse) transcriptases can possibly overcome

the orthogonality embedded in nucleic acids, once again
highlights the value of semantic containment, such as genetic
code engineering.

3. Conclusions

Genetic code engineering provides an invaluable set of
solutions that will advance both our understanding of bio-
chemistry and biotechnology of the future. One of the most
intriguing outcomes of it is that is suggests that the genetic
code universality can be manipulated. Thus, we can envision a
set of living species that will operate under different genetic
codes: their genes are (for now) written in same nucleic acid
alphabet, but the meaning behind these letters, the translation
to protein sequences is different. In this work, we considered
two major options for the genetic code engineering: reshuffling
of the already existing amino acid assignments and introducing
noncanonical amino acids (and empty codons) in the repertoire.

Here, we introduced and examined a versatile metric to
quantify the distance between the different genetic codes
numerically. The clogD7 based Δcode metric proposed here is
capable of calculating the distance not only of genetic codes
with the 20 canonical amino acids, but allow also for the
incorporation of a vast number of noncanonical residues. A
notable improvement in the calculation was the discontinuation
of the mean square difference in favor of the mean absolute
difference, which allows the establishment of a true metric
space that can represent the correct distance relations between
various natural and engineered genetic codes. The resulting
value matrix may therefore become a tool to identify the
position of any new code relative to other available codes.

In the core of our approach, we followed the polar/nonpolar
dualistic scale that is a common classificatory for amino acids.
The reason for this is that most of the amino acids structurally
share the same type of backbone with only the side chains
varying. This architecture principle was suggested to be called
the alanine world.[9f] In the frame of this world, the side chains
are the functional elements that differ amino acids to one
another. We used the clogD7 as a value that can be easily
obtained for any given structure using contemporary empirical
prediction programs and databases. We then calculated the
distance value Δcode between the natural and engineered
(existent and potentially interesting) genetic codes.

We found that the novel clogD7-based scale correlated fairly
good with the previously existing scales, that are also polarity
based. The natural codes displayed the Δcode values in the range
0.00 to 0.26 from the standard code. For comparison, the most
extreme codes that were generated by complete reshuffling of
the codon assignments displayed values up to 4.828 from the
standard code.

We then examined the codes that can be generated by
replacement of the canonical amino acid with their chemical
noncanonical analogues. The distances ranged from 0.00078 for
methionine-to-homopropargyl-glycine substitution to 0.43 for
leucine-to-mirystyl-glycine substitution, thus the range of values
spans three orders of magnitude. The strongest determinants
for the distance values of replacement codes are the polarity
differences to the parent structures (in clogD7 units) and the
number of codons occupied by the canonical substrate.
Interestingly, experiments have been published that showed a
genome-wide replacement of tryptophan by analogues, how-
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ever, the corresponding species can still accept tryptophan for
the structures of their proteins even when completely adapted
to a noncanonical replacement.[9a,36] We found that in these
cases the distance values to be very low: 0.0022 for fluoro-
tryptophan and 0.0017 for thienopyrrolyl-alanine. From this, we
suggest that the polarity differences introduced by these
structures of the amino acids into proteome may not be
sufficient to establish a genetic firewall. A lower bound for a
genetic firewall is more likely to be in the range of the arginine-
to-canavanine and methionine-to-methionine sulfoxide replace-
ments, Δcode of about 0.02, that proved to be toxic. For a final
verdict, we propose to carry out dedicated experiments to
evaluate gene transfer under different Δcode distances. In this
way the proposed metric space can support specifications for
the design, build, test, and learn cycle[60] for what is called
semantic biocontainment.

Limitations of the study include the known problem of
assigning a numerical value to sense to stop, or sense to empty
codon changes, for which we provided a “patch” in substituting
a value that is the largest clogD7 difference between any two
canonical amino acids. Future Δcode dependent gene transfer
and expression experiments may contribute to a more
adequate substitution value. Also, the clogD7 values represent
only the polar nature of the sidechains, while the backbone
features such as structure propensities or solvation are much
harder to enumerate and take into account. The metric can
always be applied to a set of genetic codes that have the same
codon length, shared base pairs and the same transcription
messenger chemistry (e.g., RNA). This fact points out the need
for a numerical approach in parametrizing modifications of
nucleic acids (XNA) and codon length (e.g., quadruplet code).

We claim that the more distant the genetic code is between
two organisms, the lower are the chances that the genetic
information could “leak” through horizontal gene transfer. This
form of semantic isolation could be used as a genetic firewall
for synthetic biology agents[5,18a] to shield their genetic
information from natural organisms and vice versa, but also
between synthetic biology agents with different codes. Despite
the claim that synthetic biology is the true application of
engineering principles to biotechnology, right now there are
surprisingly few metrics (and standards) available.[61] The Δcode

metric provided here might fill the gap to allow for a rational
design in genetic code engineering, to enable an intrinsic form
of (deep) barcoding and to control horizontal gene flow via
semantic biocontainment.

Experimental Section
Genetic algorithm for extreme distance code generation. : A
genetic algo2rithm was programmed in Python 3.7. to evolve the
standard genetic code into extreme distance codes.

The genetic algorithm aims to maximize the genetic distance
between the new and the standard code while maintaining a
defined upper threshold for error threshold, i. Calculations were run
on a MacBookPro (OSX 10.14.6; 16 GB RAM, 2,3 GHz Intel Core i9, 8
core) with Python 3.7. run on Anaconda’s Navigator 1.19.12.
Scientific Python Development EnviRonment (SPYDER) 3.3.6.

In order to generate variations of the standard genetic code, a
genetic algorithm with six key parameters was used (Figure 10 and
Table 4), inspired by the Non-Dominated Sorting Genetic
Algorithm.[62] The genetic codes were explored in Python and new
codes were generated starting from the standard code and using a
swap operator (for codes X0+). The operator interchanged the
contents of two codon sets (a codon set includes all triplets that
code for the same amino acid), that is, once two codon set have
been randomly selected, the amino acids codified by the two
respective codon sets are swapped.[30]

The X1+ new codes were generated starting from the standard
code. Two codons were randomly chosen and the amino acid of
the first codon was “copied” into the second codon, as long as this
step didn’t eliminate an amino acid from the entire code. In codes
X0+ and X1+ the stop codons were not changed.

For the X21 code only one codon (UAA) was reserved for the stop
and kept unchanged. Codons UAG and UGA were made the 21st
codon block, in addition to the 20 codon blocks from the standard
code. Next the 20 amino acids and the designation empty codon
was randomly assigned to the 21 codon blocks. This code was used
as the starting point (and not the standard code as in X0+ and X1
+) and then the same amino acid replacement strategy was applied
as in codes X1+ , with the exception that also empty codons could
be copied to other codons.

For the X31 there was no reserved or fixed codon or codon block.
20 amino acids, a stop and a empty designation were randomly
assigned to the 64 codons, the only restriction being that the codes
must have all 20 amino acids and a stop codon present. Then the
same acid replacement strategy was applied as in code X21.

Figure 8 was generated by using the full matrix of all 204 codes
and their 20706 Δcode values (edge; Table S1). All edge values were
converted by using Equation (3):

Dcode springlayout ¼
1

Dcode2 (3)

to meet the requirements of force-directed placement drawing. The
fruchterman_reingold_layout from the networkx python library was
used with iterations=105, threshold=10� 16, dimensions=2, scale=

5.0. The 3D graph shown at http://markusschmidt.eu/3DG/exam-
ple/GCE/index.html is based on the 3D force graph software kit
available under: https://github.com/vasturiano/3d-force-graph. In
the 3D visualisation no conversion of edge values was needed.
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