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Abstract Plants are at the trophic base of terrestrial ecosystems, and the diversity of plant

species in an ecosystem is a principle determinant of community structure. This may arise from

diverse functional traits among species. In fact, genetic diversity within species can have similarly

large effects. However, studies of intraspecific genetic diversity have used genotypes varying in

several complex traits, obscuring the specific phenotypic variation responsible for community-level

effects. Using lines of the wild tobacco Nicotiana attenuata genetically altered in specific well-

characterized defense traits and planted into experimental populations in their native habitat, we

investigated community-level effects of trait diversity in populations of otherwise isogenic plants.

We conclude that the frequency of defense traits in a population can determine the outcomes of

these traits for individuals. Furthermore, our results suggest that some ecosystem-level services

afforded by genetically diverse plant populations could be recaptured in intensive monocultures

engineered to be functionally diverse.

DOI: 10.7554/eLife.04490.001

Introduction
In The Origin of Species, Darwin wrote that ‘varieties are species in the process of formation’ (Dar-

win, 1876). We now know that Darwin’s ‘varieties’ are polymorphic characters resulting from natural

genetic variation within species. The geneticist Dobzhansky (1973) echoed Darwin’s view: ‘It is evi-

dent that the differences among proteins at the levels of species, genus, family, order, class, and

phylum are compounded of elements that vary also among individuals within a species’. It has also

long been known that intraspecific genetic variation in plants can alter ecological community struc-

ture; for example, in 1960, De Wit reported that the reproductive output in mixtures of the grass

species Anthoxanthum odoratum and Phleum pratens depended on associations of particular geno-

types (De Wit, 1960; Allard and Adams, 1969). However, efforts to measure the broader conse-

quences for communities are more recent (Antonovics, 1992; reviewed in Haloin and Strauss,

2008) and include the recently described field of community genetics.

Community genetics aims to quantify how genetic variation in specific traits affects the structure

of ecological communities (reviewed in Whitham et al., 2006; Haloin and Strauss, 2008;

Whitham et al., 2012). Genes most likely to have community effects are those with a large effect in

the foundation species that structure communities (Whitham et al., 2006), and plants are foundation

species in almost all communities (Haloin and Strauss, 2008). Community genetics is a basic level of

investigation—meaning it is close to the basic unit acted on by evolution, the gene—within the

larger effort to meet what Haloin and Strauss (2008) refer to as ‘one of the supreme challenges of

biology’: understanding how the feedback loops between community ecology and evolution shape

biodiversity.
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The maintenance of biodiversity and the ecosystem services it supports is a matter of increasing

concern as the human population grows, and agricultural resource use increases (Green et al.,

2005). In a meta-analysis of 446 biodiversity measures taken between 1954 and 2004, of which 312

manipulated plant species biodiversity, species-level biodiversity was shown to positively affect sev-

eral ecosystem properties including stability, regulation of biodiversity, nutrient cycling, erosion con-

trol, and productivity at the primary, secondary, and tertiary levels (Balvanera et al., 2006).

Functional differences among species are often thought to be the source of effects resulting from

species-level biodiversity (Ebeling et al., 2014). In fact, a growing number of studies has shown that

genetic diversity within species can have large effects on ecological community composition (e.g.,

Crutsinger et al., 2006; Johnson et al., 2006; Cook-Patton et al., 2011). Whitham et al. (2012)

refer to the genetically based tendency for particular genotypes to support different ecological com-

munities as ‘community specificity’. Some, or even most, biodiversity effects may be explained

through the community specificity of particular genetic traits.

Four postulates of community genetics provide the roadmap for understanding the community

effects of genes (Wymore et al., 2011; Whitham et al., 2012): (1) the focal species must have a sig-

nificant effect on its community or ecosystem, (2) the trait under investigation must be genetically

eLife digest Plants are at the base of many food webs. This means that the different traits and

characteristics of the plant species in an ecosystem can have a large impact on the animals and

other organisms that live there.

Individuals within the same plant species often differ in multiple genes. This ‘genetic diversity’

can affect the populations of other organisms in their ecosystem, for example, by altering which

species are present, and the number of individuals. However, previous studies that investigated

plant genetic diversity in ecosystems used plants that varied in multiple, usually unknown, genetic

traits, which made it difficult to identify specific genetic traits in plants that can influence the whole

ecosystem.

One way that plants affect their ecosystems involves how they defend themselves against the

herbivores that try to eat them. For example, plants can use sharp spines or harmful chemicals to

deter herbivores, or attract predators that will attack the herbivores.

Here, Schuman et al. carried out a 2-year field study using wild tobacco plants that had been

genetically altered to employ different defensive strategies. This was achieved by altering the

expression of three genes in the plants in specific combinations. Two of the genes, called LOX2 and

LOX3, are required to make most of the chemicals that tobacco plants use to defend themselves

against herbivores. The third gene, called TPS10, which comes from the crop plant maize, gives

plants the ability to release a fragrance that attracts natural predators of their herbivores.

Except for these specific alterations, the plants were otherwise genetically identical. These plants

were then grown either alone, or in groups of five plants, which reflects the normal size of groups of

wild tobacco growing in its natural environment. The groups contained mixtures of plants with

different gene alterations.

Schuman et al. found that the expression levels of these genes in individual plants could

determine how well the whole group fared in several different measures of plant health and

defense. For example, plants lacking LOX2 and LOX3 usually appeared to be less healthy and they

were less likely to survive long enough to reproduce because they were less able to defend

themselves against herbivores. However, if these plants were grown in a group with one plant that

expressed TPS10, all of the plants in the group looked healthier and were more likely to survive long

enough to reproduce.

Many crops are grown in large fields containing individual plants that are largely genetically

identical, which makes them more vulnerable to disease. Schuman et al.’s findings suggest that

some of the community-level protective effects provided by diversity in wild populations of plants

could be introduced into crop fields by altering the expression of a few specific genes in some

individuals.

DOI: 10.7554/eLife.04490.002
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based and heritable, (3) conspecifics differing genetically in this trait must have quantifiably different

effects on community and ecosystem processes, and (4) a predictable effect on those community

and ecosystem processes must follow when the gene of interest is manipulated. As Koch’s postu-

lates first allowed medical researchers to identify disease-causing agents, these postulates allow

community geneticists to identify genes responsible for structuring specific aspects of ecological

communities. So far, although postulates one through three have been satisfied in several ecological

systems, postulate four—the critical step in attributing community functions to specific genes—has

been tested in only a handful of systems (Whitham et al., 2006; 2012). Whitham et al. (2012) sug-

gest that improved genetic tools will soon permit the widespread testing of postulate four, as has

been done for nicotine in the wild tobacco Nicotiana attenuata: an ecological model plant with a

transformation system and a well-characterized ecological community (Krügel et al., 2002;

Steppuhn et al., 2004; Kessler et al., 2008; reviewed in; Schuman and Baldwin, 2012).

In this study, we built on deep molecular ecological knowledge of N. attenuata to demonstrate

that all four postulates for genes controlling a suite of ecologically characterized defense traits

(Kessler and Baldwin, 2001; Kessler et al., 2004; Allmann and Baldwin, 2010; Schuman et al.,

2012). Specifically, we manipulated direct defenses: traits which directly reduce plant fitness loss to

herbivores, and indirect defenses: traits which attract enemies of herbivores which remove or impair

herbivores, and thereby indirectly reduce plant fitness loss to herbivores. N. attenuata’s direct and

indirect defenses, their biosynthesis and ecological functions have been characterized in detail over

two decades of research (reviewed in Schuman and Baldwin, 2012). The direct defenses comprise a

suite of chemical traits, most of which are induced by herbivory via jasmonate signaling, and geneti-

cally silencing these defenses causes significant changes in herbivore communities (Kessler et al.,

2004; Gaquerel et al., 2010; Kallenbach et al., 2012). N. attenuata also produces a complex blend

of herbivore-induced plant volatiles (HIPVs) which can be parsed into terpenoids, GLVs and other

fatty acid derivatives, and aromatics, and are regulated by elicitors in herbivore oral secretions (OS)

(Gaquerel et al., 2009; Schuman et al., 2009). Of these, the jasmonate-regulated sesquiterpene

(E)-a-bergamotene (TAB) and the GLVs have been shown to reduce herbivore loads by attracting

predators, which for the GLVs has also been shown to result in greater plant fitness

(Halitschke et al., 2000; Kessler and Baldwin, 2001; Halitschke et al., 2008; Schuman et al.,

2009; 2012; Allmann and Baldwin, 2010). The majority of N. attenuata’s direct and indirect chemi-

cal defenses can be abolished by silencing the expression of two biosynthetic genes: LIPOXYGE-

NASE 2 (LOX2), which provides substrate for GLV biosynthesis; and LOX3, essential for jasmonate

biosynthesis, and thus also for the expression of most direct defense traits and the emission of TAB

(Kessler et al., 2004; Allmann et al., 2010).

We specifically manipulated the expression of genes controlling direct and indirect defense traits

in a factorial design by combining the silencing of LOX2 and LOX3 with the overexpression of Zea

mays TERPENE SYNTHASE 10 (TPS10), which produces TAB and (E)-b-farnesene (TBF) as its main

products (Köllner et al., 2009; Schuman et al., 2014). This allowed us to independently manipulate

total direct and indirect defenses, and the specific volatiles, TAB and TBF. We grew these trans-

genic, otherwise isogenic genotypes during two consecutive field seasons, both in replicated popu-

lations of different compositions, and as individuals.

Studies of genetic diversity and community specificity most commonly measure the diversity and

composition of invertebrate communities on plants, but also invertebrate abundance, and occasion-

ally functional measures such as predation rates (reviewed in Haloin and Strauss, 2008). We focused

on correlates of plant fitness: plant size, apparent health, flowering, and mortality before reproduc-

tive maturity; and on functional measures of the effectiveness of plant defense: total canopy damage

from herbivores, herbivore abundance, and predation services received by plants in populations.

The functional measures were chosen to reflect our observation of plants’ ecological communities in

both years. Nearly, all of these measures of plant fitness and interactions with herbivores and their

predators were significantly affected not only by the genotype of individual plants, but by neighbor-

ing genotypes in populations.

Results
Data from the study was deposited in Dryad (10.5061/dryad.qj007, Schuman et al., 2015).
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Genetically engineered phenotypes are maintained in experimental
populations
Transgenic lines manipulated in the emission of TAB, TBF, and GLVs, and the production of total

jasmonate-mediated defenses (Figure 1 and associated source data files) were screened and charac-

terized as described in Appendix 1. To investigate the community-level effects of variation in TAB

and TBF in well- and poorly defended plants, we used four genotypes: WT plants, which have jasmo-

nate-mediated induced direct defense compounds and herbivore-induced volatile emission compris-

ing primarily sesquiterpenes and GLVs; TPS10 plants, which are like WT but have both enhanced

induced, as well as constitutive emission of the herbivore-induced sesquiterpenes TAB and TBF

(Schuman et al., 2014); lox2/3 plants, which are deficient in both jasmonate-mediated direct

defense compounds and herbivore-induced volatiles, and lox2/3xTPS10 plants, which are like lox2/3,

but with constitutive emission of TAB and TBF.

These genotypes were grown as individuals and in five-plant populations in a field plot in N.

attenuata’s native habitat (Figure 2A, Figure 2—figure supplements 1, 2). A population size of five

plants is realistic for natural populations of N. attenuata (Figure 2—figure supplement 3), particu-

larly before 1995, after which an invasive brome grass fueled a dramatic increase in fire sizes and

consequently N. attenuata population sizes. This choice of population size also allowed us to clearly

differentiate between edge and center positions (Figure 2B). Populations were either monocultures,

or mixed cultures containing a single TPS10-expressing plant at the center and plants of the same

defense- and HIPV level at the edges (WT around TPS10, and lox2/3 around lox2/3xTPS10,

Figure 2B).

There was no effect of population type (individual, monoculture, mixed culture) or plant position

(individual, edge, center) on genetically engineered levels of GLVs, jasmonate-mediated defense

(trypsin protease inhibitor [TPI] activity served as an indicator), TAB and TBF (Figure 1C, Figure 1—

source data 3 and details in Appendix 2), with one exception: trace amounts of TAB were detected

in open headspace trappings around young lox2/3 plants at the edges of lox2/3 + lox2/3xTPS10

mixed cultures, but not around lox2/3 individuals or lox2/3 plants at the edges of monocultures

(Figure 3).

LOX2 and LOX3 expression reduce foliar herbivore abundance and
damage, while TPS10 expression further reduces herbivore abundance
Prior to the field experiment, we tested whether TPS10 expression affects defense against a special-

ist herbivore in a WT or LOX2/3-deficient background via a no-choice assay with larvae of the natu-

rally co-occurring solanaceous specialist Manduca sexta in the glasshouse. M. sexta larvae grew five

times as large on lox2/3 or lox2/3xTPS10 plants as they did on WT or TPS10 plants (Figure 4; Wil-

coxon rank sum tests, Holm-Bonferroni-corrected p-values <0.001). In contrast, larvae grew to similar

sizes on plants that differed only in the TPS10 overexpression construct (corrected p-values >0.2).

The progression of M. sexta larval instars was also faster on LOX2/3-deficient plants: all larvae feed-

ing on lox2/3 or lox2/3xTPS10 were in the third instar by day 8, while 11/17 larvae feeding on WT

and 12/15 larvae feeding on TPS10 were still in the second instar (corrected p<0.001 in Fisher’s tests

for lox2/3 v. WT, lox2/3 v. TPS10, lox2/3xTPS10 v. WT, and lox2/3xTPS10 v. TPS10, corrected

p=0.4440 for WT v. TPS10, and corrected p=1 for lox2/3 v. lox2/3xTPS10).

In the field, total canopy damage from foliar herbivores was assessed on June 9th in season one,

and June 2nd in season two. Canopy damage in both seasons was due to both generalist and spe-

cialist herbivores from chewing and piercing-sucking feeding guilds. The generalists included noctuid

larvae, Trimerotropis spp. grasshoppers, Oecanthus spp. tree crickets, and leaf miner spp.; the spe-

cialists included the sphingid larvae M. sexta and Manduca quinquemaculata, flea beetles Epitrix hir-

tipennis and E. subcrintia, and the mirid Tupiocoris notatus. Canopy damage from herbivores was

more than twice as great in season two (9–24% total canopy) as in season one (2–9% total canopy).

In both seasons, lox2/3 and lox2/3xTPS10 plants accumulated twice as much canopy damage as

WT and TPS10 plants, regardless of plant position or population type (Figure 5 and associated

source data files): there were no significant differences during either season between plants or popu-

lations differing only in TPS10 expression, or plants of the same genotype in mono- vs mixed cul-

tures with single TPS10-expressing plants; details of statistical tests are given in Appendix 3.
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Figure 1. The lox2/3 and TPS10 transgenic constructs, alone and in combination (lox2/3xTPS10), independently alter herbivore-induced plant defenses

and sesquiterpene HIPVs. (A) The endogenous lipoxygenase genes LOX2 and LOX3 and the Z. mays sesquiterpene synthase gene TPS10 (TPS10) were

manipulated in transgenic lines of N. attenuata in order to uncouple the production of two HIPVs—the sesquiterpenes (E)-a-bergamotene (TAB) and

(E)-b-farnesene (TBF)—from jasmonate-mediated direct defenses and other volatiles. LOX2 and LOX3 provide fatty acid hydroperoxides from 18:2 and

18:3 fatty acids (18:2/18:3-OOH) for the synthesis of green leaf volatiles (GLVs) or jasmonic acid (JA) and the jasmonate-derived hormones, respectively.

GLVs are released in response to herbivore damage, and jasmonates regulate the production of most anti-herbivore defenses, including trypsin

protease inhibitors (TPIs), and other HIPVs. LOX2 and LOX3 were transgenically silenced using an inverted repeat (ir) construct specifically silencing

both (lox2/3). Jasmonate-regulated volatiles in N. attenuata are mostly sesquiterpenes, of which the most prevalent is TAB, and include trace amounts

of the biosynthetically related sesquiterpene TBF. The Z. mays sesquiterpene synthase TPS10 (Köllner et al., 2009), which produces TAB and TBF as its

main products, was ectopically over-expressed in N. attenuata plants under control of a 35S promoter (TPS10) to uncouple the emission of these

volatiles from endogenous jasmonate signaling. (B and C) Plants with lox2/3 and TPS10 constructs, and a cross with both constructs having the

transgenes in a hemizygous state (lox2/3xTPS10) had the expected phenotypes both in glasshouse and field experiments. For each compound or group

of compounds, the mean WT value was set to 1 (indicated by dashed lines), and all values were divided by the WT mean resulting in mean fold

changes ±SEM. A complete description of TPS10 plants including the demonstration of a single transgene insertion and WT levels of non-target

metabolites is provided in Schuman et al. (2014), and additional information for lox2/3, TPS10, and lox2/3xTPS10 plants (single transgene insertion for

lox2/3, accumulation of target gene transcripts) is given in Appendix 1. (B) Glasshouse-grown plants were treated with wounding and M. sexta OS, and

Figure 1 continued on next page
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Damage observed could be attributed to specific herbivores according to typical feeding patterns

and the observation of feeding individuals. Individual herbivores generally followed the trend of total

herbivore damage, causing greater damage on lox2/3 and lox2/3xTPS10 plants (Figure 5—source

data 1, 2). The largest and most significant differences (p-values < 0.05) were between plants with

vs without the lox2/3 silencing construct (lox2/3 and lox2/3xTPS10 v. WT and TPS10, statistical com-

parisons in Figure 5—source data 1, 2). All significant differences were between plants or popula-

tions with vs without the lox2/3 silencing construct, and never between plants or populations

differing only in the TPS10 overexpression construct, nor between plants of the same genotype in

different population types (Figure 5 and associated source data files). It should be noted that in sea-

son one, multiple lepidopteran species were present on plants and their damage could not be

clearly distinguished; since these included generalist species as well as Manduca spp., lepidopteran

damage in season one also could not be categorized as generalist or specialist damage (Figure 5—

source data 1). In season two, lepidopteran damage not resulting from experimental infestation for

predation assays (not counted toward total canopy damage) was due to noctuid species (Figure 5—

source data 2).

The abundance of arthropods on plant shoots was quantified for a subset of plants on June 26th

in season two, at which time T. notatus adults and nymphs and Epitrix spp. adults were the only

foliar herbivores observed. Interestingly, total herbivore abundance at the end of the season did not

entirely reflect foliar herbivore damage assessed on June 9th (Figure 5B), although a visual assess-

ment of the plants indicated that relative herbivore damage levels still reflected the June 9th data:

herbivores were less abundant on plants expressing TPS10, independently of lox2/3 expression

(Figure 6A and associated source data files). Herbivore abundance on WT plants differed depending

on plants’ location: in a comparison of abundance on individuals vs plants at the edges or centers of

monocultures, abundance was highest on individuals and lowest on center plants. In contrast, herbi-

vore abundance on TPS10-expressing plants did not depend on plant location (Figure 6B, Appendix

3). Foliar herbivore abundance on WT and lox2/3 edge plants was not affected by the presence of a

TPS10-expressing neighbor: neither population type (monoculture or mixed culture), nor the interac-

tion of genotype with population type was significant. However for WT and lox2/3 edge plants, her-

bivore abundance did vary as a function of genotype, with abundance indeed being greater on lox2/

3 edge plants (Figure 6C, Appendix 3), consistent with greater damage to these plants (Figure 5D).

Figure 1 continued

JA, GLVs, TAB and TBF were analyzed at the time of peak accumulation; n = 4. For lox2/3 and lox2/3xTPS10, GLVs were not quantifiable (NQ) by GC–

MS due to inconsistently detected or no detected signals. ***p<0.001 in Tukey HSD tests following a significant one-way ANOVA (p<0.001) of WT,

lox2/3, and lox2/3xTPS10; # plants with the TPS10 construct emit significantly more TAB + TBF (Holm-Bonferroni-corrected p<0.01 in a Wilcoxon rank

sum test of WT and lox2/3 vs lox2/3xTPS10 and TPS10); ns, not significant. TBF was not detectable in lox2/3 or WT samples. For absolute amounts of

JA and other phytohormones, GLVs, TAB and TBF measured in glasshouse samples, see Figure 1—source data 1, 2. (C) TPI activity, total detectable

GLVs, and total TAB and TBF measured in frozen leaf samples harvested from field-grown plants at the end of experimental season two (June 28th),

after plants had accumulated damage from naturally occurring herbivores. TPIs (n = 11–24) were slightly elevated in field samples of TPS10 plants, but

TPI activity did not differ from WT plants in glasshouse samples from two independent TPS10 lines including the line used for this study

(Schuman et al., 2014). Total GLVs, TAB, and TBF were quantified by GC–MS in hexane extracts from the same tissue samples used to measure TPI

activity, n = 9–22 (a few samples had insufficient tissue for the analysis). Neither TAB nor TBF could be detected in lox2/3 samples (NQ); TBF was also

not detectable in WT samples. *Corrected p<0.05, ***corrected p<0.001 in pairwise Wilcoxon rank sum tests following significant (corrected p<0.05)

Kruskal–Wallis tests across all genotypes for each category; p-values were corrected for multiple testing using the Holm-Bonferroni method; ns, not

significant. For absolute amounts of TPIs, GLVs, TAB and TBF, and non-target volatiles measured in field-collected tissue samples, see Figure 1—

source data 3; emission of GLVs, TAB, TBF, and non-target volatiles from field-grown plants is given in Appendix 2.

DOI: 10.7554/eLife.04490.003

The following source data is available for figure 1:

Source data 1. Absolute values for JA and GLVs shown as fold-changes in Figure 1B in lox2/3 and lox2/3xTPS10 plants, as well as JA-Ile, individual

GLVs, and leaf areas for headspace collection (mean ± SEM); n = 4.

DOI: 10.7554/eLife.04490.004

Source data 2. Absolute values for TAB and TBF shown as fold-changes in Figure 1B, and leaf areas for headspace collection (mean ± SEM); n = 4.

DOI: 10.7554/eLife.04490.005

Source data 3. Absolute values for analytes shown as fold-changes in Figure 1C (mean ± SEM).

DOI: 10.7554/eLife.04490.006

Schuman et al. eLife 2015;4:e04490. DOI: 10.7554/eLife.04490 6 of 45

Research Article Ecology Plant Biology

http://dx.doi.org/10.7554/eLife.04490.003
http://dx.doi.org/10.7554/eLife.04490.004
http://dx.doi.org/10.7554/eLife.04490.005
http://dx.doi.org/10.7554/eLife.04490.006
http://dx.doi.org/10.7554/eLife.04490


Thus LOX2 and LOX3 expression increased plants’ susceptibility to foliar herbivores, measured as

herbivore growth or percentage of plant canopy damaged (Figures 4, 5), but the relationship

between foliar herbivore abundance and LOX2/LOX3 expression was more complex and dependent

on plants’ position in populations (Figure 6). In contrast, herbivore abundance, but not damage or

performance, was consistently reduced on TPS10-expressing plants (Figures 4–6).

LOX2/3 deficiency accelerates flowering under low herbivory, while
TPS10 expression reduces flower production under high herbivory
We monitored plant growth and size, to control for these non-defense traits which could confound

the analysis of differences among genotypes, plant positions, and population types, and their

Figure 2. Field experiments designed to measure genotype-by-population effects of TPS10 volatiles in well-

defended (WT, TPS10) or poorly defended (lox2/3, lox2/3xTPS10) plants. Two similar experiments were conducted

in two consecutive field seasons. (A) Each genotype was planted as individuals and in five-plant populations (see

Figure 2—figure supplement 1). Each individual or population was planted ca. 1.5 m from the nearest

neighboring individual/population, measured perimeter-to-perimeter. Populations consisted of five plants

arranged as shown in a 0.4 � 0.4 m square. (B) Individual and population types: monocultures and, additionally,

mixed cultures were planted in which a TPS10 plant (TPS10 or lox2/3xTPS10) was surrounded by four plants of the

same level of jasmonate-mediated defense and GLVs (WT or lox2/3). Replicates (n = 12 in season one, 15 in

season two of each individual or population type) were arranged in a blocked design (see Figure 2—figure

supplement 2): blocks consisting of one replicate of each type (all six randomly-ordered populations followed by

all four randomly-ordered individuals) were staggered such that consecutive blocks were not aligned, and thus

populations and individuals were also interspersed. Random order was modified only when necessary to ensure

that no two replicate individuals/populations were placed next to each other vertically, horizontally, or diagonally.

This planting design reflects typical distributions in native populations of Nicotiana attenuata (see Figure 2—

figure supplement 3), particularly before 1995, after which an invasive brome grass fueled a dramatic increase in

fire sizes and consequently N. attenuata population sizes.

DOI: 10.7554/eLife.04490.007

The following figure supplements are available for figure 2:

Figure supplement 1. Photographs of the field experiment in season one.

DOI: 10.7554/eLife.04490.008

Figure supplement 2. Layout in experimental season two, and color codes.

DOI: 10.7554/eLife.04490.009

Figure supplement 3. Example of plant distribution in a native N. attenuata population, photographed in 2004.

DOI: 10.7554/eLife.04490.010
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interactions with insect communities. Rosette diameter and plant stem height were measured at

three times during the main period of vegetative growth in season one (May 1st–2nd, 8th–11th, and

16th–17th), and after plants had transitioned from vegetative growth to reproduction in season two

Figure 3. The TPS10 product TAB can be detected in the open headspace around lox2/3 plants in mixed cultures

containing a lox2/3xTPS10 plant. (A) An ‘open headspace’ trapping was conducted during season two (May 16th)

with rosette-stage individuals and edge plants as shown, using activated charcoal filters shielded from ozone and

UV by MnO2-coated copper ozone scrubbers (black strips in Teflon tubes pointed at plant) and aluminum foil,

respectively. The headspace was sampled during the day, when sesquiterpenes are most abundant (see Appendix

2). Eluents from all four filters were combined and analyzed using highly sensitive GCxGC-ToF analysis; n = 4

plants. (B) The TPS10 product trans-a-bergamotene (TAB) could be detected in the open headspace of two of

four lox2/3 plants at the edges of mixed cultures containing a lox2/3xTPS10 plant, but not in lox2/3 individuals or

lox2/3 plants in monocultures. Peak areas were normalized to the internal standard (IS) peak. Arrows indicate the

plant that was sampled.

DOI: 10.7554/eLife.04490.011

Figure 4. Manduca sexta larvae grow larger on LOX2/3-deficient plants, regardless of TPS10 expression, in a

glasshouse experiment. Data are shown as mean ± SEM; n = 15–19 larvae on day 8 and 11–16 larvae on day 12.

One M. sexta neonate per plant (starting n = 25 larvae) was placed immediately after hatching on the youngest

rosette leaf of an elongated plant. Larvae were weighed at the third and fourth instars (of 5 total), corresponding

to days 8 and 12, after which larvae become mobile between plants. a,b/A,B Different letters indicate significant

differences (corrected p<0.001) in larval mass on different plant genotypes within each day, in Wilcoxon rank sum

tests following significant (corrected p<0.001) Kruskal–Wallis tests for each day (WT vs lox2/3 day 8, W17,19 = 310,

corrected p<0.001, day 12, W15,15 = 217, corrected p<0.001; TPS10 vs lox2/3xTPS10, day 8, W15,20 = 290, corrected

p<0.001, day 12, W11,14 = 143, corrected p<0.001; WT vs TPS10 day 8, W17,15 = 95, corrected p=0.227, day 12,

W15,11 = 56, corrected p=0.361; lox2/3 vs lox2/3xTPS10 day 8, W19,20 = 249, corrected p=0.201, day 12, W16,14 =

134, corrected p=0.377). p-values were corrected for multiple testing using the Holm-Bonferroni method.

DOI: 10.7554/eLife.04490.012
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Figure 5. Only LOX2/3 and not TPS10, plant position, or population type determined total foliar damage from herbivores over two consecutive field

seasons. Note differences in y-axis scale. Data were collected on June 9th in season one (left panels), and on June 2nd in season two (right panels) from

plants at all different positions in the experiment: individual plants (A–B), and plants at the edges (C–D) or at the centers (E–F) of populations. Black

bars denote WT, grey bars TPS10, red bars lox2/3, and pink bars lox2/3xTPS10 plants. Total canopy damage reflected the trends in canopy damage

caused by individual herbivores (Figure 5—source data 1, 2). Total canopy damage in season one was low (left panels), ranging from 5–10% on lox2/3

and lox2/3xTPS10 plants, and only 2–5% on WT and TPS10 plants. Damage levels were about twice as high in season two (right panels), but showed the

same relative pattern, with LOX2/3-deficient plans having more damage. Damage levels within a season were similar for plants in different positions

(p>0.07, see Appendix 3). a,b Different letters indicate significant differences (p<0.05) between LOX2/3-expressing and LOX2/3-deficient plants (WT,

TPS10 v. lox2/3, lox2/3xTPS10) in minimal ANOVA or linear mixed-effects models on arcsin-transformed data. For individuals and center plants n = 7–

Figure 5 continued on next page
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(June 4th–6th), at which time stem diameter was also measured. There were no significant differen-

ces in rosette diameter or stem diameter (p-values >0.08 in ANOVAs or linear mixed-effects models

with LOX2/3 deficiency and TPS10 expression, plant position, and population type as factors: see

statistical approach in Appendix 3). There were few differences in final measurements of plant

height. LOX2/3-deficient plants were slightly taller at the final size measurement on May 17th of sea-

son one: the stem height of WT plants was 28.5 ± 1.1 cm, TPS10 plants 27.2 ± 1.5 cm, lox2/3 plants

35.4 ± 1.2 cm, and lox2/3xTPS10 plants 32.2 ± 1.5 cm (mean ± SEM). In season two, final measure-

ments of plant height on June 6th revealed only a minor difference for central plants expressing

TPS10, discussed below. Statistical analyses of plant height are given in Figure 8—source data 1.

We also monitored early flower production by plants as a measure of growth and reproduction

rates. To assess the rate of flowering, flowers were counted once shortly after plants first began to

flower, and again 1 week later; in season two, plant size and flower production was additionally

assessed once immediately prior to quantification of herbivore damage. In season one, in which her-

bivores damaged <10% of total canopy area (Figure 5), LOX2/3-deficient plants produced more

flowers earlier than WT and TPS10 plants. Shortly after the first plants began to flower in season one

(May 11th), more lox2/3 and lox2/3xTPS10 than WT and TPS10 plants were flowering (30% v. 14%),

and this was still true 1 week later, after most plants had flowers (95% v. 79%; G-tests of indepen-

dence, corrected p<0.001 on May 11th and 17th; Figure 7A). In pairwise comparisons among indi-

vidual genotypes, there were no significant differences in G-tests of independence between WT and

TPS10 (corrected p-values > 0.2) or lox2/3 and lox2/3xTPS10 (corrected p-values >0.7). However,

more lox2/3 than WT plants were flowering at both timepoints (May 11th corrected p<0.001, May

17th corrected p=0.022), and more lox2/3xTPS10 than TPS10 plants were flowering on May 17th

(corrected p<0.001). Both lox2/3 and lox2/3xTPS10 plants also produced more flowers per plant: on

May 17th lox2/3 had 6 (median = mean) flowers per plant while WT had 4, and lox2/3xTPS10 had 4/

5 (median/mean) flowers per plant while TPS10 had 2/3.

In season two, when herbivore damage ranged from 10–24% of total canopy (Figure 5), LOX2/3-

deficient plants did not flower earlier (Figure 7B). Plants were in an earlier stage of flowering on

May 29th in season two, than on May 17th in season one: both the proportion of flowering plants

(72% May 29th season two, 87% May 17th season one) and the mean number of flowers per plant (4

on May 29th season two, 5 on May 17th season one) were lower for the May 29th observation. The

differences between plants with or without the lox2/3 silencing construct, which was evident on May

17th in season one, were not observed on May 29th in season two: the proportion of flowering

plants was similar for all genotypes (68% for lox2/3 and lox2/3xTPS10 v. 75% for WT and TPS10, G-

test of independence, corrected p = 1), as was the average number of flowers per plant: 1/3

(median/mean) for lox2/3, 3/5 for WT, 2/4 for lox2/3xTPS10, and 2/3 for TPS10. 1 week later, 100%

of plants were flowering, and the median number of flowers per plant remained similar regardless of

LOX2/3 deficiency (Figure 7B).

However, in season two, there were subtler effects on flower production which could be attrib-

uted to plant position, LOX2/3 deficiency, and TPS10 expression (Figure 8). The plant height and

flowering data collected immediately prior to the assessment of herbivore damage in season two

were analyzed as described in Appendix 3 for effects of LOX2/3 deficiency, TPS10 expression, plant

position, and population type (statistical analysis in the source data file for Figure 8). There were

Figure 5 continued

13, and for edge plants n = 16–48 (up to 4 per population; the blocking effect was accounted for by a random factor in statistical analysis); exact

replicate numbers are given in Figure 5—source data 1, 2. There were no significant differences in damage between plants differing only in TPS10

expression (p>0.4), plants in mono- vs mixed cultures (p>0.5), or plants of the same genotype at different positions (individual, edge, or center, p>0.07).

Statistical models are given in Appendix 3.

DOI: 10.7554/eLife.04490.013

The following source data is available for figure 5:

Source data 1. Total canopy damage from individual herbivores or groups of herbivores in experimental season one, corresponding to data shown in

Figure 5A (mean ± SEM).

DOI: 10.7554/eLife.04490.014

Source data 2. Total canopy damage from individual herbivores or groups of herbivores in experimental season two, corresponding to data shown in

Figure 5B (mean ± SEM).

DOI: 10.7554/eLife.04490.015
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Figure 6. Foliar herbivore abundance is determined by TPS10 expression, lox2/3 expression, and plant position.

Data were collected on June 26th in season two, when herbivores and predators were more abundant (see

Figure 5). Black denotes WT, grey TPS10, red lox2/3, and pink lox2/3xTPS10 plants. Counts for individual

herbivores and predators are given in Figure 6—source data 1, 2. (A) Herbivore counts on focal plants of each

genotype revealed fewer herbivores present on plants expressing TPS10 (n given in Figure 6—source data 1). a,b

Figure 6 continued on next page
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almost no differences in plant height (Figure 8, left panels), indicating that plant size differed little;

the only significant difference was a small negative effect of TPS10 expression for plants in the cen-

ters of populations, most pronounced in mixed cultures (Figure 8E). In contrast, flower production

of individual plants was strongly decreased by TPS10 expression and only slightly decreased by

LOX2/3 deficiency (Figure 8B), but differed little for plants in populations (Figure 8, right panels),

with the exception that the shorter central plants also produced slightly fewer flowers (Figure 8F).

Interestingly, for individual plants, there was an interactive effect of TPS10 expression and LOX2/3

deficiency resulting in similar flower production for lox2/3xTPS10 plants and WT plants, although

both lox2/3 individuals and TPS10 individuals produced significantly fewer flowers than WT

(Figure 8B, statistical analysis in the source data file for Figure 8).

Overall, these data indicate that accelerated reproduction of LOX2/3-deficient plants in season

one was due to a reduced net cost for these plants of LOX2/3-mediated defenses under low herbi-

vore damage, which disappeared under higher herbivore damage in season two (Figures 7, 8 and

associated source data file). In contrast, TPS10 expression had little effect on plant growth and flow-

ering in season one (Figure 7, source data file for Figure 8) and the effects of TPS10 expression on

flowering in season two depended strongly on plant position (individual, edge or center, Figure 8

and associated source data file). This indicates that TPS10 expression did not have large, direct costs

for plants in the field, but that the reproductive output of TPS10 plants was sensitive to the presence

and identity of neighbor plants. Especially under high herbivory in season two, there were few differ-

ences in plant size and these did not correspond to differences in herbivore damage (Figures 5, 8).

LOX2/3 deficiency increases plant mortality, but mortality is mitigated
by single TPS10-expressing plants in LOX2/3-deficient populations
We quantified plant mortality as an unambiguous measure of plant health and fitness (Figure 9). In

our experiments, mortality can be interpreted as a measure of total reproductive potential and thus

Darwinian fitness, because we observed mortality of plants before, or during, the peak of their

flower production, and ended our experiments when plants would normally produce mature seed.

(Production of viable seed is not generally allowed for field-released transgenic plants, and we did

not allow our plants to produce seed.)

In season one, mean plant mortality was only 1%, or a total of 6 plants, by the end of experiments

in mid-June. However, in season two, greater damage from herbivores (Figure 5) was associated

with much higher mean plant mortality: 46%, or 236 plants by the end of experiments on June 29th.

Overall, LOX2/3-deficient plants had higher mortality: 55% for lox2/3 and lox2/3xTPS10 vs 38% for

WT and TPS10 plants (G-test of independence, corrected p = 0.002). Thus, lox2/3 plants in monocul-

tures had significantly higher mortality than WT plants in monocultures (corrected p=0.003), and

lox2/3xTPS10 plants in monocultures had significantly higher mortality than TPS10 plants in mono-

cultures (corrected p=0.022) (Figure 9). In contrast, mortality rates for plants in mixed cultures were

similar regardless of LOX2/3 deficiency (corrected p=0.870). This was associated with marginally

Figure 6 continued

Different letters indicate significant differences (corrected p<0.05) between genotypes in Tukey contrasts following

significant differences in a generalized linear mixed-effects model (see Appendix 3). (B) For WT and TPS10

individuals or plants in monocultures (n given in Figure 6—source data 2), there was a significant effect (p<0.05)

of plant genotype (z = �3.662, p=0.0003) and an interaction of genotype with position (TPS10 by center vs

individual position, z = 2.186, p=0.0288, generalized linear mixed-effects model in Appendix 3). (C) The presence

of a TPS10-expressing neighbor in mixed populations did not significantly affect herbivore abundance on WT or

lox2/3 edge plants, but there was a significant difference between WT and lox2/3 genotypes at the edges of

populations (n given in Figure 6—source data 2, z = 2.358, p=0.0183, generalized linear model in Appendix 3).

DOI: 10.7554/eLife.04490.016

The following source data is available for figure 6:

Source data 2. Total and median numbers of herbivores counted on focal plants of different genotypes on June

26th in season two, broken down into different population types and plant locations for WT and TPS10 plants.

DOI: 10.7554/eLife.04490.017

Source data 1. Total and median numbers of herbivores and predators counted on focal plants of different geno-

types on June 26th in season two.

DOI: 10.7554/eLife.04490.018
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decreased mortality for plants in lox2/3 + lox2/3xTPS10 mixed cultures (Figure 9, lox2/3 mono v.

lox2/3 + lox2/3xTPS10 mix, corrected p=0.092). Interestingly, mortality in WT + TPS10 mixed cul-

tures was slightly higher than in monocultures (45% v. 37% for WT monocultures and 31% for TPS

monocultures), although these differences were also not significant (corrected p-values >0.090).

In summary, because plants in lox2/3xTPS10 monocultures had higher mortality than those in

TPS10 monocultures, we conclude that expression of TPS10 by LOX2/3-deficient plants did not com-

pensate for the absence of LOX2/3-mediated defenses; yet surprisingly, single lox2/3xTPS10 plants

Figure 7. LOX2/3 deficiency accelerated flowering under low herbivory. Flower production was monitored twice per season: once shortly after plants

began to flower and again 1 week later, when most or all plants were flowering. Bars indicate either total percentage of plants of each genotype which

were flowering (left panels), or the mean number of flowers per plant (right panels). WT and TPS10 (black and grey bars) are shown opposite lox2/3 and

lox2/3xTPS10 (red and pink bars). Ratios in bars indicate numbers of flowering/total plants monitored; a few plants were not included in counts which

had recently lost their main stem to herbivores and had not yet re-grown. (A) In season one, when plants suffered less damage from herbivores

(Figure 5), plants with the lox2/3 silencing construct produced more flowers earlier: asterisks indicate pairwise differences between genotypes differing

only in the lox2/3 silencing construct. ***Corrected p<0.001, **corrected p<0.01, *corrected p<0.05, or no significant difference (ns) in G-tests

(percentage flowering) or in Wilcoxon rank sum tests (flower number, WT vs lox2/3: May 11th, W120,120 = 8582, p=0.0002; May 17th, W120,119 = 5043,

p<0.0001; TPS10 vs lox2/3xTPS10: May 11th, W84,84 = 3801, p=0.2063; May 17th, W84,84 = 2520, p=0.0027). (B) In season two, during which plants

received more damage from herbivores (Figure 5), flowering was monitored at later dates: the first timepoint in (B) is comparable to the second

timepoint in (A) in terms of the proportion of plants flowering and the average number of flowers per plant (note difference in scale). In season two,

LOX2/3 deficiency rather decreased early flower numbers in the comparison of WT vs lox2/3 on May 29th, and did not increase flower numbers at

either measurement (WT vs lox2/3: May 29th, W103,95 = 3860.5, p=0.0091; June 6th, W97,69 = 2940.5, p=0.3018; TPS10 vs lox2/3xTPS10: May 29th, W87,74

= 3646.5, p=0.1417; June 6th, W83,63 = 2695, p=0.7518). For a complete analysis of the effects of LOX2/3 deficiency and TPS10 expression, plant

position, and population type on flowering and plant size, see source data file for Figure 8.

DOI: 10.7554/eLife.04490.019
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Figure 8. TPS10 expression reduced flower production under high herbivory. Plant size as measured by stem length (left panels), and reproduction as

measured by flower production (right panels); n given in Figure 8—source data 1. Data were collected on June 6th in season two from plants at all

different positions in the experiment: individual plants (A–B), and plants at the edges (C–D) or at the centers (E–F) of populations. Black bars denote

WT, grey bars TPS10, red bars lox2/3, and pink bars lox2/3xTPS10 plants. Plant height differed little, with only a small negative effect of TPS10

expression for center plants (E), which was more pronounced in mixed- than monocultures, indicating a slight competitive disadvantage for these

plants. Individual plants differed much more than plants in populations in terms of flower production, with TPS10-expressing plants at a disadvantage

(B); this effect was greatly reduced in populations.a,b Different letters indicate significant differences (corrected p<0.05) in Tukey post-hoc tests on plant

genotype following significant effects in a generalized linear model, or generalized linear mixed-effects model (C–D) with genotype as a factor; these p-

values were corrected using the Holm-Bonferroni correction for multiple testing as the same data were also tested for effects of LOX2/3 deficiency and

TPS10 expression (see Figure 8—source data 1). There was no difference in flower production for edge plants, but a small negative effect of TPS10

expression on flower production in center plants (F) corresponding to the slight reduction in height of these plants (E). Statistical models are given in

Figure 8—source data 1.

DOI: 10.7554/eLife.04490.020

Figure 8 continued on next page
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in lox2/3 + lox2/3xTPS10 mixed populations reduced the mortality of the entire population to the

same level as in WT + TPS10 mixed populations.

LOX2/3-deficient plants have reduced apparent health, unless they
have TPS10-expressing neighbors
Plant health, in terms of turgor, expanded leaf area and senescence, varied noticeably under the

higher levels of herbivore damage in season two (Figure 5), and so plants were given an apparent

health rating on a scale of one (dead) or two (low) to five (high). This scale was sufficiently objective

that several observers were able to independently assign the same health index number to ran-

domly-chosen plants, after training on fewer than 10 other plants. Ratings >1 on this health scale

Figure 8 continued

The following source data is available for figure 8:

Source data 1. The same statistical approach described in Appendix 3 for Figure 5 was used for plant size and reproduction data from May 17th in

season 1, and June 6th in season two (the most complete measurements, closest to the date of herbivore damage screens, from each season).

DOI: 10.7554/eLife.04490.021

Figure 9. One TPS10-expressing plant per population counteracts a mortality increase in LOX2/3-deficient

populations. Bars indicate total percentage mortality for all plants in each population type, and ratios in bars

indicate numbers of dead/total plants (n = 75). WT and TPS10 populations (left, black, and grey bars) are

compared to the equivalent lox2/3 and lox2/3xTPS10 populations (right, red, and pink bars) differing only in the

lox2/3 silencing construct. LOX2/3-deficient plants had higher mortality in monocultures, regardless of whether

they also expressed TPS10 (**WT mono v. lox2/3 mono, corrected p<0.01; *TPS10 mono v. lox2/3xTPS10 mono,

corrected p<0.05 in G-tests; p-values were corrected for multiple testing using the Holm-Bonferroni method).

However, the mortality of plants in mixed lox2/3 + lox2/3xTPS10 populations is similar to that of the plants in

mixed WT + TPS10 populations (ns, not significant). There was no significant difference in mortality among mono-

and mixed cultures of WT and TPS10 plants (corrected p>0.3), or of lox2/3 and lox2/3xTPS10 plants, although

there was a marginal difference between lox2/3 monocultures and lox2/3 + lox2/3xTPS10 mixed cultures

(corrected p=0.091). In addition, a health index was assigned to each plant (discussed in text); this index was

correlated with several plant growth and reproduction parameters (see Figure 9—figure supplement 1). Data

were collected on June 29th at the end of experimental season two; in season one, all plants experienced much

lower herbivory (Figure 5) and negligible mortality (0–5%).

DOI: 10.7554/eLife.04490.022

The following figure supplement is available for figure 9:

Figure supplement 1. The health index assigned to plants is strongly and significantly correlated to several

measures of plant size and reproduction.

DOI: 10.7554/eLife.04490.023
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(living plants) were strongly correlated to several growth and reproduction traits measured (Spear-

man’s r values �0.55, corrected p-values <0.001): number of buds, stem diameter, number of side

branches, rosette diameter, stem length, and number of flowers (Figure 9—figure supplement 1).

LOX2/3 deficiency was associated with significantly poorer apparent health on this scale: exclud-

ing dead plants, a median health index of 3 for lox2/3 and lox2/3xTPS10 vs 3.5 for WT and TPS10

(Wilcoxon rank sum test, W153,186 = 19,057.5, corrected p<0.001). In pairwise tests between geno-

types for surviving plants, WT appeared significantly healthier than lox2/3, but not lox2/3xTPS10

(WT v. lox2/3, W102,82 = 2722, corrected p<0.001; WT v. lox2/3xTPS10, W102,71 = 2687, corrected

p=0.059); whereas TPS10 appeared significantly healthier than both lox2/3 and lox2/3xTPS10

(TPS10 v. lox2/3, W84,82 = 1996.5, corrected p<0.001; TPS10 v. lox2/3xTPS10, W84,71 = 1995, cor-

rected p=0.006). There was no difference in the apparent health of WT vs TPS10 or lox2/3 vs lox2/

3xTPS10 (corrected p-values=1, TPS10 v. WT, W84,102 = 4619; lox2/3 v. lox2/3xTPS10, W82,71 =

2604.5).

Separate examination of surviving individual, center, and edge plants revealed that LOX2/3 defi-

ciency was only associated with poorer apparent health in edge plants (lox2/3 and lox2/3xTPS10 v.

WT and TPS10: individuals, W21,22 = 230.5, corrected p=1; edge plants, W102,129 = 9544, corrected

p<0.001; center plants, W30,35 = 598.5, corrected p=1). There were significant differences in the

apparent health of edge plants in different population types: WT edge plants appeared significantly

healthier than lox2/3 plants at the edges of monocultures, but not healthier than lox2/3 plants at the

edges of lox2/3 + lox2/3xTPS10 mixed cultures (WT mono v. lox2/3 mono, W42,29 = 929, corrected

p = 0.003; WT + TPS10 mix v. lox2/3 mono, W40,29 = 891.5, corrected p=0.003; WT mono v. lox2/3

+lox2/3xTPS10 mix, W42,34 = 953, corrected p=0.164; WT + TPS10 mix v. lox2/3 + lox2/3xTPS10

mix, W40,34 = 892, corrected p=0.249). However, TPS10 plants at the edges of monocultures

appeared significantly healthier than lox2/3 or lox2/3xTPS10 edge plants in mixed- or monocultures

(TPS10 mono v. lox2/3 mono, W47,29 = 1129.5, corrected p<0.001; TPS10 mono v. lox2/3 + lox2/

3xTPS10 mix, W47,34 = 1209.5, corrected p=0.001; TPS10 mono v. lox2/3xTPS10 mono, W47,39 =

1389.5, corrected p<0.001). No other comparisons between plants of individual population types

Figure 10. TPS10 plants increase the infestation rates of their WT neighbors with the stem-boring weevil T. mucorea. (A) Photograph of a T. mucorea

adult emerging from the stem which it infested as a larva reprinted with permission from Anke Steppuhn, Copyright 2005. All rights reserved. Adults

mate and oviposit on young N. attenuata plants in March and April, and upon hatching, larvae burrow into the growing stem of the plant chosen by

their mother (Diezel et al., 2011). Infestation was scored as the number of plants with hollow, frass-filled stems (from which larvae were usually also

recovered). (B) T. mucorea infestation more than doubled for WT plants, but did not change for TPS10 plants in mixed cultures vs monocultures. Bars

indicate total percentage of plants infested; ratios in bars indicate numbers of infested/total plants. Data were collected at the end of experimental

season two (June 29th). *Corrected p<0.05 in a Fisher’s exact test, n = 31–47 (all surviving replicates). p-values were corrected for multiple testing using

the Holm-Bonferroni method. (C) The presence of lox2/3xTPS10 plants also tended to increase T. mucorea infestation in lox2/3 + lox2/3xTPS10

populations but, likely due to lower replicate numbers caused by higher mortality for plants in lox2/3 and lox2/3xTPS10 monocultures (Figure 9),

differences are not significant (corrected p-values=1).

DOI: 10.7554/eLife.04490.024
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Figure 11. TPS10 and LOX2/3 interact to alter the predation of M. sexta by Geocoris spp from edge vs center plants. (A) Photograph of a M. sexta egg

and first-instar larva, and G. pallens adult on an N. attenuata leaf reprinted with permission from Danny Kessler, Copyright 2006. All rights reserved. As

shown here, one first-instar M. sexta larva and one egg were placed on a lower stem leaf in a standardized position on healthy, size-matched plants

(one leaf/plant), and their predation was monitored for 24 hr. Data are total numbers from five consecutive trials conducted between June 21st and

June 27th at the end of experimental season two, when Geocoris spp. and herbivores were more abundant (see Figure 5). (B and C) Predation rates of

M. sexta are higher on lox2/3xTPS10 than lox2/3 plants at the edges of monocultures (B), but lower on TPS10 than WT plants at the centers of

monocultures (C). Bars indicate the total percentage of M. sexta eggs and larvae predated per population; numbers of predated/total eggs and larvae

are given inside bars. The same trends were observed in both egg and larva predation; separate numbers of larvae and eggs predated are given in

Figure 11—source data 1. Plants of the WT background and plants with the lox2/3 silencing construct were separately matched for parallel

experiments and thus analyzed separately. (B) Predation of herbivores from edge plants was similar (not significant, ns) regardless of the number of

TPS10 plants in WT + TPS10 populations, but increased with increasing numbers of lox2/3xTPS10 plants in lox2/3 + lox2/3xTPS10 populations. For

plants at the center of populations, the pattern was reversed: (C) predation rates decreased with increasing numbers of TPS10 plants in WT + TPS10

populations, and were similar (ns) regardless of the number of lox2/3xTPS10 plants in lox2/3 + lox2/3xTPS10 populations. a,b Different letters indicate

significant differences (corrected p<0.05) in Fisher’s exact tests; p-values were corrected for multiple testing using the Holm-Bonferroni method.

DOI: 10.7554/eLife.04490.025

The following source data is available for figure 11:

Source data 1. Total numbers of M. sexta larvae and eggs predated by Geocoris spp. in experimental season two (corresponding to data shown in

Figure 10).
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were significant (corrected p-values >0.08) and there was no significant association between appar-

ent health and plant position (Kruskal–Wallis test across individual, edge, and center plants, c22 =

2.38, corrected p=1) or plants of the same genotype in mono- vs mixed cultures (Wilcoxon rank sum

tests, corrected p-values=1).

In summary, as for foliar herbivore damage, growth, flowering, and mortality, there was no signifi-

cant difference in the apparent health of plants differing only in TPS10 expression. However, TPS10

expression in lox2/3xTPS10 plants was associated with an apparent health similar to WT plants, while

lox2/3 plants had a significantly lower apparent health than WT plants. Furthermore, the differences

in apparent health were stronger between TPS10 plants and LOX2/3-deficient plants than between

WT plants and LOX2/3-deficient plants, indicating a weak, positive effect of TPS10 expression on

apparent plant health. Interestingly, lox2/3 plants at the edges of monocultures appeared less

healthy than WT edge plants, but lox2/3 plants at the edges of lox2/3 + lox2/3xTPS10 mixed cul-

tures did not, indicating a positive neighbor effect of TPS10 expression on the health of plants in

LOX2/3-deficient populations.

TPS10-expressing plants increase the infestation rates of their
neighbors by the stem-boring weevil Trichobaris mucorea
At the end of season two, we found that 35% of all surviving plants were infested with T. mucorea

larvae. An adult T. mucorea is pictured in Figure 10A. Interestingly, TPS10 expression was associ-

ated with slightly higher infestation rates: 29% of lox2/3 and 34% of WT plants vs 39% of TPS10 and

lox2/3xTPS10 plants. Looking at infestation rates by population type, we discovered a small differ-

ence between WT (34% infested) and TPS10 plants (39% infested) which masked a much larger

effect: WT plants in WT + TPS10 mixed populations (55% infested) had an infestation rate more than

twice that of WT plants in monocultures (19% infested, corrected p=0.015, Figure 10B). We

observed the same tendency in lox2/3 and lox2/3xTPS10 populations: 33% of lox2/3 plants in mixed

populations with lox2/3xTPS10 plants were infested, vs only 16% of lox2/3 plants in monocultures;

interestingly, lox2/3xTPS10 plants tended to have higher infestation rates than lox2/3 plants in popu-

lations (Figure 10C). Likely due to higher plant mortality in lox2/3 populations (Figure 9), replicate

numbers were too low for these effects to be significant (corrected p-values =1 for the comparison

of infestation rates of lox2/3 plants in mono- vs mixed culture, and of lox2/3 vs lox2/3xTPS10 mono-

cultures). Likely also due to low replicate numbers (n = 7–10), there were no significant differences in

infestation among individuals (corrected p-values = 1 in pairwise tests), but 30% of TPS10, 38% of

WT, 50% of lox2/3, and 57% of lox2/3xTPS10 individuals were infested. Based on these trends, had

there been a significant effect for individuals, it would have been due to LOX2/3 deficiency and not

TPS10 expression.

Thus, although TPS10 expression did not significantly alter plants’ rates of infestation by T.

mucorea, it did significantly increase the infestation of neighboring plants.

TPS10 expression and LOX2/3 deficiency interact to alter the
distribution of Geocoris spp. activity in populations
Generalist Geocoris spp. predators co-occur with N. attenuata plants, and prey on their herbivores

in response to specific HIPVs including GLVs and TAB, in an example of indirect defense

(Kessler and Baldwin, 2001; Allmann and Baldwin, 2010; Schuman et al., 2012; 2013). Near the

end of experiments in season two, Geocoris pallens were abundant and Geocoris punctipes were

also present at the field site. We considered that plants in populations with TPS10-expressing neigh-

bors might either benefit from enhanced attraction of Geocoris spp., or suffer in competition for the

predation services of Geocoris spp. We also reasoned that the lack of all other HIPVs in LOX2/3-defi-

cient plants could alter the strength and direction of such a relationship.

To test the overarching hypothesis that TPS10-expressing plants in populations alter the distribu-

tion of predation by Geocoris spp., we conducted predation activity assays from June 21st to June

27th on edge and center plants that were similar in size and apparent health. We treated LOX2/3-

expressing (WT, TPS10) and LOX2/3-deficient (lox2/3, lox2/3xTPS10) populations as two separate

experimental groups because it was not possible to match plants across these two groups for appar-

ent health or replicate numbers (both were lower for lox2/3 and lox2/3xTPS10 populations).

Selected lox2/3 and lox2/3xTPS10 populations had a mode of 3 remaining plants, range 2–5; and
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selected WT and TPS10 populations had a mode of 5 remaining plants, range 3–5; within these two

groups, there was no significant difference between mono- and mixed cultures in number of plants

remaining (G-tests, corrected p>0.1). Plants were baited with M. sexta eggs and larvae

(Figure 11A), and we counted the numbers predated by Geocoris spp. over 24 hr (source data file

for Figure 11, Kessler and Baldwin, 2001).

TPS10-expressing plants significantly altered predation rates at the edges and centers of popula-

tions, and whether the effect was at the edge or the center depended on LOX2/3 expression

(Figure 11B,C). Specifically, TPS10 expression increased predation from edge plants in lox2/3 and

lox2/3xTPS10 populations (Fisher’s exact tests, corrected p-values<0.05) but not in WT and TPS10

populations (21–34%, corrected p-values >0.3) (Figure 11B). At the edges of monocultures, lox2/

3xTPS10 plants received 43% predation whereas lox2/3 plants received only 16% (corrected

p=0.049), and lox2/3 plants at the edges of lox2/3 + lox2/3xTPS10 mixed cultures were intermediate

with 23% (lox2/3 mono v. lox2/3 + lox2/3xTPS10 mixed, corrected p=0.723, lox2/3xTPS10 mono v.

lox2/3 + lox2/3xTPS10 mixed, corrected p=0.457). On the other hand, TPS10 expression decreased,

rather than increased predation from center plants in WT + TPS10 populations (from 46% to 12%,

corrected p<0.04) and had no effect on center plants in LOX2/3-deficient populations (ranging from

13% to 23%, corrected p-values=1, Figure 11C). WT plants received 46% predation at the center of

monocultures, while TPS10 plants received 38% predation at the center of mixed cultures and only

12% at the center of monocultures (WT mono v. WT + TPS10 mixed, corrected p=0.618; WT mono

v. TPS10 mono, corrected p=0.012; WT + TPS10 mixed v. TPS10 mono, corrected p=0.031).

Thus in populations of lox2/3 and lox2/3xTPS10 plants deficient in all HIPVs except for the engi-

neered TPS10 volatiles, TPS10 expression by edge plants increased predator activity on those

plants. In contrast, TPS10 expression by center plants failed to attract more predator activity to the

centers of populations. In populations of WT and TPS10 plants with intact WT HIPVs, TPS10 expres-

sion did not increase predator activity at all; however, TPS10 expression by edge plants seemed to

reduce the penetration of predators to center plants. Thus, depending the richness of the plants’

HIPV blends, TPS10 expression had either positive direct effects on predator activity for emitting

plants, or negative indirect effects for their neighbors.

Discussion
In this study, we sought to fulfil the four postulates of community genetics (Wymore et al., 2011;

Whitham et al., 2012) to uncover the community effects of genes controlling direct and indirect

defenses in the wild tobacco N. attenuata. N. attenuata has already been shown to fulfill postulate

one: significantly affecting an ecological community of other plants and animals, and native microbes

(reviewed in Schuman and Baldwin, 2012; see also Long et al., 2010; Meldau et al., 2012;

Machado et al., 2013; Santhanam et al., 2014). Postulate two, demonstration of genetically based

traits, is ensured by our method of altering the expression of specific genes: LOX2, LOX3, and

TPS10 (Figure 1 and associated source data files, Appendices 1, 2). Thus, we created transgenic

lines from a single genotype of N. attenuata and used them to investigate both individual- and pop-

ulation-level effects of two HIPVs, (E)-a-bergamotene (TAB) and (E)-b-farnesene (TBF), produced by

the sesquiterpene synthase TPS10, in plants which either had wild-type direct defenses and HIPVs,

or reduced production of direct defenses and other HIPVs. We used these plants to evaluate postu-

late three: different effects on community processes of conspecifics differing in LOX2/3 and TPS10

expression, and postulate four: predictable effects on those community processes when the genes

are manipulated.

Specifically, we found that LOX2/3-mediated defense had a strong and direct effect on plant

resistance to foliar herbivores and plant mortality (Figures 4, 5 and associated source data files, Fig-

ure 9), as predicted (Kessler et al., 2004). Interestingly, the effect of LOX2/3 expression on herbi-

vore abundance was less clear: LOX2/3 deficiency was associated with significantly increased

herbivore abundance for edge plants in populations, but not overall (Figure 6). Furthermore,

although TPS10 expression did not significantly affect foliar herbivore damage or performance, it

did consistently reduce foliar herbivore abundance (Figure 6). It should be noted that the herbivore

damage data in Figure 5B were collected just over 2 weeks earlier than the herbivore abundance

data in Figure 6; however, the relative amounts of damage on plants at the time that herbivore

abundance data were collected still reflected the patterns shown in Figure 5, with LOX2/3-deficient
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genotypes having visibly more damage and WT and TPS10 plants not differing visibly in herbivore

damage levels.

More surprisingly, we found population-level effects of TPS10 volatiles which were as great as the

individual-level effects of total LOX2/3-mediated defenses, and dependent on LOX2/3 expression.

Single TPS10-expressing plants reduced the mortality of plants in LOX2/3-deficient populations (Fig-

ure 9), corresponding to an increase in apparent health of those plants. Additionally, TPS10 expres-

sion significantly increased the infestation rate of neighbors by the stem-boring weevil T. mucorea

(Figure 10), and TPS10 expression in a population strongly altered the distribution of predation

services among edge and center plants, depending on LOX2/3-mediated defense (Figure 11 and

associated source data file).

It should be noted that our experimental design did not support the analysis of population-level

effects resulting from changing LOX2 and LOX3 expression in single members of a population. Had

we included these treatment groups as well (e.g., populations with a central lox2/3 plant surrounded

by WT, and with a central lox2/3xTPS10 plant surrounded by TPS10), we predict that we would also

have observed significant neighbor effects of LOX2/3 expression in populations. However, given the

magnitude of direct effects of LOX2/3 expression, it would be surprising if the indirect population-

level effects from manipulating LOX2/3 expression in single plants were larger than the direct

effects—as was generally observed from the manipulation of TPS10 expression. Our experiment was

designed to determine whether TPS10 products have direct and neighbor effects in the presence, or

absence, of total HIPVs and jasmonate-mediated defense.

We found no effects on non-target metabolites, (Figure 1—source data 3, Appendix 2), and only

minor effects on plant size and growth which were all associated with the alleviation of the costs of

LOX2/3-mediated defense for single plants, benefits which disappeared under high herbivory loads

(Figures 7, 8 and associated source data file, Schuman et al., 2014).

Plant productivity depends on herbivore damage rates, LOX2/3 and
TPS10 expression
It is well known that jasmonate-mediated defenses can be costly in the absence of herbivores

(reviewed in e.g., Steppuhn and Baldwin, 2008), and under low levels of damage from herbivores

in season one (Figure 5A), growth and early flower production was greater in lox2/3 and lox2/

3xTPS10 than in WT and TPS10 plants (Figures 7, 8 and associated source data file). These data

indicate that our measurements were sufficiently sensitive to detect developmental costs of defense

metabolite production. Attempts to engineer the emission of terpene volatiles have sometimes

resulted in plants with stunted growth or symptoms of autotoxicity (Robert et al., 2013; reviewed in

Dudareva and Pichersky, 2008; Dudareva et al., 2013). However, we did not detect any consistent

costs of TPS10 overexpression: TPS10 plants were generally not smaller than WT (Figure 8 and asso-

ciated source data file). The same line of TPS10 also grew similarly to WT in a greenhouse competi-

tion study (line 10–3 in Schuman et al., 2014).

However, there were effects of TPS10 expression on flowering which differed depending on

plants’ position in different populations. In particular, under high herbivory in season two, TPS10

expression strongly decreased flower production for well-defended individual plants, but promoted

flower production in LOX2/3-deficient individuals (Figure 8B). In contrast, flower production was not

affected by TPS10 expression for edge plants in populations, and was slightly reduced for TPS10-

expressing plants in the centers of populations (Figure 8D,F). For central plants, in contrast to indi-

viduals, the reduction in flower production due to TPS10 expression was similar both for LOX2/3-

expressing and LOX2/3-deficient plants. Overall, these data indicate that TPS10 expression may

have altered the relative attractiveness or apparency of TPS10 plants, with results depending

strongly on plants’ neighbors. The potential mechanisms in terms of herbivore abundance and pre-

dation rates, and consequences in terms of health and mortality, are discussed further below.

Higher levels of damage from foliar herbivores in season two (Figure 5B) were likely the main fac-

tor which shifted LOX2/3-mediated defenses from costly, in terms of early flower production (Fig-

ure 7), to beneficial, in terms of reduced plant mortality before and during the reproductive phase,

and increased apparent plant health (Figure 9 and Figure 9—figure supplement 1). Overall, there

were few differences in growth and size among genotypes (Figure 8 and associated source data file,

and results reported in text), making it reasonable to attribute changes in herbivore damage,
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mortality, and other interactions to the manipulated chemical traits, rather than plant apparency or

attractiveness based on size and development.

LOX2/3 expression has large direct effects on plants, while TPS10
expression has large indirect effects
LOX2/3 deficiency significantly increased damage from foliar herbivores and growth of the specialist

M. sexta, whereas TPS10 expression had no effect on either interaction (Figures 6, 7). There was,

furthermore, no effect of plant population type (mixed or monoculture) on damage from foliar herbi-

vores in field experiments (Figure 5 and associated source data files). Together, these data indicate

that feeding of M. sexta larvae and other naturally occurring foliar herbivores are not directly

affected by TPS10 volatiles. However, TPS10 volatiles may have altered the attraction of herbivores

to plants: TPS10-expressing plants had consistently smaller populations of foliar herbivores by the

end of season two, despite the fact that these plants tended to look healthier, and independently of

LOX2/3 expression (Figure 6). In contrast, ovipositing T. mucorea mothers may be attracted to

TPS10 volatiles (Figure 10). Interestingly, M. sexta moths laid fewer eggs on plants for which the

headspace had been supplemented with TAB (Kessler and Baldwin, 2001). A direct effect on colo-

nizing herbivores and ovipositing females may result in indirect effects in terms of associational resis-

tance or associational susceptibility for neighboring plants (Kessler and Baldwin, 2001;

Barbosa et al., 2009). Although such indirect effects were not detected in foliar herbivore abun-

dance on neighboring WT and lox2/3 plants (Figure 6C), TPS10 expression did significantly affect

neighbors’ mortality (Figure 9), apparent health, infestation by T. mucorea larvae (Figure 10), and

predation services (Figure 11).

The most straightforward indirect effects of TPS10 expression were evident in open headspace

trappings (Figure 3): the presence of a lox2/3xTPS10 plant in the center of a population was associ-

ated with TAB in the headspace of neighboring lox2/3 plants, and TAB was not found in the open

headspaces of lox2/3 individuals or monocultures. The most parsimonious explanations are diffusion

of volatiles into neighbors’ headspace, or adherence and re-release of volatiles from the surface of

neighbor plants, as has been shown in birch (Betula spp.) by Himanen et al. (2010). Because no TAB

was detectable in extracts from the leaves of lox2/3 plants even when plants were much larger and

more likely to have direct contact with TPS10 neighbors, it is unlikely that the TAB detected in open

trappings of lox2/3 headspaces came from the stimulation of TAB biosynthesis in lox2/3 (Figure 1C,

Figure 1—source data 3).

Indirect effects of TPS10 volatiles on neighboring plants may be attributed to the volatile com-

pounds themselves, because we found no evidence that TPS10 volatiles affected the defenses of

emitting plants, or of neighbor plants in populations (Appendices 1, 2, Figure 1 and associated

source data files); and TPS10 plants also did not alter the defense response of neighbors in a glass-

house competition experiment (Schuman et al., 2014). In contrast, due to the large suite of

defenses regulated by LOX2 and LOX3 products, it would have been more difficult to determine the

proximate cause of neighbor effects resulting from manipulation of LOX2 and LOX3 expression.

Although several components of plant HIPV blends have been shown to prime the direct and indi-

rect defenses of neighbors in different systems (reviewed in Baldwin et al., 2006; Arimura et al.,

2010; see Heil and Kost, 2006), GLVs may often be the active cues (Engelberth et al., 2004;

Kessler et al., 2006; Frost et al., 2008). We did not mix GLV-deficient with GLV-emitting plants in

our experimental design, but we can conclude that TPS10 volatiles had no detectable direct effects

on neighbor plants in our set-up.

Indirect effects of TPS10 HIPVs may benefit or harm emitters,
depending on the emission and LOX2/3-mediated defense levels of
their neighbors
We observed multiple significant indirect effects of TPS10 expression in populations, as mentioned

above; and two of these were strongest in mixed cultures containing only one TPS10-expressing

plant. The mortality of lox2/3 and lox2/3xTPS10 plants in monocultures was significantly higher than

that of WT and TPS10 plants in monocultures, but the mortality of lox2/3 + lox2/3xTPS10 plants in

mixed cultures was not higher than that of WT + TPS10 plants in mixed cultures (Figure 9). Thus, a

single TPS10 emitter in populations of otherwise defenseless plants reduced overall mortality to
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levels comparable to well-defended populations containing single TPS10 emitters. This apparent

protective effect of TPS10 volatiles was weaker for monocultures of lox2/3xTPS10 plants. This may

be because TPS10 volatile emission makes plants more apparent to herbivores like T. mucorea as

well as beneficial insects like Geocoris spp. (Figures 9, 10), and if plants are otherwise poorly

defended, greater apparency may be dangerous (Feeny, 1976). Interestingly, although there were

no statistically significant differences in mortality among populations of WT and TPS10 plants, mor-

tality was lowest in TPS10 monocultures; and WT + TPS10 mixed cultures had mortality rates 1.5-

fold that of TPS10 monocultures (Figure 9). This indicates that well-defended TPS10 plants may

have benefited directly from emitting TPS10 volatiles, and may have additionally increased the mor-

tality of non-emitting neighbors. If so, TPS10 volatiles may increase plants’ competitive ability by

increasing neighbor mortality.

Indeed, TPS10 plants had a dramatic effect on the infestation of their WT neighbors by T.

mucorea weevils (Figure 10). TPS10 volatiles seemed only to affect the infestation rates of plant

populations; for individual plants, jasmonate-mediated defense is likely more important

(Diezel et al., 2011, and see ‘Results’). Infestation patterns in populations (Figure 10) strongly indi-

cate that ovipositing T. mucorea adults seek populations of plants based on their volatile emission

and then oviposit on all plants in the population. Infestation rates did tend to be higher for lox2/

3xTPS10 plants than for lox2/3 plants in populations (Figure 10C), indicating that the absence of

other volatiles such as GLVs may reduce plants’ apparency to ovipositing T. mucorea.

It is interesting that the TPS10-mediated increase in T. mucorea infestation was greater for WT

plants in mixed WT + TPS10 populations than for TPS10 plants in monocultures (Figure 10): though

TPS10 monocultures tended to have higher infestation rates than WT monocultures, this difference

was not statistically significant, whereas the difference between WT plants in monocultures and WT

plants in mixed cultures was both larger and significant. It is tempting to speculate that T. mucorea

may be attracted to lower relative abundance of TPS10 volatiles, and deterred by higher relative

abundance of these volatiles in the total mixture of the plant headspace. If true, this could provide a

mechanism by which TPS10 emitting plants could inflict an indirect cost of emission on non-emitting

neighbors, which would be always slightly higher than their own cost of emission. Furthermore, if

attraction or deterrence depended on the ratio of TPS10 volatiles to other plant volatiles, the effects

might differ for TPS10 and lox2/3xTPS10 plants (Bruce et al., 2005).

The infliction of such an indirect cost on neighbors is reminiscent of extortionist strategies in the

iterated prisoner’s dilemma of evolutionary game theory: extortionist strategies lock a player’s pay-

off to its opponent’s payoff plus some positive number, thereby ensuring that the extortionist always

benefits compared to its opponent (Press and Dyson, 2012). Interestingly, such strategies have

been shown in simulations not to be evolutionarily stable, but to catalyze the evolution of coopera-

tion in populations (Hilbe et al., 2013). Of course it is possible that the manipulation of LOX2 and

LOX3 expression within populations would also reveal such extortionist-like effects, for example if T.

mucorea preferred to oviposit in TPS10 plants over lox2/3xTPS10 plants in the same population,

which would support the hypothesis that T. mucorea preference reflects the ratio between TPS10

volatiles and other HIPVs.

Effects of TPS10 volatiles on indirect defense depend on LOX2/3-
mediated direct and indirect defense
Predation rates of M. sexta herbivores from edge and center plants in populations (Figure 11) indi-

cate that populations’ total HIPV emissions can alter the roles of specific volatiles for indirect

defense. In lox2/3 + lox2/3xTPS10 populations, deficient in all HIPVs except those provided by

TPS10 expression, lox2/3xTPS10 edge plants of monocultures experienced higher predation rates,

whereas predation rates were similar for center lox2/3xTPS10 and lox2/3 plants in mono- and mixed

cultures. For TPS10 and WT plants, effects on predation rates were exactly the opposite. There was

significantly less predation of M. sexta from TPS10 center plants in monocultures vs mixed cultures,

but TPS10 edge plants had predation rates similar to WT. Together, these results indicate that the

effect of TPS10 volatiles on indirect defense was positive for lox2/3xTPS10 plants, but negative for

TPS10 plants, and only significant for plants in monocultures. In mixed cultures, TPS10 volatiles had

no effect on the predation of M. sexta herbivores from emitting plants or their neighbors. It should

be noted that due to higher mortality in lox2/3 + lox2/3xTPS10 populations, center plants were

sometimes more exposed in these populations as a result of edge plants dying. However, the fact
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that TPS10 volatiles benefitted only edge plants in these populations indicate that Geocoris spp.

predators nevertheless distinguished between edge and center plants.

We conclude that TPS10 expression had different consequences for plants’ indirect defense,

depending on whether one or all plants in a population expressed TPS10, and whether those plants

also emitted other HIPVs. If only one plant in the population expressed TPS10, or if other HIPVs

were also emitted in the population, TPS10 expression did not enhance indirect defense and was

sometimes detrimental to emitters. The attraction of most, or all, predators and parasitoids to HIPVs

depends on learned associations between HIPVs and prey: naı̈ve predators are just as likely to

respond as they are not to respond (Allison and Hare, 2009). Because LOX2/3-deficient plants were

heavily attacked by herbivores (Figure 5), predators could associate TPS10 volatiles emitted by

lox2/3xTPS10 plants with herbivore damage (though damage did not necessarily reflect abun-

dance—see Figure 6). Because lox2/3 and lox2/3xTPS10 plants had reduced emissions of other

HIPVs (Figure 1 and associated source data files, Appendix 2), there were few other volatiles which

could provide the basis for learned associations between HIPVs and prey. On the other hand, TPS10

volatiles emitted constitutively by less heavily attacked TPS10 plants (Figure 5) would be less often

associated with feeding herbivores than the endogenous HIPVs released only when herbivores

attack, and all the more so if TPS10-expressing plants supported fewer foliar herbivores (Figure 6).

Perhaps because ‘honest’ endogenous HIPVs were also emitted by WT plants, TPS10 plants had no

advantage over WT in attracting predators.

The concept of honest vs deceptive, or ‘cry wolf’ HIPV emission has been investigated in the con-

text of emission proportionate, or disproportionate to numbers of attacking herbivores

(Shiojiri et al., 2010). But what happens when plants ‘cry wolf’ by constitutively emitting volatiles

which, in nature, are only associated with herbivore damage? Plants engineered to constitutively

emit particular HIPVs can attract more parasitoids when parasitoids are trained to associate engi-

neered volatiles with their prey (Kappers et al., 2005; Schnee et al., 2006), or when all emitting

plants are also experimentally infested (Rasmann et al., 2005; Degenhardt et al., 2009). Such stud-

ies demonstrate that genetic engineering of HIPVs can enhance indirect defense, but they do not

demonstrate that constitutive emission is an effective strategy in the complex environments of agri-

culture, or nature (Kos et al., 2009; Schuman et al., 2012; Xiao et al., 2012). From an arthropod’s

perspective, constitutive HIPV emission is oxymoronic. If there is no effort to artificially associate con-

stitutively emitted volatiles with prey, predators, and parasitoids may not learn to respond, or worse,

learn to actively ignore the volatile emissions. Whether achieved via genetic methods or synthetic

release stations (Kaplan, 2012), constitutive emission is unlikely to enhance indirect defense if prey

densities are low, or if plants emit other ‘honest’ HIPVs.

Moreover, assigning an indirect defense function to HIPVs based on their ability to attract preda-

tors or parasitoids to single plants may be misleading. In real populations, the effectiveness of HIPVs

likely depends on the density of HIPV emission and the location of emitting plants (Xiao et al.,

2012). There may be competition among plants in populations either to attract, or to arrest preda-

tors and parasitoids of herbivores. Specifically, whether plants benefit from emitting more or less

than their neighbors likely depends on the basal level of HIPV emission in a population (low or high),

and the location of plants in a population (edge or center). Perhaps, wild-type plants are capable of

adjusting their own volatile emission in response to the emission of their neighbors in order to adapt

(Choh et al., 2004; Baldwin et al., 2006; Yan and Wang, 2006). In this context, it would be inter-

esting to know whether central lox2/3 plants surrounded by WT edge plants would experience a

similar predation disadvantage as central TPS10 plants surrounded by WT edge plants, and whether

central WT plants surrounded by lox2/3 edge plants would have an advantage over their neighbors

in attracting predators.

Conclusion
Now that careful and extensive research has established the importance of biodiversity to ecosystem

function, the next step is to understand how the two are linked in order to craft informed socioeco-

nomic and environmental policy (Midgley, 2012). The community genetics perspective is essential in

order to understand biodiversity effects at the level of individual heritable traits (Whitham et al.,

2006). This is especially true in light of recent research showing that intraspecific, genetic biodiver-

sity is at least as important as interspecific biodiversity for the structure of ecological communities

(Crutsinger et al., 2006; Johnson et al., 2006; Cook-Patton et al., 2011; Moreira and Mooney,

Schuman et al. eLife 2015;4:e04490. DOI: 10.7554/eLife.04490 23 of 45

Research Article Ecology Plant Biology

http://dx.doi.org/10.7554/eLife.04490


2013) and the recognition that interspecific biodiversity is an emergent property of genetic biodiver-

sity (Johnson and Stinchcombe, 2007; Haloin and Strauss, 2008).

The work presented here demonstrates that the population-level effects of an indirect defense

gene may be greater than its effects on individual plants, demonstrating that the population per-

spective is vital to our understanding of gene function. Furthermore, our results indicate that popula-

tions comprising individuals differing in only a single genetic trait can functionally imitate more

diverse communities. Engineering functional diversity may become an important strategy in a world

with over 10 billion humans (United Nations, Department of Economic and Social Affairs, Popula-

tion Division, 2013), where every patch of arable land may be planted with custom-engineered

high-yield crop monocultures.

Materials and methods

WT and transgenic plant lines and glasshouse growth conditions
Seed germination, glasshouse growth conditions, and the Agrobacterium tumefaciens (strain LBA

4404)–mediated transformation procedure have been described previously (Krügel et al., 2002;

Schuman et al., 2014). Seeds of the 31st generation of the inbred ‘UT’ line of N. attenuata (Torr. ex

S Watson) described by Krügel et al. (2002) were used for the wild-type (WT) plants in all experi-

ments. We used homozygous transformed lines of the second transformed generation (T2), each

with a single transgene insertion, to either ectopically overexpress Zea mays TERPENE SYNTHASE

10 (TPS10) under the control of a 35S promoter in the pSOL9 plasmid (TPS10 line A-09-389-6/10-3,

described in Schuman et al., 2014), or silence N. attenuata LIPOXYGENASE 2 and LIPOXYGENASE

3 (LOX2/3) via an inverted repeat construct specifically targeting both genes in the pSOL8 plasmid

(line A-07-707-2, sequences targeting NaLOX2 and NaLOX3 described in Allmann et al. (2010) (Fig-

ure 1). Vector construction and the pSOL8 and pSOL9 plasmids have been described previously

(Gase et al., 2011). To combine the ectopic overexpression of TPS10 with the silencing of LOX2/3, a

hemizygous cross was created between the lox2/3 and TPS10 T2 homozygous lines (lox2/3xTPS10,

Figure 1). Further details of transgenic line screening and characterization are given in Appendix 3.

Field plantations and growth conditions
For field experiments, seedlings were transferred to 50 mm peat pellets (Jiffy) 15 days after germina-

tion and gradually hardened to the environmental conditions of high sunlight and low relative humid-

ity over 10 days. Small, adapted, size-matched rosette-stage plants were transplanted into a field

plot in a native habitat in Utah located at latitude 37.146, longitude 114.020. Field plantations were

conducted under APHIS permission numbers 06-242-3r-a3, 10-349-102r, and 11-350-101r. Plants

were watered thoroughly once at planting and as needed over the first 2 weeks until roots were

established; all plants received the same watering regime in each year. WT, TPS10, lox2/3, and lox2/

3xTPS10 plants were arranged as individuals and populations according to the descriptions in Fig-

ure 2 and Figure 2—figure supplement 2 (n = 12 in season one, n = 15 in season two of each indi-

vidual or population type).

A distance of 0.5 m is sufficient for N. attenuata’s herbivores and their predators to distinguish

odor from individual plants (Kessler and Baldwin, 2001; Schuman et al., 2012): so that insects

could perceive plants in a population as a single unit, they were planted in 0.4 � 0.4 m squares,

while the distance between single individuals/populations was ca. 1.5 m. Individual and population

types were marked with small (ca. 5 cm long, � 0.5 cm) bamboo sticks having different numbers of

horizontal markings, which were checked during experiments only when establishing treatment

groups, or confirming current location within the experiment. During experiments and data collec-

tion, plants were referred to only by their number or position (e.g., n1 population 2 upper left, where

upper left was defined from a standardized observer position). Plant genotypes were never identi-

fied during data collection to avoid bias, and experimental treatments and data collection were spa-

tially and temporally randomized corresponding to the randomized arrangement of individuals and

populations in the field plot (Figure 2—figure supplement 2).
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Tissue samples from glasshouse- and field-grown plants
Prior to measuring gene transcripts and induced defenses or HIPVs, glasshouse-grown plants, which

were not damaged by herbivores, were treated with wounding and M. sexta oral secretions (W +

OS) as a standardized method to mimic herbivore feeding as described previously (Schuman et al.,

2012). The first fully-expanded leaf (node +1) was used for quantifying gene transcript (LOX2, LOX3,

TPS10) and jasmonate (JA, JA-Ile) accumulation on a set of bolting plants. The adjacent older leaf

(node +2) was used to measure headspace volatiles on the same plants (data in Appendix 2, and see

‘Quantification of volatiles in the headspace of glasshouse-grown plants’). A separate set of plants

was used following the same procedure for WT and TPS10 jasmonates and GLVs, and the results are

reported in Schuman et al. (2014) and ratios to WT are shown in Figure 1B. Control plants were

left untreated. Treated leaves, and leaves at the same position on control plants were cut at the peti-

ole and wrapped in a double layer of aluminum foil, then immediately flash-frozen in liquid nitrogen,

and kept at �80˚C until processing and analysis.

For field-grown plants, five similar, mature, non-senescent stem leaves were harvested after the

end of predation assays, on June 28th of experimental season two. Two of these leaves had been

damaged by the M. sexta first-instar larvae used for predation assays, and three were systemic

leaves with similar levels of damage from other naturally-occurring herbivores. Leaves were cut at

the petiole, pooled in a single sample per plant and wrapped in a double layer of aluminum foil,

then immediately frozen on dry ice insulated with ice packs frozen at �20˚C. Samples were stored at

�20˚C until transport to the MPICE on dry ice, where they were kept at �80˚C until processing and

analysis.

All sample processing was carried out over liquid nitrogen until the addition of the extraction sol-

vents. Prior to analysis, entire leaves were crushed with a mortar and pestle and each transferred to

a 2 mL microcentrifuge tube for storage. For specific measurements, aliquots were weighed into

microcentrifuge tubes containing two steel balls and finely ground in a GenoGrinder (SPEX Certi

Prep, Metuchen, NJ) prior to extraction.

Quantification of JA and JA-Ile in leaf tissue
JA and the active jasmonate hormone JA-Ile were extracted from 100 mg of leaf tissue (from n = 4

plants) using ethyl acetate spiked with internal standards (IS) and quantified by LC-MS/MS (Varian,

Palo Alto, CA) as described by Oh et al. (2012), with the modification that 100 ng rather than 200

ng of [2H2]JA, and 20 ng rather than 40 ng of JA-[13C6]Ile were used as internal standards (IS). Indi-

vidual jasmonates were quantified in ng by comparison to the corresponding IS peak area and nor-

malized per g leaf tissue fresh mass (FM). The quantification of TPI in field tissue samples as an

indicator of jasmonate signaling is described in Appendix 3.

Quantification of volatiles in the headspace of glasshouse-grown plants
For GLVs, the +2 leaf (n = 4 plants) was enclosed immediately after W + OS elicitation in two 50 mL

PET cups (Huhtamaki, Finland) lined on the edges with foam to protect leaves and with an activated

charcoal filter attached to one side for incoming air, and secured with miniature claw-style hair clips

as described previously (Schuman et al., 2009). For TPS10 products in the headspace of glasshouse-

grown plants (n = 4), leaves were enclosed 24 hr after W + OS treatment and the headspace was

collected from 24–32 h during the peak emission of sesquiterpenes in N. attenuata

(Halitschke et al., 2000). Headspace VOCs were collected on 20 mg of Poropak Q (Tholl et al.,

2006; Sigma–Aldrich, St. Louis, MO) in self-packed filters (bodies and materials from ARS Inc., Gain-

esville, FL) by drawing ambient air through these clip cages at 300 mL min�1 using a manifold with

screw-close valves set to provide equal outflow, via pushing air at 2 to 3 bar through a Venturi aspi-

rator as described previously (Oh et al., 2012). Background VOCs present in ambient air were col-

lected using empty trapping containers and background signals were later subtracted if necessary

from raw intensities of plant samples prior to further processing.

After trapping, Porapak Q filters were stored at �20˚C until extraction by addition of 320 ng of

tetralin as an internal standard (IS), and elution of volatiles with 250 mL of dichloromethane (Sigma–

Aldrich). Filters were eluted into a GC vial containing a 250 mL glass insert. Samples were analyzed

on one of two different GC–MS instruments from Varian with columns from Phenomenex (Torrance,

CA; 30 m � 0.25 mm i.d., 0.25 mm film thickness). 1 mL of each sample was injected in splitless
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mode, and then the injectors were returned to a 1:70 split ratio from 2 min after injection through

the end of each run. He carrier gas was used with a column flow of 1 mL min�1. GLV samples were

analyzed by a CP-3800 GC Saturn 2000 ion trap MS with a polar ZB-wax column and a CP-8200

autoinjector; the GC and MS were programmed as previously described for this instrument

(Schuman et al., 2012), and compounds were separated by a temperature ramp of 5˚C min�1

between 40˚C and 185˚C. TPS10 products and other VOCs were analyzed on a CP-3800 GC coupled

to a Saturn 4000 ion-trap mass spectrometer with a nonpolar ZB5 column and a CP-8400 autoinjec-

tor; The GC and MS were programmed as previously described for this instrument (Oh et al., 2012),

and compounds were separated by a temperature ramp of 5˚C min�1 between 40˚C and 180˚C.
Individual volatile compound peaks were quantified using the combined peak area of two specific

and abundant ion traces per compound using MS Work Station Data Analysis software (Varian) and

normalized by the 104 + 132 ion trace peak area from tetralin in each sample. The identification of

compounds was conducted by comparing GC retention times and mass spectra to those of stand-

ards and mass spectra databases: Wiley version 6 and NIST (National Institute of Standards and

Technology) spectral libraries.

The area of trapped leaves was quantified for comparison by scanning and calculating areas in

pixels using SigmaScan (Systat Software Inc., San Jose, CA), and subsequently converting pixels to

cm2 using a size standard which was scanned with leaves.

Quantification of plant volatiles in hexane extracts of field tissue
samples
Plant volatiles were quantified in tissue from field-grown plants (n = 9–22). Frozen tissue (100 mg)

was spiked with 800 ng tetralin as an internal standard (Sigma–Aldrich) and extracted in 300 mL hex-

ane during an overnight rotating incubation at RT. Tissue was allowed to settle and 100 mL of water-

and tissue-free hexane was transferred to a GC vial containing a 250 mL microinsert. Samples were

analyzed by a Varian CP-3800 GC-Saturn 4000 ion trap MS connected to a ZB5 column (30 m � 0.25

mm i.d., 0.25 mm film thickness; Phenomenex) as described in ‘Quantification of volatiles in the head-

space of glasshouse-grown plants’. Analyte quantities were expressed as percent tetralin IS per 100

mg FM.

Quantification of volatiles in the open headspace of field-grown plants
For the data in Figure 3, on May 16th of season two, four activated charcoal filters were placed

around each plant (n = 4) as shown in Figure 3A and the headspace was not enclosed. The open

headspace was sampled for 7 h during the day at which time emission of most volatiles was previ-

ously found to be greatest (Appendix 2). After elution (see Appendix 3), eluents from all four filters

were combined and concentrated to a volume of 15–20 mL under a gentle stream of nitrogen gas.

Pooled and concentrated samples were analyzed by Agilent 6890N GC equipped with an Agilent

7683 auto-injector coupled with a LECO (St. Joseph, MI) Pegasus III time-of-flight MS with a 4D ther-

mal modulator upgrade. Injected samples were separated first on a nonpolar column (C1 RTX-5MS,

20 m � 250 mm i.d. � 0.5 mm; Restek, Bellefonte, PA) and every 6 s (modulation time) transferred to

a midpolar column (DB-17, 0.890 m � 100 mm i.d. � 0.1 mm; Agilent Technologies, Santa Clara, CA)

for the second separation. Chromatography and analysis conditions as well as deconvolution, align-

ment, and integration of VOC analyte peaks are described in Gaquerel et al. (2009). During peak

table alignment using the comparison feature imbedded in ChromaToF software (LECO), mass spec-

tra alignment was accepted at a similarity threshold of 500/1000. Individual volatile compound peaks

were normalized by the peak area of the tetralin IS in each sample. Analyte quantities were

expressed as percent tetralin IS per plant.

Measurement of M. sexta growth
As for OS collection, we used M. sexta neonates from an in-house colony at the MPICE. One M.

sexta neonate per plant was placed on the youngest rosette leaf of elongated plants (n = 25 larvae).

Larval movement was unrestricted within a plant, but plants were spaced on the table so that larvae

could not move directly between plants. Larval mass was determined on days 8 and 12, correspond-

ing on average to the third and fourth larval instars. Plant genotypes were randomized spatially on a
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single glasshouse table and temporally in placement and weighing of larvae. Due to mortality and to

larval movement off of plants, 11–16 larvae remained within each treatment group by day 12.

Assessment of foliar herbivore damage
Total canopy damage due to herbivores occurring naturally on the field plot was quantified on June

9th in season one, and on June 2nd in season two. Damage was calculated as described in

Schuman et al. (2012) by identifying damage from specific herbivores according to their characteris-

tic feeding patterns, counting the number of leaves per plant (small leaves were counted as 1/5 to 1/

2 of a leaf based on leaf area and large leaves were counted as 1 leaf), estimating the total percent-

age of leaf area damage due to each herbivore, and dividing the total leaf area damage from each

herbivore by the total number of leaves. Leaf area damage was estimated in categories of 1%, 5%,

10%, 15%, and so on, in steps of 5%. All such damage estimates were made by MCS. Plants with a

health index <2.5 (see ‘Ranking of apparent plant health’) were excluded from herbivore damage

calculations as it was difficult to accurately assess herbivore damage to these plants.

Herbivore and predator counts
In the morning of June 26th in season two, a subset of focal plants with a health index �2 was cho-

sen (see ‘Ranking of apparent plant health’) and numbers of herbivorous and predacious arthropods

present on the shoots of these plants were counted (total n’s in Figure 6—source data 1, 2). The

counting was done by a team of two people in parallel moving down the plot in the same direction,

so as to complete counts as quickly as possible and to avoid disturbing plants prior to counting.

Plants were randomly assigned to each counter. Counting proceeded by looking at each branch of

the plant in a systematic order from the top to the bottom of the plant, observing both the adaxial

and abaxial sides of leaves as well as full areas of stems. In this way especially mobile arthropods

which tend to feed near the top of plants were either counted before they fled (Epitrix spp.), or

could be counted once they had relocated to the base of the plant (T. notatus).

Measurement of plant size and flower production
Plant size (rosette diameter, stem length, and branching) was measured at three times during the

main period of vegetative growth and beginning of reproduction in season one (May 1st–2nd, 8th–

11th, and 16th–17th), and after plants had switched from vegetative growth to reproduction in sea-

son two (June 4th–6th), at which time stem diameter was also measured. Rosette diameter was mea-

sured as the maximum diameter found by gently laying a ruler over the rosette; stem length was

measured from the base of the stem to the tip of the apical inflorescence by placing a ruler beside

the stem resting at the base of the rosette; stem diameter was measured by placing a calipers at the

base of the stem immediately above the rosette; and all side branches 5 cm or longer were counted.

Additionally, plant reproductive output was monitored by counting the number of flowers

(counted once the corolla protruded visibly from the calyx) before removal at two time points after

plants began to flower: on May 8th–11th and 16th–17th in season one, and on May 29th and June

4th–6th in season two. Additionally, buds >2 mm long were counted in season two. After these

counts, floral meristems were removed as necessary to prevent the distribution of ripe seeds, as is

required for field-released transgenic plants.

Quantification of plant mortality and infestation by Trichobaris mucorea
Plant mortality was quantified as the number of plants which died between the end of planting, and

the end of the experiment when all plants and remains were removed from the field plot. During

removal of plants on June 29th in season two, we split stems open lengthwise to check for T.

mucorea frass and larvae (Diezel et al., 2011). Plants were counted as infested if the main stem was

hollow and filled with T. mucorea frass, or if a larva was found in such a hollow, frass-filled stem or

axial branch. These counts were done by tallying totals without reference to specific plant ID’s, and

thus could only be analyzed using unreplicated statistical tests.

Ranking of apparent plant health
In season two, plant health was also ranked by MCS on a scale of 1–5 in increments of 0.5 (1, 1.5, 2,

2.5, . . ., 5) using the index in Figure 7C of Schuman et al. (2012): 5, healthy, <5% of shoot
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senescent, no chlorosis or signs of water stress; 4, 5–10% of shoot senescent and may have visible

chlorosis; 3, 10–15% of shoot senescent, some water stress, up to 50% of canopy chlorotic; 2, >15%

of shoot senescent, heavy water stress or visibly sick; 1, dead. This scale was sufficiently objective

that several observers not directly involved in the experiment arrived independently at the same

ranks, to a precision of ±0.5, to describe the health indices of randomly-chosen plants, after training

on fewer than 10 example plants.

Assay of predation by Geocoris spp.
Five consecutive predation assays were conducted between June 21st and June 27th at the end of

experimental season two, when Geocoris spp. and herbivores were abundant. M. sexta eggs and lar-

vae (total n’s given in the source data file for Figure 11) were used as bait for Geocoris spp. predators

as described by Kessler and Baldwin (2001) and Steppuhn et al. (2008). Native Manduca spp. did

not provide sufficient synchronously oviposited eggs for trials, and so we used M. sexta eggs kindly

provided by C Miles from her laboratory colony at Binghamton University, Vestal, New York. Size-

matched plants with health indices �2 in populations were used. We treated LOX2/3-expressing (WT,

TPS10) and LOX2/3-deficient (lox2/3, lox2/3xTPS10) populations as two separate experimental groups

because it was not possible to match plants across these two groups for apparent health or replicate

numbers (both were lower for lox2/3 and lox2/3xTPS10 populations). During the five predation assays

it was occasionally necessary to select new plants, preventing a repeated measures analysis of the pre-

dation data; however, newly selected plants were matched as described. At the end of predation

assays, tissue samples were taken from a subset of these plants for the extraction of volatiles and

determination of TPI activity (Figure 1, Figure 1—source data 3 and preceding methods).

For each assay, one first-instar M. sexta larva and one egg were placed on one lower stem leaf in a

standardized position on each plant, and the predation of eggs and larva was monitored after 24 hr.

No other Manduca spp. eggs or larvae were present on the plants used during the assays. Eggs were

affixed to the underside of the leaf with a drop of a-cellulose glue (KVS, Germany), which does not

damage plants or affect volatile emission (Kessler and Baldwin, 2001). Feeding by the M. sexta larva

ensured the locally elicited emission of HIPVs. Larvae were considered to be predated when either the

larva was missing, but clearly identifiable, fresh M. sexta feeding damage was present, or when the

predated larval carcass was found on the same plant; eggs were considered predated when the egg-

shell was empty but intact, except for a small hole which characterizes the typical damage caused by

Geocoris spp. feeding as described in Kessler and Baldwin (2001) and depicted in Figure 3 of

Schuman et al. (2012). Eggs occasionally collapse during Geocoris spp. predation, but collapsed

eggs were not counted unless the eggs were at least 50% empty with a visible feeding hole.

Statistical analyses
Summary statistics were calculated in Microsoft Excel, as were G-tests, Fisher’s exact tests, and tests

of Spearman’s correlation coefficients, which were calculated using Microsoft Excel spreadsheets

from JH Macdonald’s online Handbook of Biological Statistics (Macdonald, 2009). All other statisti-

cal tests were calculated in R version 2.15.2, using the RStudio interface version 0.96.316 or version

0.97.449 (R Core Team, 2012). In some cases, data which were clearly not different upon visual

inspection and which had been found in similar data sets not to differ significantly were not statisti-

cally tested (e.g., rosette diameter in some subsets of data from season one).

When possible, Welch t-tests were used for pairwise comparisons and ANOVAs, linear mixed-

effects models, generalized linear models, or generalized linear mixed-effects models were used for

multiple comparisons as appropriate; we checked treatment groups graphically (quantile–quantile

plots, residual v. fitted plots) and statistically (Shapiro–Wilk test, Bartlett test) for compliance with

model assumptions, including normality and homoscedasticity. Data containing too many zero val-

ues or not meeting model assumptions were analyzed using ranking tests (Wilcoxon rank sum for

pairwise comparisons, Kruskal–Wallis for multiple groups). R package nlme was used for linear

mixed-effects models (Pinheiro et al., 2014), and packages lme4 (Bates et al., 2014, ; 2014b) and

multcomp (Hothorn et al., 2008) were used for generalized linear mixed-effects models.

The optimal fixed structure for ANOVAs, linear mixed-effects models, generalized linear models,

and generalized linear mixed-effects models was found by stepwise model simplification and factor

level reduction followed by the comparison of the models via the Akaike information criterion (AIC,
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Akaike, 1973). Specific examples of model simplification for individual analyses are given in Appen-

dix 3 and Figure 8—source data 1.

Holm-Bonferroni p-value corrections were calculated in Microsoft Excel for families of tests on the

same data. Like the Bonferroni correction, the Holm-Bonferroni correction controls the familywise

error rate and is simple to calculate, but the Holm-Bonferroni method is more powerful

(Holm, 1979). Briefly, all p-values in a family of tests conducted on the same data set and subsets

were listed from smallest to largest. The smallest p-value was multiplied by the total number of tests

(n) conducted on that data. If the resulting corrected p-value was <0.05, then the next-smallest p-

value was multiplied by n � 1. If the resulting corrected p-value was <0.05, then the third smallest p-

value was multiplied by n � 2, and so on. At the first correction resulting in a p-value �0.05, that p-

value and all larger p-values were considered non-significant. The corrected p-values reported in the

text are the products of the correction procedure, for example, (smallest p-value) � n or (second

smallest p-value) � (n � 1).
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Appendix 1

Herbivore-induced plant defenses and HIPVs are precisely
manipulated in lox2/3, TPS10, and lox2/3xTPS10 plants
We confirmed a single insertion of the inverted repeat LOX2/3 construct in several lox2/3 lines

(Appendix 1—Figure 1A) and chose lines with single insertions to screen for reduced

jasmonic acid (JA) and jasmonoyl isoleucine (JA-Ile) (Appendix 1—Figure 1B,C).

Based on these data, we chose lox2/3 line 707-2 for further experiments overexpressing

TPS10 plants (line 10–3) also harbor a single transgene insertion (Schuman et al., 2014), and

both lines were also confirmed to be diploid by flow cytometry. All transgenic lines showed

the intended reduction or increase in target gene transcripts: LOX2 and LOX3 transcripts

accumulated to <7% of WT levels in lox2/3 and lox2/3xTPS10, while TPS10 transcripts were

easily quantifiable in TPS10 and lox2/3xTPS10, but undetectable in WT or lox2/3 (p-values <

0.01 for pairwise differences in Tukey HSD tests following p-values <0.001 in 1-way ANOVAs

on natural log-transformed data, Appendix 1—Figure 2). Transcript abundance of LOX2 and

LOX3 was similar in WT and TPS10 (p=1 in Tukey HSD tests) and in lox2/3 and lox2/3xTPS10

(p=0.471 for LOX2 and p=1 for LOX3); TPS10 transcript abundance was similar in TPS10 and

lox2/3xTPS10 (p=0.157).

As a consequence of reduced LOX3 transcripts (Allmann et al., 2010), lox2/3 and lox2/

3xTPS10 plants accumulated �30% of WT JA levels in a glasshouse experiment in which leaves

were treated with wounding plus distilled water (W + W) or wounding plus the addition of

Manduca sexta oral secretions diluted in distilled water (W + OS) to mimic herbivore attack in

a precisely timed manner (Figure 1B, see also overview of phenotypes in Figure 1A). Induced

levels of the active jasmonate, JA-Ile, were also reduced to <50% of WT. Absolute values for

JA and JA-Ile, and significant pairwise differences in Tukey HSD tests (p-values <0.05)

following two-way ANOVAs on natural log-transformed data (p-values <0.002), are shown in

Figure 1—source data 1. Likewise, reduced LOX2 transcripts resulted in diminished GLV

emissions from lox2/3 and lox2/3xTPS10 plants after W + W or W + OS treatment to <2% of

WT levels (Figure 1B, Figure 1—source data 1). Significant pairwise differences in Wilcoxon

rank sum tests (Holm-Bonferroni-corrected p-values <0.03) following Kruskal–Wallis tests

(corrected p-values �0.020) are shown in Figure 1—source data 1. In contrast, GLV emission

and JA and JA-Ile accumulation were similar in WT and TPS10 plants (Figure 1,

Schuman et al., 2014), but both TPS10 and lox2/3xTPS10 plants emitted elevated amounts of

TAB and TBF, more than 10-fold WT levels as measured in a second glasshouse experiment

(Figure 1B, Figure 1—source data 2). Genotypes with the TPS10 overexpression construct vs

those without differed significantly in their emission (Wilcoxon rank sum tests, corrected p-

values �0.009, shown in Figure 1—source data 2).

As in the glasshouse experiments, lox2/3 and lox2/3xTPS10 plants in the field had strongly

reduced jasmonate-mediated defense and GLV emission, to <4% of WT levels; and TPS10 and

lox2/3xTPS10 plants emitted elevated levels of TAB and TBF, >18� WT levels (Figure 1C;

data reported in the following subsection). The reductions in GLVs, JA, and JA-Ile described

here for lox2/3 and lox2/3xTPS10 are similar to what has been previously reported for

homozygous transformed lines silenced either in LOX2 (GLVs) or LOX3 (JA, JA-Ile) by

separate, specific RNAi constructs (Allmann et al., 2010).

In summary, JA, JA-Ile, jasmonate-mediated defense, and GLVs were significantly reduced in

lox2/3 and lox2/3xTPS10 plants to <4% of WT levels, and lox2/3xTPS10 and TPS10 plants

produced more than 10 times as much TAB and TBF as WT or lox2/3 plants; these

phenotypes were robust in plants grown under controlled glasshouse conditions and in the

field (Figure 1 and supplements, Appendix 2). This set of transgenic plants (Figure 1A)

allowed us to manipulate TAB and TBF independently of defense signaling and all other
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HIPVs, creating plants with enhanced emission in a well-defended (WT, TPS10) or poorly

defended (lox2/3, lox2/3xTPS10) background.

Appendix 1—Figure 1. Transgene insertions and reduced jasmonate accumulation in lines of

lox2/3. (A) Southern blot of genomic DNA from multiple lines of lox2/3 digested with the

restriction enzymes XbaI or EcoRI. Line 707 is highlighted: this line was used for experiments.

A single transgene insertion in TPS10 (line 10–3) is shown in Schuman et al. (2014). All lines of

lox2/3 screened had strong reductions in their induced (B) JA and (C) JA-Ile accumulation

(mean ± SEM, n = 6). Line 707-2 was used for further experiments. a,b Different letters indicate

significant differences (corrected p<0.0001) in Tukey HSD tests following significant

(p<0.0001) 1-way ANOVAs on natural log-transformed data (JA: F4,25 = 54.15; JA-Ile: F4,25 =

18.00); ns, not significant in 1-way ANOVAs (p>0.4).

DOI: 10.7554/eLife.04490.027

Appendix 1—Figure 2. Target gene transcript levels in lox2/3, TPS10, and lox2/3xTPS10 plants.

Transcript accumulation shows that lox2/3 plants, TPS10 plants, and hemizygous crosses (lox2/

3xTPS10) have the expected silencing or accumulation of the target genes LOX2, LOX3, and

TPS10 (mean ± SEM, n = 4). a,b Different letters indicate significant differences (corrected

p<0.01) in Tukey HSD tests following a significant (p<0.001) 1-way ANOVA on natural log-

transformed data (LOX2: F3,12 = 49.49, p<0.001; LOX3: F3,12 = 13.73, p<0.001; TPS10: F3,12 =

845.6, p<0.001).

DOI: 10.7554/eLife.04490.028
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Appendix 2

Phenotypic measurements of transgenic lines in
experimental field-grown populations.
Trypsin protease inhibitor (TPI) activity, a well-known jasmonate-mediated defense (van Dam

et al., 2001; Halitschke and Baldwin, 2003), is more a stable trait than are JA levels in frozen

tissue and thus was used as an indicator of jasmonate-mediated defense levels in field-

harvested samples. TPI activity was reduced to <4% of WT activity in lox2/3 and lox2/3xTPS10

plants grown in the field. A Kruskal–Wallis test among genotypes indicated a highly significant

difference (c23 = 47.87, corrected p<0.001), as did Wilcoxon rank sum tests between WT and

lox2/3, and WT and lox2/3xTPS10 (W24,12 = 0, W24,11 = 0 and corrected p-values<0.001,

Figure 1C, Figure 1—source data 3). There was no significant difference in TPI activity

between WT and TPS10 (W24,21 = 357, corrected p=0.065), as was previously shown in

glasshouse experiments (Schuman et al., 2014).

GLV pools extracted from leaf tissue samples of field-grown lox2/3 and lox2/3xTPS10 plants

were <3% of those found in leaf tissue from field-grown WT plants (corrected p-values <0.001

in Wilcoxon rank sum tests), whereas TPS10 and WT did not differ (corrected p-values = 1 in

Wilcoxon rank sum tests, Figure 1C). (E)-Hexen-2-al and (Z)-hexen-3-ol were the only GLVs

found in extracts (see also Schuman et al., 2012), and both differed significantly by genotype.

Significant differences in pairwise comparisons between lox2/3, lox2/3xTPS10, TPS10 and WT

in Wilcoxon rank sum tests (corrected p<0.001) following Kruskal–Wallis tests (corrected p-

values < 0.001) are shown in Figure 1—source data 3. There was no significant effect of plant

type or population type on extracted GLVs (corrected p-values =1 in Kruskal–Wallis tests

across individuals, edge and center plants, or across individuals, mono-, and mixed cultures).

Emission of (Z)-hexen-3-ol, the only GLV detected from plants having natural background

levels of herbivore attack in season one, was also reduced in lox2/3 and lox2/3xTPS10 to

<16% of WT emission (Appendix 2—Table 1). Daytime emission of (Z)-hexen-3-ol was low and

differed only marginally in a Kruskal–Wallis test among genotypes (c23 = 9.27, corrected

p=0.052), but nighttime emission differed significantly in a Wilcoxon rank sum test between

plants with and without the lox2/3 silencing construct (WT and TPS10 v. lox2/3 and lox2/

3xTPS10, W15,15 = 171.5, corrected p=0.035). No significant effect of population type on

emission was observed (Wilcoxon rank sum tests at day or night of individuals vs center plants

in monocultures, corrected p-values >0.07).

More than 18 times as much TAB and TBF were measured in TPS10 and lox2/3xTPS10 tissue

extracts than in WT tissue extracts from field-grown plants. Significant differences (corrected

p-values <0.04) in Wilcoxon rank sum tests between individual genotypes following Kruskal–

Wallis tests (corrected p-values <0.001) are shown in Figure 1—source data 3. There was no

significant effect of plant type or population type on extracted TAB and TBF (corrected p-

values >0.8 in Kruskal–Wallis tests across individuals, edge and center plants, or across

individuals, mono-, and mixed cultures). Emission of TAB and TBF from plants with natural

background levels of herbivore attack in season one was also increased in TPS10 and lox2/

3xTPS10, to more than 20-fold WT levels. During the day, when emission of TAB and TBF was

highest, Kruskal–Wallis tests indicated highly significant differences among genotypes (TAB,

c23 = 20.90, corrected p=0.008; TBF, c23 = 19.63, corrected p=0.001); significant pairwise

differences (corrected p<0.05) in Wilcoxon rank sum tests are shown in Appendix 2—Table 1.

At night, when TAB and TBF emission levels were 10- to 20-fold lower overall, genotypes with

and without the TPS10 overexpression construct still differed significantly in TAB emission in a

Wilcoxon rank sum test (WT and lox2/3 v. TPS10 and lox2/3xTPS10, W15,15 = 52.5, corrected

p=0.022). No significant effect of population type on emission was observed (Wilcoxon rank

sum tests at day or night of individuals vs center plants in monocultures, corrected p-values

>0.3).
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In summary, all measures of GLV emission, jasmonate-mediated defense, and TAB and TBF

emission revealed that the engineered phenotypes were stable and, except for open

headspace measurements from lox2/3 plants in mixed cultures, unaffected by population type

in field experiments (Figure 1C, Figure 1—source data 3, Appendix 2—Table 1).

Furthermore, non-target volatiles (phenylpropanoids, monoterpenes, and the sesquiterpenes

germacrene A and a-duprezianene) were not affected by transformation or population type

(Figure 1—source data 3, Appendix 2—Table 1). Thus, there was no evidence for direct

effects of TPS10 volatiles on neighbor plants, with the exception of headspace contamination

(Figure 3) which could be due either to diffusion or adsorption and re-release of TPS10

volatiles.
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Appendix 3

Screening of transgenic plant lines, quantification of TPI activity in field tissue samples, and

quantification of volatiles in the headspace of field-grown plants (data shown in Appendices 1,

2); and statistical models used to test the hypotheses that LOX2/3 deficiency, TPS10

expression, plant position, and population type were associated with differences in foliar

herbivore damage (data shown in Figure 5) and foliar herbivore abundance (data shown in

Figure 6).

Screening of transgenic plant lines
Transgenic lines were screened based on the procedure described by Gase et al. (2011).

Briefly, plants likely to contain a single transgene insertion were selected based on the

segregation of hygromycin resistance in the T1 generation (the HYGROMYCIN

PHOSPHOTRANSFERASE II [HPTII] gene from pCAMBIA-1301 is contained in the pSOL

vector). High-quality genomic DNA was extracted using a modified cetyltrimethylammonium

bromide (CTAB) method (Bubner et al., 2006) from non-senescent leaf tissue collected from

transformed plants (see ‘Tissue samples from glasshouse- and field-grown plants’). Single

transgene insertions were confirmed by Southern blotting of genomic DNA digested with

EcoRI and XbaI using a 32P-labeled probe binding to HPTII (lox2/3 shown in Appendix 1—

Figure 1, TPS10 in Schuman et al., 2014). Flow cytometric analysis (described by

Bubner et al., 2006) confirmed that all transgenic lines were diploid. Homozygosity of T2

plants was determined by screening for resistance to hygromycin.

The accumulation or reduction of target gene transcripts was quantified in leaf samples (n = 4)

harvested 1 h after treatment with M. sexta oral secretions (W + OS, see ‘Tissue samples from

glasshouse- and field-grown plants’ in ‘Materials and methods’). Total RNA was extracted

from 100 mg tissue using TRI reagent (Invitrogen, Life Technologies, Carlsbad, CA) according

to the manufacturer’s instructions. Quality was checked on a 1% agarose gel and

concentration was determined by absorbance at 260 nm with a NanoDrop ND-1000

spectrophotometer (NanoDrop Technologies, Wilmington, DE). Synthesis of cDNA from 0.5

mg of total RNA per sample and SYBR Green qPCR analyses were conducted as in Wu et al.

(2007) using reagents from Fermentas, Waltham, MA, a Mastercycler (Eppendorf, Germany)

and an Mx3005P qPCR system (Stratagene La Jolla, CA) and qPCR Core Kit for SYBR Green I

(Eurogentec, Belgium). Transcripts were quantified using external standard curves for each

gene, and N. attenuata ELONGATION FACTOR 1A (Elf1A) transcript abundance in each

sample was used to normalize total cDNA concentration variations. Samples of RNA used to

make cDNA were pooled to the same dilution as in cDNA samples and run alongside cDNA in

all qPCRs to control for gDNA contamination; no contamination was detected. The primers for

each gene have been described previously: LOX2, Allmann et al. (2010); LOX3,

Kallenbach et al. (2010); and TPS10 and Ef1A, Schuman et al. (2014).

Analysis of JA and JA-Ile is described under ‘Quantification of JA and JA-Ile in leaf tissue’ in

‘Materials and methods’.
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Quantification of TPI activity in field tissue samples
TPI activity (nmol mg protein�1) was quantified in 100 mg of frozen tissue from field samples (n

= 11–24) using a radial diffusion assay as previously described (van Dam et al., 2001) based

on the protocol from Jongsma et al. (1993) and using materials from Sigma–Aldrich and a

radial plate sufficiently large to simultaneously accommodate all samples and two rows of

standards, one at the start and one at the end of the plate. For the statistical analysis

approach, see ‘Statistical analyses’ in ‘Materials and methods’.

Quantification of volatiles in the headspace of field-
grown plants
For volatile trapping in field experiments, we used single-use activated charcoal filters (ORBO-

32 standard; Supelco, Sigma-Aldrich) shielded with aluminum foil from UV radiation and

connected to self-made ozone scrubbers at the air inlet that contained eight-ply of 65 mm-

diameter MnO2-coated copper gauze (OBE Corporation, Fredericksburg, TX) to prevent the

oxidation of volatiles by ozone (Calogirou et al., 1996). Ambient air was pulled through the

charcoal filter by a vacuum pump (DAA-V114-GB; Gast, Benton Harbor, MI) powered by a car

battery. After trapping, charcoal filters were sealed with provided caps and stored at �20˚C
until transportation to the MPICE, elution, and analysis. Filters were spiked with tetralin

internal standard (IS) and eluted as described under ‘Quantification of volatiles in the

headspace of glasshouse-grown plants’.

For the volatile data in Appendix 2—Table 1, heat- and light-resistant transparent plastic

cones with open tops (frost protection cones, Merox) were placed over individual plants and

plants at the centers of monocultures (n = 7–8 plants per genotype) on June 8th in season

one, and the charcoal filter was placed at the base of the plant such that air flowed in at the

top of the cone, through the headspace, and out through the filter. Airflow was started at 8:45

am. Volatiles were trapped for a total of 22 h and filters were exchanged after 12 h, resulting

in two samples from each plant for the periods from 9 am to 9 pm (day) and 9 pm to 7 am

(stopped before daylight shone on plants, night). Samples were analyzed by a Varian CP-3800

GC-Saturn 4000 ion trap MS connected to a ZB5 column (30 m � 0.25 mm i.d., 0.25 mm film

thickness; Phenomenex) as described in ‘Quantification of volatiles in the headspace of

glasshouse-grown plants’. Analyte quantities were expressed as percent tetralin IS per plant.

For the statistical analysis approach, see ‘Statistical analyses’ in ‘Materials and methods’.

Statistical models

Statistical models used for data in Figure 5
We tested the hypotheses that LOX2/3 deficiency, TPS10 expression, plant position, and

population type were associated with differences in foliar herbivore damage. ANOVAs or

linear mixed-effects models were performed on arcsine-transformed data. Models were fit by

maximum likelihood and model reduction was performed by removing least significant terms

and comparing the Akaike information criterion (AIC) value of more complex vs simplified

models (Akaike, 1973) until only significant terms were left. Linear mixed-effects models were

re-fit by restricted maximum likelihood (REML). Genotypes were coded as follows: 1WT,

2TPS10, 3lox23, 4lox23xTPS10; LOX2/3 deficiency was coded as 1WT, 2 lox; TPS10 expression

was coded as 1WT, 2TPS; plant positions were coded as 1Individual, 2Edge, 3Center; and

monocultures vs mixed cultures were coded as 1Mono, 2Mix. All minimal models to explain

differences in herbivore damage retained LOX2/3 deficiency as the only significant factor,

although there was a marginal interaction between LOX2/3 deficiency and plant position in

season one which resulted in a poorer AIC value when removed.

Schuman et al. eLife 2015;4:e04490. DOI: 10.7554/eLife.04490 41 of 45

Research Article Ecology Plant Biology

http://dx.doi.org/10.7554/eLife.04490


For individual plants, the following initial ANOVA model was used:

model1<-aov(Arcsin_total ~ lox*TPS,ind),

and the final model was

model3<-aov(Arcsin_total ~ lox,ind)

with the following results:

Df Sum sq Mean sq F p

Season 1

LOX2/3 deficiency 1 0.1008 0.1008 11.47 0.0015

Residuals 44 0.3864 0.0088

Season 2

LOX2/3 deficiency 1 0.2321 0.2321 14.64 0.0005

Residuals 39 0.6183 0.0159

For edge plants, a linear mixed-effects model was used to test the effects of LOX2/3

deficiency and TPS10 expression, so that the analysis of multiple plants per population could

be included as a random blocking factor (lme function in R package nlme, Pinheiro et al.,

2014). The initial model was

model1<-lme(Arcsin_total ~ lox*TPS,random= ~1|PopID,edge,method=“ML”)

and the final model was

model3REML<-lme(Arcsin_total ~ lox,random= ~1|PopID,edge)

with the following results (fixed effects):

Value Std. error DF t p (Intr)

Season 1

(Intercept) 0.1929 0.0102 200 18.86 <0.0001

LOX2/3 deficiency 0.0895 0.0145 70 6.152 <0.0001 �0.704

Season 2

(Intercept) 0.31 0.02 119 20.40 <0.0001

LOX2/3 deficiency 0.13 0.02 74 5.501 <0.0001 �0.641

Furthermore, WT and lox2/3 edge plants were tested to determine whether levels of

herbivore damage differed with the presence or absence of a TPS10-expressing plant in the

population, starting with the following model:

model1<-lme(Arcsin_total ~ lox*MonoMix,random= ~1|PopID,edgeWTlox,method=“ML”)

and the final model was

model6REML<-lme(Arcsin_total ~ lox,random= ~1|PopID,edgeWTlox),

with the following results (fixed effects):

Value Std. error DF t p (Intr)

Season 1

(Intercept) 0.1947 0.0125 130 15.60 <0.0001

LOX2/3 deficiency 0.0945 0.0178 46 5.309 <0.0001 �0.702

Season 2

(Intercept) 0.3132 0.0194 71 16.16 <0.0001

LOX2/3 deficiency 0.1454 0.0307 46 4.732 <0.0001 �0.631
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For center plants, the following initial ANOVA model was used to test the effects of LOX2/3

deficiency and TPS10 expression:

model1<-aov(Arcsin_total ~ lox*TPS,center)

and the final model was

model3<-aov(Arcsin_total ~ lox,center)

with the following results:

Df Sum sq Mean sq F p

Season 1

LOX2/3 deficiency 1 0.1632 0.16325 23.57 8.28E-06

Residuals 63 0.4363 0.00692

Season 2

LOX2/3 deficiency 1 0.2129 0.2129 6.545 0.0131

Residuals 60 1.952 0.0325

Furthermore, TPS10 and lox2/3xTPS10 center plants were tested to determine whether

levels of herbivore damage differed in mixed- vs monocultures, with the initial model

model1<-aov(Arcsin_total ~ lox*MonoMix,centerTPSloxTPS)

and the final model

model3<-aov(Arcsin_total ~ lox,centerTPSloxTPS)

with the following results:

Df Sum sq Mean sq F p

Season 1

LOX2/3 deficiency 1 0.0663 0.0663 8.726 0.0052

Residuals 40 0.3038 0.0076

Season 2

LOX2/3 deficiency 1 0.1679 0.1679 4.47 0.0403

Residuals 43 1.6147 0.0376

Finally, to determine the effect of plant position, an ANOVA was conducted on individuals

and edge and center plants from monocultures; values used for edge plants were the

arithmetic mean of all edge plants in a population to reduce pseudoreplication, but a linear

mixed-effects model was still used to correct for the fact that center and edge plants were

from the same populations. The initial model was

model1<-lme(Mean_arcsin_total ~ lox*Position*TPS,random= ~ 1|PopID,ind_mono,

method=“ML”)

and the final model in season one was

model6REML<-lme(Mean_arcsin_total ~ lox+Position,random= ~ 1|PopID,ind_mono)

with the following results:

LOX2/3 deficiency

Season 1 Value Std. error DF t p (Intr) X2lx2l Position2Edge

(Intercept) 0.19326 0.01414 92 13.66 <0.0001

continued on next page
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continued

Season 1 Value Std. error DF t p (Intr) X2lx2l Position2Edge

LOX2/3 deficiency 0.09517 0.01592 92 5.978 <0.0001 �0.538

Position2Edge �0.00666 0.01668 42 �0.3990 0.6919 �0.591 �0.021

Position3Center �0.03057 0.01689 42 �1.8097 0.0775 �0.588 �0.013 0.819

The final model in season two was

model7REML<-lme(Mean_Arcsin_Total ~ LOX2/3 expression,random= ~ 1|PopID,ind_mono)

Season 2 Value Std. error DF t p (Intr)

(Intercept) 0.3222 0.0153 121 21.12 <0.0001

LOX2/3 deficiency 0.1274 0.0227 121 5.619 <0.0001 �0.673

Statistical models used for data in Figure 6.

We tested the hypotheses that LOX2/3 and TPS expression, plant position, and population

type were associated with differences in foliar herbivore abundance. Generalized linear

mixed-effects models were used to analyze data presented in Figure 6A,B so that the

analysis of multiple plants per population could be included as a random blocking factor

(glmer function in R in package lme4, Bates et al., 2014a; Bates et al., in review), while a

generalized linear model (glm) was used for data in Figure 6C (in which case only one plant

per population was analyzed). Models were fit by maximum likelihood (Laplace

Approximation) using a poisson error distribution. Genotypes were coded as follows: 1WT,

2TPS10, 3lox23, 4lox23xTPS10; plant positions were coded as 1Individual, 2Edge, 3Center;

and monocultures vs mixed cultures were coded as 1Mono, 2Mix.

For data shown in Figure 6A, the following model was used:

model<-glmer(Herbivores ~Genotype+(1|PopID),counts_all,family=poisson)

with the following results:

Fixed effects Estimate Std. error z p

(Intercept) 1.7 0.2361 7.219 5.25E-13

GenotypeTPS10 �0.8589 0.2116 �0.059 9.30E-05

Genotypelox2/3 �0.612 0.3097 �1.983 0.07

Genotypelox2/3xTPS10 �1.877 0.097 �0.582 6.00E-06

Correlation of fixed effects (Intr) GenotypeTPS10 Genotypelox2/3

GenotypeTPS10 �0.36

Genotypelox2/3 �0.369 0.27

Genotypelox2/3xTPS10 �0.325 0.22 0.531

Tukey post-hoc contrasts were calculated using the multcomp package in R (Hothorn et al.,

2008) as

modelposthoc <- glht(model1, linfct = mcp(Genotype = “Tukey”))

with the following results:

Linear hypotheses Estimate Std. error z p

TPS10–WT = 0 �0.8589 0.2116 �4.059 0.0003

Lox2/3–WT = 0 �0.6142 0.3097 �1.983 0.1839

Lox2/3 xTPS10–WT = 0 �1.877 0.4097 �4.582 <1e-04

continued on next page
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continued

Linear hypotheses Estimate Std. error z p

lox2/3–TPS10 = 0 0.2447 0.3236 0.756 0.8675

lox2/3 xTPS10–TPS10 = 0 �1.019 0.4168 �2.444 0.0644

lox2/3 xTPS10–LOX2/3 = 0 �1.263 0.3592 �3.517 0.0023

For data shown in Figure 6B, the following model was used:

model<-glmer(Herbivores ~Genotype*Position+(1|PopID), counts_WT_TPS10_Mono_Ind,

family=poisson)

with the following results:

Fixed effects Estimate Std. error z p

(Intercept) 1.961 1.063 1.844 0.0652

GenotypeTPS10 �1.122 0.3064 �3.662 0.0003

PositionEdge �0.8305 1.166 �0.712 0.4762

PositionCenter �1.363 1.193 �1.143 0.2532

GenotypeTPS10:PositionEdge 0.2737 0.7789 0.351 0.7253

GenotypeTPS10:PositionCenter 1.748 0.7995 2.186 0.0288

Correlation of fixed effects (Intr) GenotypTPS10 PositionEdge PositionCenter GTPS10:PE

GenotypTPS10 �0.071

PositionEdge �0.912 0.065

PositionCenter �0.891 0.063 0.955

GTPS10:PE 0.028 �0.393 �0.269 �0.228

GTPS10:PC 0.027 �0.383 �0.231 �0.323 0.797

For data shown in 6C, the following initial model was used:

model1<-glm(Herbivores ~Genotype*MixMono,counts_WT_lox23_edge,family=poisson),

and the model was reduced to

model3<-glm(Herbivores ~Genotype,counts_WT_lox23_edge,family=poisson),

wit the following results:

Fixed effects Estimate Std. error z p

(Intercept) 1.421 0.1313 10.83 <2e-16

Genotypelox2/3 0.4504 0.191 2.358 0.0183
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