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Abstract: Angelman syndrome (AS) is a neurodevelopmental disorder caused by the loss of function
of the E3-ligase UBE3A. Despite multiple studies, AS pathophysiology is still obscure and has mostly
been explored in rodent models of the disease. In recent years, a growing body of studies has utilized
omics datasets in the attempt to focus research regarding the pathophysiology of AS. Here, for the
first time, we utilized a multi-omics approach at the epigenomic level and the transcriptome level, for
human-derived neurons. Using publicly available datasets for DNA methylation and gene expression,
we found genome regions in proximity to gene promoters and intersecting with gene-body regions
that were differentially methylated and differentially expressed in AS. We found that overall, the
genome in AS postmortem brain tissue was hypo-methylated compared to healthy controls. We also
found more upregulated genes than downregulated genes in AS. Many of these dysregulated genes
in neurons obtained from AS patients are known to be critical for neuronal development and synaptic
functioning. Taken together, our results suggest a list of dysregulated genes that may be involved
in AS development and its pathological features. Moreover, these genes might also have a role in
neurodevelopmental disorders similar to AS.
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1. Introduction

Angelman syndrome (AS) is a human neuropsychiatric disorder associated with
autism, intellectual disability, ataxia, sleep disturbances, lack of speech, and epilepsy [1,2].
In most cases, AS is caused by deletion of a small region of DNA on maternal chr15q11.2-
q13 that includes the UBE3A gene [3–6]. Interestingly, the opposite molecular condition,
Dup15q, where the UBE3A gene is duplicated on the maternal chr15q11.2-q13, is also
characterized by autism, intellectual disability, hypotonia, language developmental delay
and language deficits, and epilepsy [7,8]. In addition, the UBE3A gene has been shown to
be associated with autism and schizophrenia [9,10].

The UBE3A gene encodes for the ubiquitin ligase E3A, also termed E6-associated
protein (E6-AP). This protein is a HECT domain E3-ligase, a family of enzymes that
covalently attaches ubiquitin chains to proteins, signaling them for degradation by 26S
proteasome. In addition to the ligase activity of UBE3A, it has been shown that this protein
has other functions that are not fully understood. There is evidence that UBE3A affects
progesterone-receptor- and estrogen-receptor-dependent transcriptional activity [11–14].
Furthermore, it has been shown that loss of function of UBE3A leads to general genomic
hypo-methylation [15,16]. However, our current understanding of molecular players and
pathways affected by UBE3A expression fails to explain the full range of its interactions.

Multi-omics analysis is becoming increasingly popular in biomedical research. The un-
supervised multi-layered molecular data allow researchers to infer significant molecular in-
teractions and cascades associated with particular phenotypes with higher validity [17,18].

While multiple datasets have been derived from various models of AS, starting from
fruit flies up to rodent models of mice and rats, only a few datasets have been obtained
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from neurons derived from human AS patients [19–24]. To date, no study has tried to
associate different human-derived neuronal datasets using a multi-omics approach. In
the current study, we transect publicly available human-derived neuronal transcriptome
and DNA methylation datasets for multi-omics analyses and elucidation of the molecular
mechanisms involved in AS.

2. Results

To elucidate the molecular mechanisms associated in AS with loss of function of the
UBE3A protein, we analyzed the publicly available RNA sequencing (RNA-seq) and DNA
methylation (bisulfite-seq) data of Angelman syndrome patients. The RNA-seq dataset
was taken from the NCBI archive under the accession number PRJNA255989 [20]. The
bisulfite-seq data were taken from the Gene Expression Omnibus dataset under accession
number GSE8154157 [15]. The raw sequencing data were analyzed for enrichment of
known molecular pathways differentially expressed and differentially methylated in AS
patients compared to healthy controls.

RNA sequencing raw reads were preprocessed to eliminate low-quality reads. The
remaining reads were aligned to the assembled human genome (GRCh38.p12), and gene
expression profiles were calculated. Principal component analysis (PCA) showed a clear sepa-
ration between healthy controls and AS-derived iPSCs (Figure 1A). We found 209 upregulated
genes in AS samples (Supplementary Materials, Table S1). Of these, 12 genes were
highly expressed in AS samples and not expressed at all in control samples: COL22A1,
EIF3CL, ERP27, EVA1A, FAM135B, GPR1, KIAA0040, KRT80, LYNX1, OLFML1, POTEI,
and ZNF558. We also identified 31 downregulated genes in AS (Supplementary Materi-
als, Table S2). Interestingly, 5 of these genes are associated with synaptic transmission:
GABRA2, GAD1, SLC18A2, SST, and WNT7A.

The analysis of DNA methylation included per-position methylation calling based
on Poisson distribution statistics (see Methods section). For a per-position contrast be-
tween scores in AS and healthy controls, the whole-genome profiles were segmented
using the BinS algorithm [25,26], resulting in significantly differentiated hyper- and hypo-
methylated regions in AS. The positions of the differentially methylated fragments of the
genome were aligned with the positions of known promoter regulatory elements and with
annotated genes.

We observed a high bias toward hypo-methylation of genome regions in AS. In
addition, from a total of 10,688 differentially methylated regions aligned with promoter
regions or gene bodies, 9397 (88%) were hypo-methylated in AS (Figure 1B).

We found 34 hyper-methylated regions of the genome that were located in proximity
(±1000 bp) to gene promoter regions (Supplementary Materials, Table S3). Five of the
hyper-methylated genes are known to regulate apoptosis: FANK1, NLRC4, ALDH1A2,
LPAR1, and USP17L13. Two more genes (the KCNN2 gene that codes for the SK2 channel
and LPAR1) are known to regulate neuronal spine development and are directly involved
in learning, memory, and behavior regulation [27–32].

Hyper-methylation of promoter regions has been associated with downregulation of
gene expression [33]. We investigated whether the genes associated with hyper-methylated
promoters were differentially expressed in AS-patient-derived iPSCs. However, we did not
find any downregulated genes associated with the hyper-methylated promoters (Figure 2A).

Next, we identified 625 hypo-methylated regions in proximity to known gene promot-
ers (±1000 bp) (Supplementary Materials, Table S4). Hypo-methylated promoter regions
are known to be “open” for transcription and thus are expected to be associated with
upregulated expression of the genes [33]. We found five of these genes upregulated in iPSC-
derived neurons from AS patients: POTEI, CD248, TPM2, LIMA1, and SLC13A4 (Figure 2B
and Supplementary Materials, Table S5). Interestingly, the POTEI gene was found to have a
hypo-methylated promoter region and was also expressed only in AS samples.
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Figure 1. (A) Principal component analysis (PCA) of gene expression iPSC-derived neurons 
(PRJNA255989). (B) Pie chart showing the number of hyper-methylated regions near promoters 
(±1000 bp) (34 regions); hyper-methylated regions inside the gene bodies (1257 regions); hypo-meth-
ylated regions near promoters (±1000 bp) (625 regions); and hypo-methylated regions inside gene-
bodies (8772 regions). 

The analysis of DNA methylation included per-position methylation calling based 
on Poisson distribution statistics (see Methods section). For a per-position contrast be-
tween scores in AS and healthy controls, the whole-genome profiles were segmented us-
ing the BinS algorithm [25,26], resulting in significantly differentiated hyper- and hypo- 
methylated regions in AS. The positions of the differentially methylated fragments of the 
genome were aligned with the positions of known promoter regulatory elements and with 
annotated genes. 

We observed a high bias toward hypo-methylation of genome regions in AS. In ad-
dition, from a total of 10,688 differentially methylated regions aligned with promoter re-
gions or gene bodies, 9397 (88%) were hypo-methylated in AS (Figure 1B). 

Figure 1. (A) Principal component analysis (PCA) of gene expression iPSC-derived neurons (PR-
JNA255989). (B) Pie chart showing the number of hyper-methylated regions near promoters
(±1000 bp) (34 regions); hyper-methylated regions inside the gene bodies (1257 regions); hypo-
methylated regions near promoters (±1000 bp) (625 regions); and hypo-methylated regions inside
gene-bodies (8772 regions).

It has been shown that in addition to methylation of promoters, methylation of gene-
body regions also has a regulatory effect on the expression of genes [34,35]. Nonetheless, it is
still unclear whether methylation of the gene body represses or enhances expression [36–38].
Furthermore, we found that many of the genes contained both hyper- and hypo- methylated
regions in their gene bodies (Figure 3). This confounding effect can be explained by the
heterogeneity of the cells constituting the studied tissue. It is known that DNA methylation
is cell-type specific, and thus different regulations can be present in different cells [39]. To
avoid further perplexity, we investigated genes which had unique epigenetic signals in
their gene body, i.e., either a hyper-methylated region or a hypo-methylated region.
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were found to be hypo-methylated and upregulated: CD248, LIMA1, POTEI, SLC13A4, and TPM2.
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We found 1257 genes that had unique hyper-methylated regions in their gene body
(Figure 3 and Supplementary Materials, Table S6). Further investigation of the expression
of these genes showed that the GSX2 gene was downregulated in AS (Figure 4A). GSX2 is
a transcription factor required for neuronal development [40–43]. In addition, we found
7 genes that were hyper-methylated in the gene-body regions, and their expression was
upregulated in AS (Figure 4B and Supplementary Materials, Table S7).
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Figure 4. Venn diagram of gene-body hyper-methylation and gene expression. (A) GSX2 gene,
which had a hyper-methylated region inside its gene body and was found to be downregulated in
AS-derived iPSC neurons. (B) Seven genes were identified with hyper-methylated regions inside
their gene bodies and were found to be upregulated in AS iPSC-derived neurons.

We found 8772 genes that had a unique hypo-methylated region in their gene body
(Figure 3 and Supplementary Materials, Table S8). This extraordinary high number of hypo-
methylated genes (almost seven times as many genes had hypo-methylated regions than
had hyper-methylated regions) suggests that overall, the genome in AS is hypo-methylated.
This observation is in line with previous reports of overall DNA hypo-methylation in
UBE3A knockdown cell lines [16]. Global hypo-methylation of DNA has been observed in
many disorders and has been suggested to cause the genomic instability observed in many
types of cancers [44,45] and in neuropsychiatric disorders [46,47].

We next investigated genes that were hypo-methylated in their gene-body regions
and upregulated in iPSCs derived from AS patients. We found 73 such hypo-methylated
and upregulated genes (Figure 5A and Supplementary Materials, Table S9). Of particular
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interest, were genes associated with synapse and neuronal activity, such as GPR176, RAB29,
C1QL1, EXT1, GLRB, HRH1, HAPLN1, THBS2, and GPNMB. Furthermore, we identified
12 genes with hypo-methylated loci in their gene bodies that were downregulated in AS
(Figure 5B and Supplementary Materials, Table S10).
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Figure 5. Venn diagram of gene-body hypo-methylation and gene expression. (A) A total of 73 genes
were identified with a hypo-methylated region inside the gene body that were found in AS-derived
iPSC neurons. (B) A total of 12 genes were identified with hypo-methylated regions inside their gene
bodies that were found to be downregulated in AS-derived iPSC neurons.

Combining all aberrantly DNA-methylated and mRNA-dysregulated genes in AS, we
found that they form several important functional clusters related to cell–cell adhesion
(Figure 6A,B). These functional clusters included “extracellular matrix”, “ECM-receptor
interaction pathway”, “secreted”, “heparin binding”, “collagen fibril organization”, “N-
terminal cadherin”, and “glycosaminoglycan binding”. These pathways included 20 genes
that were differentially methylated and expressed in AS samples compared to healthy
controls (BGN, CCDC80, COL1A1, COL4A1, COL5A1, COMP, ENG, EXT1, FSTL1, GPNMB,
ITGA11, ITGB4, LOXL2, PCDHA10, PCDHA6, PCDHGA8, PCDHGB6, POSTN, SULF1,
and THBS2). We identified several transcription factors regulating the genes found as
dysregulated in AS by utilizing the TRRUST database [48]: SP1, LMX1B, MYBL2, ZEB1,
SNAI2, SF1 (Supplementary Materials, Table S11). Remarkably, the SP1 transcription
factor, which is known to regulate 12 of the identified dysregulated genes (Supplementary
Materials, Table S11), has been shown to be activated by UBE3A [12,49], and thus the
downstream effect of dysregulation of SP1 may be observed in AS samples.
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COL4A1, ELN, THBS2, CAV1, and TGFBI (Figure 6C). 

  

Figure 6. Functional enrichment analysis of genes found to be dysregulated both on DNA methylation
level and on gene expression level. (A) Gene ontology enrichment analysis; (B) KEGG pathways
enrichment analysis; (C) protein–protein interaction map generated with STRING tool.

The protein–protein interaction analysis using STRING [50,51] revealed several hub
proteins with more than 10 edges: COL1A1, POSTN, TGFB1, COL5A1, BGN, LOX, COL4A1,
ELN, THBS2, CAV1, and TGFBI (Figure 6C).

3. Discussion

Multiple studies have used omics technologies in various biological models for Angel-
man syndrome [7,15,20,22,52–57], yielding multiple genes of interest. Herein, we attempt
to associate two datasets obtained from neurons that were derived from human AS patients
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and healthy controls. The DNA methylation data were generated from postmortem brains
of AS patients and healthy controls [15]. The mRNA sequencing data were generated
from iPSC-derived neurons from AS patients and healthy controls [20]. We explored the
interaction between the epigenetic level and the transcriptome level of cellular mechanisms,
believing that the two datasets strengthen each other and that differentially expressed
genes that are also found to have aberrant DNA methylation signals are strong candidates
for the phenomenology of AS.

DNA methylation in the promoter region of genes is known to attenuate gene expres-
sion. However, the effect of DNA methylation inside the gene body on the expression is
not clear. We identified hyper- and hypo-methylated regions by comparing methylation
frequencies in two pairs of AS and control samples. If the methylation frequency was
statistically higher in the AS samples than in the control samples, this region of the genome
was called “hyper-methylated” in AS. When the methylation signal in control samples
was higher than in AS, we called these regions “hypo-methylated” in AS. These found
methylated regions were compared with genome annotation to identify the type of regula-
tory region, either a region close to the promoter (±1000 bp) or a differentially methylated
region inside the gene body. Next, we identified differentially expressed genes in AS iPSCs-
derived neurons. Finally, we could reveal which differentially expressed genes were also
aberrantly methylated in AS. It is important to note that both DNA methylation and gene
expression status show great variation among different cell types [58–61], and therefore,
cell-type-specific or single-cell epigenetic analyses will also be important in the future.

Before implementing the crossing between the DNA methylation and mRNA expres-
sion we explored the gene expression data. Principal component analysis (PCA) showed
that healthy control samples were clearly separated from AS samples (Figure 1A). We found
31 genes that were downregulated in AS and 209 (87%) genes that were upregulated in
AS. Of most interest were genes with striking differences in their mRNA expression. We
found 12 genes (COL22A1, EIF3CL, ERP27, EVA1A, FAM135B, GPR1, KIAA0040, KRT80,
LYNX1, OLFML1, POTEI, and ZNF558) that were highly expressed in AS iPSCs and not
expressed at all in control iPSC neurons (Supplementary Materials, Table S1). One of these
genes was LYNX1, which is known to bind the extracellular face of the nicotinic receptors
of the cholinergic system. LYNX1 is a critical modulator of memory, learning, and plasticity.
It has been shown that the removal of LYNX1 in animal models leads to memory and
plasticity enhancements [62]. Another gene that we found to be highly expressed in AS
neurons and not expressed at all in control neurons, EVA1A1, is a key player in autophagy
regulation [63]. EVA1A is essential for neuronal differentiation and neurogenesis [64,65].
Another upregulated gene was ERP27, which binds unfolded proteins. This could explain
its role in AS, where the UBE3A gene is lacking. UBE3A, as an E3-ligase, is predicted to
induce degradation of proteins by tagging them with ubiquitin chains. Some of the proteins
that are marked for degradation are damaged, such as unfolded proteins. Hence, the lack
of UBE3A in AS presumably causes a rise in the expression of unfolded proteins. Therefore,
the upregulation of ERP27, which binds unfolded proteins, is reasonable. In addition, we
found high expression of the GPR1 gene in AS and no detectable expression in control
iPSCs. GPR1 shares sequence similarity (43%) with opioid neurotransmitters [66,67] and is
known to regulate non-genomic estrogen effects [67].

Of the 31 downregulated genes, 4 were not expressed at all in AS iPSC samples
(CRYBA4, FAM167B, GABRA2, and POU3F4) (Supplementary Materials, Table S2). Of
these, the GABRA2 gene coding for the alpha-2 subunit of the GABAA receptor is of most
interest. GABA is involved in balancing excitatory and inhibitory responses and is critical
to proper brain functioning [68]. It has been shown that the expression of the GABRA2
gene is dysregulated in several neuropsychological conditions such as autism spectrum
disorder [69], schizophrenia [70], depression [71], and impulsive behavior [72].

DNA methylation is a critical regulatory mechanism implicated in brain development,
learning, memory, and disease in the human brain [73–75]. In contrast to gene expression,
few if any DNA methylation differences among phenotypically normal human brain
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regions have been reported [76–78]. However, DNA methylation is known to be altered
in patients with neuropsychiatric diseases, including schizophrenia [79], Alzheimer’s [80],
and major depressive disorder [81].

Overall, we observed hypo-methylation of the AS genome (Figure 1B). We found that
9397 (88%) of the differentially methylated regions (both in proximity to promoters and
inside gene bodies) were hypo-methylated in AS. Interestingly, overall hypo-methylation
of the genome has been observed in many diseases, especially in different cancers [82,83].

Thirty-four (34) genes were found to be hyper-methylated in proximity (±1000 bp)
to their promoter (Supplementary Materials, Table S3). Some of these hyper-methylated
genes in AS are known to regulate apoptosis (FANK1, NLRC4, ALDH1A2, LPAR1, and
USP17L13), which coincides with our previous finding that apoptosis is dysregulated in
AS [53]. Two more genes (KCNN2 and LPAR1) regulate neuronal spine development,
which is known to be dysregulated in AS. While the KCNN2 gene that codes for the SK2
channel is known to be dysregulated in AS [32,84,85], LPAR1 is known to be dysregulated in
the AS-like Pitt–Hopkins syndrome [86]. Another important gene with a hyper-methylated
promoter was PRKACG, which is known to repress pain sensation by regulating the
transcription of the DREAM protein, coinciding with our previous observation that AS
mice have disrupted pain perception [54]. In addition, the GIT2 gene promoter was found
to be hyper-methylated in AS. GIT2 is known to be the main coordinator of aging processes,
including obesity, which is one of the phenotypes of AS [87].

Hyper-methylation of the promoter region is known to repress gene expression; thus,
we checked whether any of the 31 downregulated genes were among the genes with
hyper-methylated promoters. We did not find any intersecting genes (Figure 2A).

We found 625 genes with a hypo-methylated region in proximity to their promoter
(Supplementary Materials, Table S4). Hypo-methylated promoter regions are known to
enhance gene expression; thus, we identified 5 genes that were upregulated in AS iPSCs
(Figure 2B and Supplementary Materials, Table S5). One of these hypo-methylated and
upregulated genes was the POTEI gene. The POTE (prostate-, ovary-, testis-, and placenta-
expressed) family of genes has been shown to have low expression in normal somatic
tissues but is highly expressed in various cancers [88,89]. Interestingly, the expression of the
POTE family of genes has been associated with DNA hypo-methylation and activation of
LINE1 elements. In fact, POTE genes themselves harbor LINE1 elements [90]. Activation of
LINE1 in cancer leads to genomic instability and mutagenesis and has been shown to drive
cancer progression. In addition, it has been suggested that activation of LINE1 elements is
involved in autism and other neurodevelopmental disorders [91,92]. Another gene amongst
those that were hypo-methylated near their promoter region and highly expressed in AS
was the SLC13A4 gene. SLC13A4 encodes for a sulfate transporter. Dysregulated SLC13A4
expression has been observed in several neurological and neurodevelopmental disorders
and during seizures [93,94], which display shared phenotypes with AS patients.

In addition to methylation of promoter regions, it has been shown that methylation
of the gene body has a regulatory effect on the expression of genes [35,45]. Nonetheless,
this effect on the expression of genes is still not well understood; it is not clear whether
gene-body methylation blocks or enhances gene transcription [36–38]. Hence, we divided
our analyses of gene-body methylation into four associations with gene expression data.
First, we considered genes hyper-methylated in their gene body and downregulated in AS
samples. In the next association, we crossed the genes with hyper-methylated gene bodies
with upregulated genes. Next, the same two types of associations were performed for hypo-
methylated genes, i.e., genes that were hypo-methylated in their gene body and upregulated
and hypo-methylated gene-body genes that were downregulated in AS samples.

Inside gene bodies, we found 5133 regions that were hyper-methylated in AS and
12,648 hypo-methylated regions. However, 3876 genes had both hyper- and hypo-methylated
regions in AS (Figure 3). Thus, we further investigated only genes that had unique methy-
lation status in AS, i.e., either hyper-methylated (1257, Supplementary Materials, Table S6)
or hypo-methylated (8772, Supplementary Materials, Table S8).
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The only gene with hyper-methylation of the gene-body region in AS and downreg-
ulated mRNA expression was the GSX2 gene (Figure 4A). GSX2 is a transcription factor
required for neuronal development [40–43], and thus its hyper-methylation and down-
regulation is of high importance. In addition, we found seven hyper-methylated and
overexpressed genes (Supplementary Materials, Table S7 and Figure 4B). One of these
hyper-methylated and overexpressed genes was GDA, which codes for the protein Cypin.
Cypin is important for neuronal development and is a regulator of PSD-95 postsynaptic
signaling. It has been shown that overexpression of Cypin in cultured hippocampal neurons
disrupts the synaptic clustering of PSD-95 and SAP-102 synaptic proteins.

We identified 8772 genes that had only a hypo-methylated signal in AS inside their
gene bodies (Supplementary Materials, Table S8). Crossing these genes with upregulated
genes in AS, we found 73 genes (Supplementary Materials, Table S9 and Figure 5A). Of
special interest were genes associated with synapse and neuronal activity, such as GPR176,
RAB29, C1QL1, EXT1, GLRB, HRH1, HAPLN1, THBS2, and GPNMB. Previously, it has
been noted that synaptic functioning is dysregulated in AS [95–99]. Another interesting
cluster of genes were the 17 genes known to be involved in cell adhesion: ADAM12, AJAP1,
B4GALT1, COMP, COL1A1, COL5A1, ENG, GPNMB, HAPLN1, ITGA11, ITGB4, IL32,
LOXL2, PCDHA10, PCDHGB6, THBS2, and TGFBI. Crossing the hypo-methylated regions
with the downregulated genes we found 12 genes (Supplementary Materials, Table S10 and
Figure 5B). The most significantly downregulated gene was MEG3, which is a long non-
coding RNA previously implicated in Alzheimer’s pathology and in several cancers. MEG3
has been shown to be a powerful cell growth suppressor regulating the PI3K/Akt signaling
pathway [100,101]. In addition, we found hypo-methylation and downregulation of two
crystalline genes, CRYBB1 and CRYBB2, which were previously found to be associated
with schizophrenia and autism-like behavior [102,103].

Finally, combining all of the above genes dysregulated on both methylation and expres-
sion levels in AS, we found several functional clusters dysregulated in AS (Figure 6A,B).
Extracellular matrix (ECM) receptor interaction was one of the most significantly dys-
regulated pathways in AS. ECM receptors and their ligands play key roles in neuronal
differentiation, communication, and synapse connection. They regulate synaptic activity
and neuronal structure and function, and thereby affect animal behavior [104,105]. Recently,
dysregulation of cell adhesion molecules in UBE3A-silenced cells revealed that these cells
have impaired morphological development and pathway activation, leading to a delayed
adhesion and defective contact guidance in response to stimuli [104].

Fascinatingly, the transcription factors that control the expression of the dysregulated
genes in AS on both the DNA methylation level and on the mRNA expression level
(Supplementary Materials, Table S11) included SP1 transcription factor. SP1 has been
shown to be activated by UBE3A [12,49], and thus the downstream effect of dysregulation
of SP1 may be observed in AS samples.

We also found that two of the genes found to be differentially expressed and differen-
tially methylated, MEG3 and NLRP2, are maternally imprinted genes.

The protein–protein interaction analysis revealed 11 hub proteins with more than
10 edges: COL1A1, POSTN, TGFB1, COL5A1, BGN, LOX, COL4A1, ELN, THBS2, CAV1,
and TGFBI (Figure 6C).

It is important to note that the results presented in our study should be considered
with caution due to the small sample size both in the transcriptome dataset and the DNA
methylation dataset. In effect, our study emphasizes the need for producing additional
datasets to elucidate the molecular effect of UBE3A deletion in different cells and tissues.

To conclude, in this study, we observed that while the amount of correspondence
between the epigenomic level of DNA methylation and the level of mRNA expression is
not high, still there is some congruity between these two levels, which yields a list of genes
that are significant for brain development. This list can serve future studies as a basis for
further exploration of target genes that are involved in the pathophysiology of Angelman
syndrome and other similar neurodevelopmental disorders.
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4. Materials and Methods
4.1. RNA Sequencing Analysis

Raw RNA sequencing data were downloaded from the NCBI database (SRP04474952) [20].
For our analysis we used four samples from this project: two biological replicates of
AS patient (del 1-0) iPSC-derived neurons (SRR1523347, SRR1523349) and two healthy
control samples from Nml (1-0) iPSC-derived neurons (SRR1523352, SRR1523353). The AS
patient iPSC-derived neurons were originally reported by Chamberlain et al. [105] and were
generated from fibroblasts of patient with 15q11-q13 deletion. Raw sequencing reads were
cleaned from adapter sequences using the Trimmomatic algorithm [106] and aligned to
the human reference genome (GRCh38.p12) using TopHat2 [107]. Differentially expressed
genes were identified with EdgeR [108]. We considered genes to be differentially expressed
and upregulated in AS if they had a p-value < 0.005 and a fold change > 1.5. We considered
genes to be differentially expressed and downregulated in AS if they had a p-value < 0.005
and a fold change < 0.6.

4.2. DNA Methylation Analysis

Whole-genome DNA methylation bisulfite sequencing data were downloaded from
the NCBI database (GSE8154157) [15]. The dataset used for the analysis includes four
samples: two AS patient samples, male and female (GSM2156992 and GSM2156993),
and two healthy control samples, male and female (GSM2156974 and GSM2156973) of a
relatively similar age (AS male age 23, AS female age 43, healthy control female age 42, and
healthy control male age 42). All AS patients had maternal deletion of 15q11.2–q13.3 [15].
Raw reads were aligned to the human reference genome (GRCh38.p12) using the segemehl
alignment algorithm with the [−F, −bisulfite 1] option [109]. Per-nucleotide methylation
levels and differentially methylated regions were determined similarly to the procedure for
identifying mutational frequencies in Li et al. [110].

Briefly, the frequency of each of the methylated cytosines across the genome in each
sample was determined by the number of reads with C > T variant alignment on the positive
strand and A > G variant alignment on the negative strand divided by the overall coverage
of the genome at the given position. The accuracy of estimation of variant frequency can
be influenced by the coverage of this position. Thus, to estimate the significance of the
frequency of each variant we calculated the 95% confidence interval for the frequency
of every variant at the given position from Wilks’ theorem for binomial distributions.
Each frequency, with its confidence interval margins, was transformed to values of the
quasi-normally distributed variable using the Fisher transformation:

v = ln
(1 + f )
(1 − f )

The standard deviation (SD) of the variant frequency was evaluated as 1/6 of the
confidence interval length after transformation of its margins.

After calculating the frequencies and the 95% confidence intervals of the methylated
variant in each sample, we calculated the significance of the slope (b1 coefficient) of the
linear regression between two pairs of frequencies in each methylated position (control
male sample against AS male sample and control female sample against AS female sample):

Y = X × b + ε

where b = (b0, b1) is a vector column of parameters.
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Vector Y consists of sub-columns (Y1, Y2) of the Gaussianized frequency observations
in two samples (control and AS). Matrix X consists of two columns: a column of intercepts
and a column consisting of −1 and +1 sub-columns matching the Y1 and Y2 sub-columns.
The least squares estimation of vector b of parameters b0 and b1 is:

ˆ
b =

(
XTX

)−1
XTY

This linear estimation gives a standard deviation for both parameter estimations,
particularly SD(b1) for the b1 estimation that is a function of the SDs of Y(i) in the two
groups, i.e., b1 is a linear combination of Y1(i) and Y2(j) stochastic variables. Therefore,
assuming the independence of all Y(i) variables, SD(b1) is calculated via SD(Y(i)).

Based on SD (b1), the significance of b1 is calculated as the z-score of the fitness
parameter b1:

Y = b0 + b1 × Group Difference

where Y (normalized frequency of methylation) is observed in two groups of samples with
standard deviations SD1 and SD2 for Y1 and Y2 observations. The maximum likelihood
(least squares) estimation of b1 gives the “slope” of the methylation—hyper-methylation
(positive slope between control and AS groups) or hypo-methylation (negative slope
between control and AS groups). The b1 estimation is also a normally distributed stochastic
variable with its own SD that defines the significance (z-score) of the methylation b1.

Using the BinS algorithm [26] for genome segmentation, we found regions of the
genome enriched by differential methylation signals in two pairs of samples (control male
versus AS male and control female versus AS female). These segments were aligned to the
known regulatory regions of the genome (promoter regions ± 1000 bp and gene bodies).
If some regulatory region was found to be hypo- or hyper-methylated in both male and
female pairs of samples, it was considered to be differentially methylated.

4.3. Enrichment Analysis

Gene enrichment analysis was performed using the DAVID [111–113] and Enrichr [114,115] web
servers. The protein–protein interaction analysis was performed using STRING [50].
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Acronyms and Abbreviations

AS Angelman syndrome
PCA principal component analysis
ALDH1A2 aldehyde dehydrogenase 1 family member A2
BGN biglycan
C1QL1 complement C1q like 1
CAV1 caveolin 1
CCDC80 coiled-coil domain containing 80
CD248 CD248 molecule
COL1A1 collagen type I alpha 1 chain
COL22A1 collagen type XXII alpha 1 chain
COL4A1 collagen type IV alpha 1 chain
COL5A1 collagen type V alpha 1 chain
COMP cartilage oligomeric matrix protein
EIF3CL eukaryotic translation initiation factor 3 subunit C like
ELN elastin
ENG endoglin
ERP27 endoplasmic reticulum protein 27
EVA1A eva-1 homolog A, regulator of programmed cell death
EXT1 exostosin glycosyltransferase 1
FAM135B family with sequence similarity 135 member B
FANK1 fibronectin type III and ankyrin repeat domains 1
FSTL1 follistatin like 1
GABRA2 gamma-aminobutyric acid type A receptor subunit alpha2
GAD1 glutamate decarboxylase 1
GLRB glycine receptor beta
GPNMB glycoprotein nmb
GPNMP glycoprotein nonmetastatic melanoma protein B
GPR1 chemerin chemokine-like receptor 2
GPR176 G protein-coupled receptor 176
GSX2 GS homeobox 2
HAPLN1 hyaluronan and proteoglycan link protein 1
HRH1 histamine receptor H1
ITGA11 integrin subunit alpha 11
ITGB4 integrin subunit beta 4
KCNN2 potassium calcium-activated channel subfamily N member 2
KRT80 keratin 80
LIMA1 LIM domain and actin binding 1
LMX1B LIM homeobox transcription factor 1 beta
LOX lysyl oxidase
LOXL2 lysyl oxidase like 2
LPAR1 lysophosphatidic acid receptor 1
LYNX1 Ly6/neurotoxin 1
MYBL2 MYB proto-oncogene like 2
NLRC4 NLR family CARD domain containing 4
OLFML1 olfactomedin like 1
PCDHA10 protocadherin alpha 10
PCDHA6 protocadherin alpha 6
PCDHGA8 protocadherin gamma subfamily A, 8
PCDHGB6 protocadherin gamma subfamily B, 6
POSTN periostin
POTEI POTE ankyrin domain family member I
RAB29 RAB29, member RAS oncogene family
SF1 splicing factor 1
SLC13A4 solute carrier family 13 member 4
SLC18A2 solute carrier family 18 member A2
SNAI2 snail family transcriptional repressor 2
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SP1 Sp1 transcription factor
SST somatostatin
SULF1 sulfatase 1
TGFB1 transforming growth factor beta 1
TGFBI transforming growth factor beta induced
THBS2 thrombospondin 2
TPM2 tropomyosin 2
UBE3A ubiquitin protein ligase E3A
USP17L13 ubiquitin specific peptidase 17 like family member 13
WNT7A Wnt family member 7A
ZEB1 zinc finger E-box binding homeobox 1
ZNF558 zinc finger protein 558
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