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The widely projecting catecholaminergic (norepinephrine and dopamine) neurotransmitter systems profoundly shape the state of neu-
ronal networks in the forebrain. Current models posit that the effects of catecholaminergic modulation on network dynamics are
homogeneous across the brain. However, the brain is equipped with a variety of catecholamine receptors with distinct functional effects
and heterogeneous density across brain regions. Consequently, catecholaminergic effects on brainwide network dynamics might be more
spatially specific than assumed. We tested this idea through the analysis of fMRI measurements performed in humans (19 females,
5 males) at “rest” under pharmacological (atomoxetine-induced) elevation of catecholamine levels. We used a linear decomposition technique
to identify spatial patterns of correlated fMRI signal fluctuations that were either increased or decreased by atomoxetine. This yielded two
distinctspatialpatterns,eachexpressingreliableandspecificdrugeffects.Thespatialstructureofbothfluctuationpatternsresembledthespatial
distribution of the expression of catecholamine receptor genes: �1 norepinephrine receptors (for the fluctuation pattern: placebo � atomox-
etine), D2-like dopamine receptors (pattern: atomoxetine � placebo), and � norepinephrine receptors (for both patterns, with correlations of
opposite sign). We conclude that catecholaminergic effects on the forebrain are spatially more structured than traditionally assumed and at least
in part explained by the heterogeneous distribution of various catecholamine receptors. Our findings link catecholaminergic effects on large-
scale brain networks to low-level characteristics of the underlying neurotransmitter systems. They also provide key constraints for the develop-
ment of realistic models of neuromodulatory effects on large-scale brain network dynamics.
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Introduction
Neuromodulators are important regulators of physiological
arousal and profoundly shape the state of neuronal networks in

the cerebral cortex. Catecholamines, an important class of neu-
romodulators, including norepinephrine (NE) and dopamine
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Significance Statement

The catecholamines norepinephrine and dopamine are an important class of modulatory neurotransmitters. Because of the
widespread and diffuse release of these neuromodulators, it has commonly been assumed that their effects on neural interactions
are homogeneous across the brain. Here, we present results from the human brain that challenge this view. We pharmacologically
increased catecholamine levels and imaged the effects on the spontaneous covariations between brainwide fMRI signals at “rest.”
We identified two distinct spatial patterns of covariations: one that was amplified and another that was suppressed by cat-
echolamines. Each pattern was associated with the heterogeneous spatial distribution of the expression of distinct catecholamine
receptor genes. Our results provide novel insights into the catecholaminergic modulation of large-scale human brain dynamics.
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(DA), amplify the gain of neuronal responses to sensory input
(Berridge and Waterhouse, 2003; Winterer and Weinberger,
2004; Jacob et al., 2013; Polack et al., 2013). Current models of
catecholaminergic modulation posit that this increase in re-
sponse gain amplifies the signal-to-noise ratio of sensory re-
sponses at the network level (Servan-Schreiber et al., 1990;
Aston-Jones and Cohen, 2005; Eckhoff et al., 2009; Shine et al.,
2018a). An assumption common to these models is that cat-
echolamines boost neural gain homogeneously across the entire
brain. This assumption is grounded in the widespread projec-
tions of the brainstem structures releasing these neuromodula-
tors, in particular the locus coeruleus (LC), the main source of NE
in the forebrain (Aston-Jones and Cohen, 2005).

However, other findings cast doubt on this assumption. First,
there exists a multitude of different catecholamine receptors, and
each has a distinct and heterogeneous distribution across cortical
areas (Zilles and Amunts, 2009; Nahimi et al., 2015). And second,
several of these receptor types exhibit distinct functional effects
on cortical state (McCormick et al., 1991; Ramos and Arnsten,
2007; Robbins and Arnsten, 2009; Noudoost and Moore, 2011;
Salgado et al., 2016). As a consequence, the effects of cat-
echolamines on neural dynamics might be more spatially specific
than traditionally assumed, perhaps even with opposing signs
between different sets of brain regions. Here, we tested this idea
by imaging the spatial distribution of catecholamine-induced
changes in large-scale human brain dynamics and relating the
resulting patterns of brain dynamics to the spatial distribution of
several catecholamine receptor types.

fMRI signals fluctuate strongly in the absence of changes in
sensory input and motor output (often called “resting-state”),
and these fluctuations correlate between distributed brain re-
gions (Biswal et al., 1995; Fox and Raichle, 2007; Schölvinck et al.,
2010). In the following, we refer to this phenomenon as intrinsic
fMRI signal correlations, or simply, correlations. We have previ-
ously examined the effect of increasing central catecholamine
levels on intrinsic fMRI signal correlations in a double-blind,
placebo-controlled, crossover design using the NE transporter
blocker atomoxetine (van den Brink et al., 2016). Atomoxetine
increases central NE and DA levels (Bymaster et al., 2002; Devoto
et al., 2004; Swanson et al., 2006; Koda et al., 2010). This revealed
reductions in the strength of correlations across several spatial
scales of brain organization: in summary measures of brainwide
coupling derived using graph theory; coupling between large-
scale functional “networks” as defined in resting-state fMRI stud-
ies (Fox and Raichle, 2007); and in a select set of brain regions in
the occipital lobe. This reduction was a surprising effect. How-
ever, our previous analyses also had two important limitations.
First, our previous study revealed only the prevailing catecholamine-
induced changes in correlations and thus left open the possibility
that atomoxetine, in addition to decreases, also induced weaker,
or less widespread, increases in correlations. Second, because of
the use of a predefined network parcellation scheme and sum-
mary statistics, our previous study could not uncover more fine-
grained spatial patterns of spontaneous signal fluctuations that
were amplified or suppressed by catecholamines.

Here, we reanalyzed our dataset (van den Brink et al., 2016)
with a previously validated analysis approach (Donner et al.,
2013) that was tailored to address both issues above. Our new
analysis enabled us (1) to assess the spatial specificity and fine-
grained neuroanatomical structure of catecholaminergic modu-
lation patterns; and (2) to quantify their spatial correspondence
with the distribution of the expression of catecholamine receptor
genes, as revealed by a unique brainwide transcriptome database

(Hawrylycz et al., 2012, 2015). The analysis identified two spatial
patterns of fMRI signal correlations that were most strongly af-
fected by catecholamines: one with increased correlation strength
and the other with reduced strength. These distinct networks
were each associated with the expression pattern of distinct cate-
cholamine receptors.

Materials and Methods
Participants and experimental design
We reanalyzed data from van den Brink et al. (2016). This dataset com-
prised eyes open “resting-state” (blank fixation) fMRI measurements in
24 healthy human participants (19 females, 5 males). On each of two
separate sessions, scheduled 1 week apart, two fMRI measurements were
performed: one before and one after intake of either placebo or atomox-
etine (40 mg). The study had a double-blind, placebo-controlled, cross-
over design and was approved by the Leiden University Medical Ethics
Committee. All participants gave written informed consent before the
experiment, in accordance with the Declaration of Helsinki. Salivary
markers of central catecholamine levels confirmed drug uptake (Warren
et al., 2017).

MRI preprocessing
A full description of scan parameters and preprocessing details can be
found in van den Brink et al. (2016). In brief, we applied the following
preprocessing steps to the fMRI data (TR � 2.2 s; voxel size � 2.75 mm
isotropic): realignment and motion correction; B0 unwarping; high-pass
filtering at 100 s; prewhitening; smoothing at 5 mm FWHM; coregistra-
tion of the functional scans with an anatomical T1 scan to 2 mm
isotropic MNI space; artifact removal using FMRIB’s independent
component analysis (ICA)-based X-noiseifier (Griffanti et al., 2014;
Salimi-Khorshidi et al., 2014). We recorded heart rate using a pulse oxi-
meter and breath rate using a pneumatic belt during data acquisition.
Between-condition differences in heart rate and breath rate were exam-
ined using t tests. We applied retrospective image correction to account
for differences in heart and breath rate between the atomoxetine and
placebo conditions (Glover et al., 2000). In the current article, we pri-
marily focus on the runs following atomoxetine/placebo ingestion but
use the pre-pill conditions as a baseline in control analyses.

Brain parcellation
We extracted the fMRI time series of individual brain regions using the
automated anatomical labeling (AAL) (Tzourio-Mazoyer et al., 2002)
atlas, which contained 90 regions (conform van den Brink et al., 2016). In
control analyses, we also used a more fine-grained atlas that was based on
a functional parcellation (Craddock et al., 2012). This atlas contained 140
individual brain regions. Overall, the Craddock atlas yielded highly sim-
ilar results as the AAL atlas, in terms of both the direction and signifi-
cance of effects. Thus, our primary analyses are based on the AAL atlas,
whereas our findings with the Craddock atlas are reported as a control
analysis at the end of Results.

Interregional covariance of fMRI signal fluctuations
After averaging across voxels within each atlas-level brain region, we
z-scored the multivariate time series (M, with dimensionality imaging
volumes by brain regions) for each run i and then computed the group-
averaged covariance matrices (C) for the placebo and atomoxetine con-
ditions (subscript P and A, respectively) via the following:

CP � N�1 �
iP�1

N
MiP

T MiP

nTR � 1
, CA � N�1 �

iA�1

N
MiA

T MiA

nTR � 1
(1)

where nTR was the number of volumes (211), N was the number of
participants (24), and superscript T denoted a matrix transposition. The
matrices CP and CA represented the covariance between the BOLD time
series of all brain regions, averaged across participants. By z-scoring the
time series, the units of C (covariance) are equivalent to the Pearson
correlation coefficient.
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Eigenvalue decomposition of covariance matrices
An often-used approach to identify distributed networks of fMRI signal
correlations relies on a linear decomposition of the data via ICA (see
below) (Beckmann et al., 2005). An alternative multivariate linear de-
composition, eigenvalue decomposition, can be extended to the compar-
ison between covariance matrices from two different conditions (e.g.,
drug vs placebo). Eigenvalue decomposition identifies spatial patterns,
so-called “spatial modes” of correlated (or anticorrelated) signals across
brain regions (Mitra and Pesaran, 1999; Friston and Büchel, 2004; Don-
ner et al., 2013). In what follows, we first describe the standard eigenvalue
decomposition (synonymous with principal component analysis) and
subsequently describe its generalized form.

The eigenvalue decomposition of the AAL atlas-derived covariance
matrices (C) was computed as follows:

C � V�VT (2)

where superscript T denoted transposition, � was an n � n matrix with
eigenvalues on its diagonal, and V was an n � n matrix of corresponding
eigenvectors in which rows were brain regions (n � 90) and columns
defined individual spatial modes p, where p was a vector and
p � {P1, P2, . . . , Pn}. The overall sign of the elements in p was arbitrary,
but the sign of one element with respect to another indicated their rela-
tive covariation: equal signs indicated positive correlation, and opposite
signs indicated negative correlation.

For each run i, separately for the atomoxetine and placebo condition,
we calculated participant-level time series t corresponding to each mode
by projecting the mode onto the participant-level multivariate time series
M via the following:

ti � Mip (3)

The so-computed t described the time-varying strength of the expression
of the spatial mode (functional network) in each individual participant’s
data, in one condition. We used t to produce voxel-level spatial maps of
the corresponding modes to examine their correspondence with ICA-
derived cofluctuating networks (see below). Next, we describe the gen-
eralization of eigenvalue decomposition to extract modes that are more
strongly expressed in one condition relative to the other.

Generalized eigenvalue decomposition of covariance matrices
We used generalized eigenvalue decomposition to decompose the cova-
riance matrices from both experimental conditions, atomoxetine and
placebo, into spatial modes that fluctuated more strongly in one condi-
tion than in the other (Friston and Büchel, 2004; Donner et al., 2013).
This analysis approach has been validated for fMRI with retinotopic
mapping protocols (Donner et al., 2013). Figure 1 shows a schematic
overview. Using the eig function in MATLAB 2012a (The MathWorks),
we decomposed the participant-averaged atomoxetine covariance ma-
trix CA and placebo covariance matrix CP by solving the following
equation:

CAV � CPV� (4)

where � was an n � n matrix with generalized eigenvalues on its diagonal,
and V was an n � n matrix of corresponding eigenvectors in which rows
were brain regions (n � 90 for the AAL atlas, and n � 140 for the
Craddock atlas) and columns defined individual modes ( p). As above,
p was a vector and p � {P1, P2, . . . , Pn}. The resulting spatial modes
described patterns of correlated signal fluctuations that maximized the
variance (fluctuation amplitude) accounted for in one condition relative
to the other (as measured by the corresponding �p). Thus, Equation 4

Figure 1. Schematic overview of the spatial mode decomposition method. The covariance matrices CA and CP are submitted to generalized eigenvalue decomposition to produce a matrix of
eigenvalues (�) and eigenvectors (V). The decomposition equation as given here delineated modes that were more strongly expressed in the atomoxetine condition than in the placebo condition.
To identify modes that were more strongly expressed in the placebo condition, the covariance matrices CA and CP were swapped. After decomposition, the participant-level time series (t)
corresponding to each individual spatial mode ( p) were computed for each run by projecting the mode onto the data ( M). The number of brain regions in the parcellation scheme was denoted by
n. A spatial map of brain regions that consistently covaried with the mode time series was computed by regressing the spatial mode time series for the atomoxetine (A) and placebo (P) conditions
onto the voxel-level fMRI time series, and comparing the regression coefficients to zero across participants.
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identified spatial modes that fluctuated more strongly in the atomoxetine
condition than in the placebo condition. To identify spatial modes that
fluctuated more strongly in the placebo condition, the covariance matri-
ces CA and CP were swapped. We arranged V and � such that their first
entries corresponded to the modes that explained most variance. In other
words, we sorted � in descending order and then sorted V by �.

For each run i, we calculated participant-level time series ti corre-
sponding to each spatial mode p for each individual run i as follows:

ti � Mip (5)

Here, ti was a vector with length 211 (the number of volumes), and Mi

was a matrix of z-scored fMRI time series from the run, with size 211 by
n (volumes by brain regions).

Quantifying the across-subject consistency and reliability of
spatial modes
The spatial modes were computed such that they explained more vari-
ance in the group-average data in the atomoxetine condition than in the
placebo condition (or the converse). We aimed to quantify, in a cross-
validated fashion, how consistently the fluctuation strength of these
group-average spatial modes distinguished between conditions within
individual subjects. The fluctuation amplitude si corresponding to each
mode’s time series in each individual run from each participant quanti-
fied the amount of variance that the mode explained in the data, and was
calculated as follows:

si � ti
Tti (6)

where transcript T denoted transposition. This was equivalent to the
following:

pTMi
TMip � pTCip � si (7)

We divided si by the sum of eigenvalues (�) to convert it to units of
percentage variance explained. In contrast to the eigenvalues, which cap-
tured the group-level mode’s ratio of explained variance between condi-
tions, si captured the amount of variance that the mode captured in the
condition-specific runs at the individual participant-level. For cross-
validation, we defined modes (using Eq. 4) based on the group-average
covariance matrices CA and CP that were generated from the first half of
volumes in Mi (using Eq. 1). Each mode was projected onto independent
data: the remaining half of volumes in Mi as described above (Eq. 5).
Their corresponding fluctuation amplitudes were calculated (via Eq. 6).
We then used the second half of volumes to define the modes and pro-
jected them onto the first half, and averaged the two values of si. The
percentage variance explained by each mode could then be compared
between conditions with nonparametric permutation testing (10,000
iterations).

We used receiver operating characteristic (ROC) analysis (Green and
Swets, 1966) to quantify the reliability of the spatial modes in discrimi-
nating between experimental conditions, at the level of short segments
(25% of volumes, �114 s) of the fMRI runs. ROC analysis performs
more accurately with densely populated distributions of measurements.
Thus, we defined spatial modes based on the group average covariance
matrices calculated from a smaller subset of volumes (25%), as described
above (using Eqs. 1 and 4). We subdivided the remainder of volumes into
20 equal-sized bins and computed (participant-level) si for each of them.
We cross-validated the fluctuation amplitude calculation by computing
modes and projecting them onto the remaining data four times, such that
eventually all data were used to define the modes. This yielded four
distributions of si per condition and participants that were submitted to
ROC analysis, resulting in four ROC curves per participant. We calcu-
lated the area under the ROC curve, referred to as “ROC index” in the
following, and averaged the resulting ROC indices across the four ROC
curves of each participant. The resulting ROC indices could range be-
tween 0 and 1 and could be interpreted as the probability with which we
could predict the condition from the mode’s fluctuation strength in a
given data segment. The ROC indices were tested for significance by
comparing them with chance level (0.5) using nonparametric permuta-

tion testing (10,000 iterations). To exclude the possibility that the signif-
icance of the ROC results depended on the number (25%) of volumes on
which the mode was defined, we repeated the ROC analyses for modes
defined on �14%, 20%, and �33% of the data, and found identical
results in terms of direction and significance.

Imaging the spatial modes
The spatial modes were computed using atlas-level covariance matrices
because the whole-brain covariance matrices could not be robustly esti-
mated at the single-voxel level (substantially more voxels in the brain
than samples in the time dimension). A central aim of our study was to
image the neuroanatomical distribution of the spatial modes at the
single-voxel level. To this end, we used the following approach. For each
participant and condition separately, we regressed the spatial mode time
series ti (see Eq. 5) onto the multivariate (voxel-level) time series from the
corresponding run i. This yielded a map of regression coefficients per
participant, condition, mode, and run. For each mode and for each con-
dition, we could then compare the regression coefficients to zero using
nonparametric permutation testing (10,000 iterations). The � level was
set at 0.05, FWE-corrected for multiple comparisons using threshold-
free cluster enhancement (Smith and Nichols, 2009). The resulting sta-
tistical parametric maps indicated which voxels (if any) significantly
covaried with the mode time series consistently across participants.

Validation of spatial modes via ICA
ICA is an often-used approach to delineate so-called “resting-state net-
works” of intrinsic fMRI signal covariations (Beckmann et al., 2005). We
applied ICA to validate the use of eigenvalue decomposition and to ex-
amine the correspondence between spatial modes and well-characterized
“resting-state networks.” We first estimated a set of independent com-
ponents (ICs) that were representative of the combined set of resting-
state runs (i.e., runs from all participants and both the atomoxetine and
placebo conditions) by applying a spatial ICA to all temporally concate-
nated data using FSL’s MELODIC. The model order (51) was automati-
cally estimated from the data following the methods described by
Beckmann et al. (2005). Each IC represented a statistical parametric map
and corresponding time series of consistent spatiotemporal dynamics.
Next, we spatially correlated each IC spatial map with the 10 “resting-
state networks” reported by Smith et al. (2009) and selected the ICs that
showed the highest correlation coefficient. The selected components
showed an average correlation coefficient of 0.48 (range 0.28 – 0.70),
which indicated that the ICs as expressed in our data corresponded rel-
atively well to previously reported “resting-state networks” (Smith et al.,
2009).

The 10 selected ICs were reliably expressed across the combined set of
resting-state runs and were thus representative of group-level spatiotem-
poral dynamics. However, the ICs did not necessarily represent spatio-
temporal dynamics within individual runs. To produce a time series and
a spatial map for the individual resting-state runs, we used the group-
level IC spatial maps in multiple spatial regression onto the individual
runs. This produced a time series for each IC as expressed within the
individual runs. Then, in a second step, we used the participant-level
time series as temporal regressors to produce spatial maps of regression
coefficients for each component and each run. Thus, this two-stage re-
gression approach resulted in a spatial map for each participant, condi-
tion, and IC, that indicated the degree of covariation between individual
voxels and the IC time series.

To quantify the correspondence between the spatial modes and ICA-
based “resting-state networks,” we first repeated the procedure described
in Imaging the spatial modes, but now on the data concatenated across the
two runs per participant. The purpose of this concatenation procedure
was to create spatial maps that were independent of the drug condition,
similar to the ICs. We then correlated, across voxels, the spatial modes
with the selected ICs, separately for each participant. We finally com-
pared the distribution of Fisher r-to-z-transformed correlation coeffi-
cients to zero using a two-tailed t test.

We also determined whether standard eigenvalue decomposition
identified similar spatial patterns to the more commonly used ICA. We
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first produced voxel-level spatial maps of the modes that were derived
from eigenvalue decomposition of AAL atlas-level covariance in the in-
dividual conditions, using multiple temporal regression. We then se-
lected modes based on maximal spatial correlation with the 10 intrinsic
connectivity networks reported by Smith et al. (2009), similar to the
selection of ICA components described above. Finally, we examined the
strength of correlation between the selected voxel-level spatial mode maps
and the intrinsic connectivity networks reported by Smith et al. (2009).

Similarity between spatial modes from different
parcellation schemes
We used spatial correlation to determine whether the generalized eigen-
value decomposition-derived mode spatial maps depended on the par-
cellation scheme. For each individual participant and condition, we
correlated the (unthresholded) spatial maps of regression coefficients of
the modes that were generated with the AAL atlas and those that were
generated with the Craddock atlas. We then compared the distribution of
Fisher-transformed correlation coefficients to zero using a two-tailed t
test. Similarly, we characterized the correspondence in mode spatial
maps between the individual conditions by correlating the unthresh-
olded spatial maps at the individual participant level and comparing the
resulting distribution of Fisher-transformed correlation coefficients to
zero using a two-tailed t test.

Similarity between spatial modes and catecholamine receptor
expression maps
We used a dataset provided by the Allen Brain Institute (Hawrylycz et al.,
2012, 2015) (http://www.brain-map.org/) to quantify the similarity be-
tween the spatial modes (computed based on signal fluctuations as
described above) and the spatial maps of the expression of specific cate-
cholamine receptors. The Hawrylycz et al. (2015) dataset comprised
postmortem samples of 6 individuals that underwent microarray tran-
scriptional profiling. Spatial maps of each sample’s gene transcription
profile were available in MNI space, following improved nonlinear reg-
istration as implemented by Gorgolewski et al. (2014). Receptors mediate
the effect of neuromodulators on postsynaptic neurons and, conse-
quently, neural network dynamics. In the current article, we thus focused
on the expression of clusters of genes that encode receptors with varying
subunit compositions but functionally analogous postsynaptic effects
(e.g., due to being coupled to inhibitory or excitatory G-proteins). Spe-
cifically, we grouped the 14 available catecholamine receptor-related
genes into 5 classes according to functional receptor type: NE receptor �1

(ADRA1A, ADRA1B, ADRA1D); NE receptor �2 (ADRA2A, ADRA2B,
ADRA2C); NE receptor � (ADRB1, ADRB2, ADRB3); and DA “D1-like”
(DRD1, DRD5); and “D2-like” (DRD2, DRD3, DRD4 ) receptors (Cools
and Van Rossum, 1976; Surmeier et al., 2007; Arnsten, 2011).

We used two groups of “reference” receptors to examine the specificity
of the spatial similarity measures for catecholamine receptors. First, be-
cause the cholinergic system has a gross functional organization similar
to the norepinephrinergic system (e.g., cortexwide cholinergic projec-
tions), we used an additional 16 genes related to acetylcholine receptors
as a reference. Those were grouped into two classes, again according
to functional receptor type: nicotinic acetylcholine receptor (AChN)
(CHRNA2, CHRNA3, CHRNA4, CHRNA5, CHRNA6, CHRNA7,
CHRNA9, CHRNA10, CHRNB2, CHRNB3, CHRNB4 ) and muscarinic
acetylcholine receptor (AChM) (CHRM1, CHRM2, CHRM3, CHRM4,
CHRM5). Second, because atomoxetine also blocks NMDA receptors
(Ludolph et al., 2010), we selected 7 genes related to the expression of
NMDA receptors (GRIN1, GRIN2A, GRIN2B, GRIN2C, GRIN2D,
GRIN3A, GRIN3B). These genes were grouped into one class because
NMDA receptor blockade by atomoxetine is similar across receptors
with varying subunit compositions (Ludolph et al., 2010).

Spatial similarity (i.e., correlation) between gene expression and spa-
tial modes (imaged at the single-voxel level, see above) was computed on
an individual participant basis by linear regression across sequenced
parcels. Because the postmortem samples differed in the coverage of
sequenced parcels, we repeated this procedure for each individual post-
mortem sample. A t test was then conducted across samples to obtain a

test statistic that quantified the robustness of the spatial correlation
across the 6 postmortem samples (Gorgolewski et al., 2014). For each of
our participants, we then collapsed across genes within each receptor
class (�1, �2, �, D1-like, D2-like, AChN, AChM, and NMDA). To assess
the robustness of correlations across our participants (in addition to
within participants across samples), we compared the distribution of t
statistics of the catecholamine receptors to zero, and to the t statistics of
the acetylcholine receptors and NMDA receptors, by means of nonpara-
metric permutation testing (10,000 iterations). Significant differences of
t values were indicative of a relationship between the expression of spe-
cific catecholamine receptors and the spatial distribution of the modes
that was reliable across both postmortem samples and across our
participants.

Acetylcholine receptors were unrelated to the spatial mode maps, and
Bayes factors (BFs) indicated “substantial” evidence (Wetzels and
Wagenmakers, 2012) for the null hypothesis of no correlation (AChN

and spatial mode atomoxetine � placebo: p � 0.28, BF � 0.157; for
AChN and spatial mode placebo � atomoxetine: p � 0.15, BF � 0.156;
for AChM and spatial mode atomoxetine � placebo: p � 0.26, BF �
0.157; for AChM and spatial mode placebo � atomoxetine: p � 0.73,
BF � 0.157). Moreover, there were no significant differences between the
muscarinic and nicotinic acetylcholine receptors (spatial mode atomox-
etine � placebo vs spatial mode placebo � atomoxetine, AChN, p � 0.07;
AChM, p � 0.31). We thus collapsed across acetylcholine receptors and
used this summary statistic as reference for testing the mode versus re-
ceptor map associations for the catecholamine receptors. Similarly, we
found no significant associations between NMDA receptors and spatial
modes, and BFs indicated “substantial” evidence for the absence of a
correlation (atomoxetine � placebo: p � 0.81, BF � 0.157; placebo �
atomoxetine: p � 0.11, BF � 0.156), and thus used NMDA receptors as
an additional reference.

Separating spatial modes from noise
We calculated the theoretical distribution � of eigenvalues � under the
null hypothesis of no difference between conditions, and � was given by
the following:

� �
1

�	�
����

2 � �2	��2 � ��
2 	 (8)

where:

�

2 � 2	2�p 
 q

2
� �pq� (9)

and 	 was the SD of �, and p and q were the dimensions of the covariance
matrix. We then fitted � to � by minimizing the sum of squared residuals
of � multiplied by a scalar value (Mitra and Pesaran, 1999).

If between-condition differences in signal correlation strength were
“noise” (i.e., independently normally distributed with zero mean), the
eigenvalues should not have differed from the theoretical distribution
(Mitra and Pesaran, 1999). If, by contrast, the between-condition differ-
ences in correlation strength were “signal,” the eigenvalues of modes with
a low rank number should have exceeded the theoretical distribution
more so than modes with a high rank number, reflecting a skewed eigen-
value distribution. We thus calculated the difference between the eigen-
values and the theoretical distribution and categorized modes into
“signal” and “noise.” Modes for which � � � were categorized as signal;
the remaining modes were categorized as noise. This procedure provided
an upper bound for the number of modes that we could consider as
possibly reflecting atomoxetine-related changes in intrinsic signal corre-
lation strength.

Control analyses for importance of first spatial mode
We performed two control analyses to examine to what extent the first
spatial mode captured atomoxetine effects (on the strength of correla-
tions in relation to catecholamine receptors) over and above the subse-
quent spatial modes classified as signal (see Separating spatial modes
from noise). First, we determined whether all signal modes with a lower
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rank number tended to explain more variance in independent data than
modes with a high rank number, using the cross-validated ROC analysis
described above. If so, the ROC index should decline with mode rank.
This prediction was not trivial given that, in the cross-validation proce-
dure, the modes were projected onto independent data. We tested this
prediction by correlating ROC index with mode rank within participants
and comparing the distribution of correlation coefficients with zero
across participants using permutation testing (10,000 iterations, one-
tailed test).

Second, we determined whether the spatial correspondence between
modes and catecholamine receptors was stronger for the first mode
than for the subsequent signal modes (i.e., rank numbers � 1). We
used permutation tests to compare the corresponding spatial corre-
lations between mode one and the remaining modes: once by collaps-
ing correlations across signal modes and once for all subsequent
modes individually.

Control analysis for mode specificity
Spatial mode decomposition (Eq. 4) can only be used to compare two
individual conditions (or groups): here, the placebo and atomoxetine
conditions. However, the fMRI measurements of the atomoxetine and
placebo conditions were conducted on separate days. Thus, it is possible
that spatial modes reflected session-related effects rather than drug
treatment-related effects. To control for this possibility, we projected the
spatial modes onto the multivariate fMRI data (using Eq. 5) of the pre-
pill measurements that were conducted on the same days as the post-pill
ingestion measurements and calculated the strength of the fluctuation of
the resulting time series (using Eq. 6). We then used the percentage of
variance explained in the pre-pill measurements as a baseline in the
interaction contrast (atomoxetine � pre-atomoxetine) � (placebo �
pre-placebo).

Second, we computed spatial modes based on covariance in the pre-
pill ingestion conditions and compared (using spatial correlation) the
resulting spatial maps with those that were computed using the post-pill
measurements. We then compared the distribution of correlation coef-
ficients across participants to zero using permutation testing.

Code availability
MATLAB code to compute spatial modes and run statistical analyses of
mode variance can be found here github.com/rudyvdbrink/spatial-
mode-decomposition.

Results
The aim of the present study was to assess the spatial distribution
of catecholaminergic modulation of large-scale brain dynamics
and relate it to the spatial distribution of catecholamine recep-
tors. To this end, we imaged atomoxetine-induced alterations
(increases and decreases) in the strength of correlated fMRI sig-
nal fluctuations across the whole human brain and related the
resulting spatial maps (referred to as “spatial modes”; see Mate-
rials and Methods) to maps of catecholamine receptor gene ex-
pression derived from postmortem brains (Hawrylycz et al.,
2012, 2015). We used a linear decomposition approach, which we
previously validated by means of fMRI retinotopic mapping pro-
tocols (Donner et al., 2013), and which was tailored to finding the
two spatial modes that cofluctuated more strongly (referred to as
atomoxetine � placebo) or less strongly (placebo � atomox-
etine) during the atomoxetine condition than during the placebo
condition (Fig. 1; see Materials and Methods). This analysis en-
abled imaging the brainwide distribution of the strongest
catecholamine-induced increases and decreases in correlated sig-
nal fluctuations, thus assessing their fine-grained neuroanatomi-
cal distribution. Furthermore, the analysis enabled us to quantify
the similarity between the spatial modes that captured cat-
echolaminergic modulation of brain dynamics on the one hand,
and the spatial distribution of the expression of specific catechol-

amine receptor genes on the other hand. The latter was taken
from a dataset provided by the Allen Brain Institute (Hawrylycz
et al., 2012, 2015).

The Results section is organized as follows. We first describe
the spatial modes that show the strongest drug-induced changes
(increases and decreases) in correlated signal fluctuations. We
then evaluate the relationship between both of these spatial
modes and catecholamine receptor gene expression maps. Fi-
nally, we present a number of control analyses that support the
specificity and validity of the spatial modes of drug-related
changes in brain dynamics.

Spatial modes fluctuating more strongly during atomoxetine
than placebo
Our previously published analyses of the same data (van den
Brink et al., 2016) identified only reductions in strength of inter-
regional fMRI signal correlations. Our current approach uncov-
ered a distributed pattern (i.e., spatial mode) of correlated signal
fluctuations that increased under atomoxetine (Fig. 2). The
eigenvalues all 90 spatial modes (as many as brain regions in the
AAL atlas) for the atomoxetine � placebo comparison are shown
in Figure 2a. Here, we focused on analyzing the first of these
spatial modes (Fig. 2b) because it had the largest eigenvalue, thus
exhibiting the strongest increase in cofluctuation amplitude dur-
ing the atomoxetine condition, and because mode orthogonality
can obscure the interpretation of modes with higher ranks (con-
form Donner et al., 2013).

The spatial mode was comprised of a set of weights (one value
per brain region in the parcellation scheme) that indicated rela-
tive cofluctuation between brain areas (Fig. 2b). The overall sign
of mode weights was arbitrary, but the sign of one element with
respect to another indicated their relative phase, with equal signs
indicating positive correlation and unequal signs indicating
negative correlation. The mode displayed maxima (both pos-
itive and negative) in bilateral middle frontal gyri, bilateral
anterior cingulate cortices, right lingual gyrus and postcentral
gyrus, left calcarine fissure and surrounding cortex, and in the left
supplementary motor area. Across the brain, the weights were
anticorrelated between hemispheres (r � �0.56, p � 0.001) such
that, if the mode weight of one brain region was positive, then
the weight of the homotopic region in the other hemisphere
tended to be negative. This suggests that this spatial mode
possibly reflected an increase in the mutual inhibition between
hemispheres.

The spatial mode shown in Figure 2b was a coarse (atlas-level)
representation of the spatial distribution of the corresponding
brain dynamics, which was necessary for technical reasons (see
Materials and Methods). Regressing the time series of the fluctu-
ation of this spatial mode onto each participant’s multivariate
data enabled us to image this spatial distribution at a finer (voxel-
level) granularity, as well as test for the consistency of the expres-
sion of the corresponding spatial mode across participants within
individual conditions (Fig. 2c). This analysis yielded a single sig-
nificant cluster (superior frontal gyrus) for the placebo condition
and a number of significant clusters (36% of all brain voxels) for
the atomoxetine condition. Cluster maxima were located in bi-
lateral anterior cingulate cortex, right medial frontal gyrus, right
lingual gyrus, left precentral gyrus, left lateral occipital cortex,
and bilateral supramarginal gyri.

To determine whether the spatial mode corresponded to any
of the so-called “resting-state networks,” as defined with com-
monly used ICA approaches (Beckmann, 2009; Smith et al.,
2009), we correlated the spatial mode with each of the 10 selected
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ICA components (see Materials and
Methods) for each individual participant.
This yielded a weak, albeit statistically sig-
nificant, correlation of the spatial mode
with the right-lateralized frontoparietal
ICA component (mean r � �0.05, SD
0.03; t(23) � �7.89, p � 0.001). Together,
our analysis revealed a pattern of intrin-
sic fMRI signal correlations that were
enhanced under atomoxetine, which ex-
hibited a highly structured spatial organi-
zation (Fig. 2c), but only loosely
resembled any of the established resting-
state networks defined using standard
ICA-based analyses of correlated signal
fluctuations regardless of pharmacologi-
cal intervention. In Spatial modes reflect
gene expression of catecholamine receptors,
we link this spatial organization to the dis-
tribution of specific catecholamine recep-
tors across the brain.

We finally verified, using cross-
validated procedures (see Materials and
Methods), the robustness and reliability
of the fluctuations captured by the spatial
mode: The fluctuation strength of the spa-
tial mode was consistently larger in the
atomoxetine than in the placebo condi-
tion (p � 0.001; Fig. 2d), and it reliably
discriminated between the two pharma-
cological conditions, even on the basis of
short individual data segments (group
average ROC index � 0.62, p � 0.002;
Fig. 2e).

Spatial modes fluctuating less strongly
during atomoxetine than placebo
Whereas our previous work identified
catecholamine-related reductions in the
overall strength of correlated signal fluc-
tuations (van den Brink et al., 2016), the
analysis approach we used previously was
not suited to image the fine-grained neu-
roanatomical structure of these decreases.
By contrast, our current decomposition
approach suited this purpose, and it un-
covered a widespread set of brain regions between which corre-
lations were suppressed by atomoxetine (Fig. 3). The first spatial
mode resulting from this decomposition (again selected based on
its largest eigenvalue; Fig. 3a) had local maxima and minima in
homotopic regions of both hemispheres (Fig. 3b), with an even
stronger overall negative correlation between hemispheres (r �
�0.79, p � 0.001) than evident for the spatial mode for atomo-
xetine-induced increases (compare with Fig. 2b). This effect
might indicate a catecholamine-induced reduction in interhemi-
spheric competition.

Importantly, this spatial mode for placebo � atomoxetine was
uncorrelated (r � �0.013, p � 0.88, BF � 0.157) with the one for
atomoxetine � placebo (Fig. 2b). Thus, the spatial modes result-
ing from both decompositions reflected distinct sets of brain re-
gions, in which the direction of catecholaminergic effects on
signal correlation strength was opposite.

Again, we imaged the fine-grained (voxel-level) distribution
of this fluctuation pattern within individual conditions. This re-
vealed a large proportion of significant voxels (51% of all brain
voxels) in the placebo condition (Fig. 3e). The spatial mode ex-
hibited local maxima or minima in regions of the so-called
“default mode” and “attention networks” (Fox et al., 2006; Smith
et al., 2009): bilateral temporal poles, medial frontal, lateral oc-
cipital, and posterior cingulate cortices, and in bilateral paracin-
gulate, precentral, superior frontal, supramarginal, and
paracingulate gyri. Indeed, the spatial mode weakly, but signifi-
cantly and most strongly, resembled the left-lateralized “fronto-
parietal” ICA component (mean r � �0.15, SD 0.05; t(23) �
�16.33, p � 0.001). Given that the first spatial mode in the de-
composition atomoxetine � placebo correlated most strongly
with the right lateralized frontoparietal network, this suggested
that atomoxetine resulted in a shift from left- to right-lateralized
frontoparietal dominance. A significant interaction in the strength

Figure 2. Spatial mode that fluctuated more strongly during atomoxetine than placebo. a, Eigenvalue spectrum of all spatial
modes from generalized eigenvalue decomposition of covariance matrices for atomoxetine � placebo (AAL atlas; see Materials
and Methods). Black represents eigenvalue of the first spatial mode. b, Distribution of spatial mode weights visualized on cortical
surface reconstruction. c, Voxel-level map of significant expression of first spatial mode per condition ( p � 0.05, FWE-corrected).
d, Comparison of percentage of variance explained by spatial mode from b in the atomoxetine and placebo conditions. Indepen-
dent data were used for computing the spatial mode and assessing the variance explained. e, ROC analysis of discriminability of
conditions based on fluctuation amplitude of the first spatial mode within short data segment (�114 s, again independent of data
used for computing the mode; see Materials and Methods). ROC indices �0.5 indicate that the spatial mode fluctuation predicts
the condition. Error bars indicate SEM across participants (N � 24). **p � 0.01. ***p � 0.001.
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of correlation between mode polarity (atomoxetine-induced in-
crease vs decrease) and ICA component (frontoparietal left vs
right) suggested that this was indeed the case (repeated-measures
ANOVA; F(1,23) � 163.14, p � 0.001). Other significant correlations
were evident for the “default mode” (mean r � �0.15, SD 0.05;
t(23) � �14.19, p � 0001) and “sensorimotor” (mean r � 0.13, SD
0.04; t(23) � 17.41, p � 0.001) ICA components.

The fluctuation of this spatial mode was a consistent and reli-
able indicator of the drug condition across participants, even for
short segments of data (comparison of mode variance between
atomoxetine and placebo: p � 0.001; group average ROC in-
dex � 0.62, p � 0.002; Fig. 3d,e).

Spatial modes reflect gene expression of
catecholamine receptors
Our analyses thus far established that atomoxetine both increased
and decreased intrinsic fMRI signal correlations in two distinct
sets of widely distributed brain regions. How can the systemic
increase in catecholamine levels by atomoxetine lead to region-

ally specific, and even opposite-polarity,
modulations of brain dynamics? An at-
tractive possibility is that such heteroge-
neous functional effects are mediated by
the heterogeneous distribution of cate-
cholamine receptors across the brain
(Ramos and Arnsten, 2007). To test this
idea, we quantified the spatial similarity
between spatial modes and maps of the
expression of genes encoding a variety of
catecholamine receptors.

Gene maps were taken from human
postmortem samples from the Allen Brain
Institute (Hawrylycz et al., 2012, 2015),
and examples are shown in Figure 4a. We
found a specific, and distinct, association
pattern for both spatial modes identified
here (Fig. 4b). First, the spatial mode that
fluctuated more strongly in the atomox-
etine than the placebo condition was asso-
ciated with the genetic expression map of
D2-like DA receptors. Second, by con-
trast, the spatial mode that fluctuated
more strongly in the placebo than atom-
oxetine condition was associated with ge-
netic expression of the �1 NE receptor.
Third, both spatial modes were associated
with the � NE receptor gene map, but
with opposite sign.

To assess the specificity of these spatial
correlations (see Materials and Methods),
we compared them with two “reference”
correlations: (1) correlations with maps of
genes coding for acetylcholine receptors
and (2) correlations with maps of genes
coding for NMDA receptors. We chose
acetylcholine because it is another neuro-
modulatory system with a functional or-
ganization similar to that of the NE
system, but had no relation to our drug
manipulation. We chose NMDA recep-
tors because atomoxetine binds to, and
inhibits, them at clinically relevant doses
(Ludolph et al., 2010). The distributions

of acetylcholine receptors and NMDA were uncorrelated with the
spatial mode maps (all BFs: 0 � BF � 0.158; see Materials and
Methods), and there were no significant differences between the
muscarinic and nicotinic acetylcholine receptors (Fig. 4b, right-
most panel; for details, see Materials and Methods).

All the significant associations between spatial modes and cat-
echolamine receptors shown in Figure 4b were also significant
compared with ACh receptor maps combined or to NMDA re-
ceptor maps (comparison with ACh receptors: spatial mode
atomoxetine � placebo: AR�, p � 0.011; D2-like receptors, p �
0.009; spatial mode placebo � atomoxetine: AR�1, p � 0.011;
AR�, p � 0.010; comparison with NMDA receptors: spatial mode
atomoxetine � placebo: AR�, p � 0.026; D2-like receptors, p �
0.003; spatial mode placebo � atomoxetine: AR�1, p � 0.002;
AR�, p � 0.003). Furthermore, similar results were obtained
when the analysis was confined to the cortex rather than the
whole brain, except that the association between the � NE recep-
tor map and the spatial modes was no longer significant (spatial
mode for placebo � atomoxetine: p � 0.07; spatial mode for

Figure 3. Spatial mode that fluctuated less strongly during atomoxetine than placebo. a, Eigenvalue spectrum of all spatial
modes from generalized eigenvalue decomposition of covariance matrices for placebo � atomoxetine. Black represents eigen-
value of the first spatial mode. b, Distribution of spatial mode weights visualized on cortical surface reconstruction. c, Voxel-level
map of significant expression of first spatial mode per condition ( p � 0.05, FWE-corrected). d, Comparison of percentage of
variance explained by spatial mode in b in the atomoxetine and placebo conditions. e, ROC analysis of discriminability of conditions
based on fluctuation amplitude of the first spatial mode within short data segment. Error bars indicate SEM across participants
(N � 24). ***p � 0.001.
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atomoxetine � placebo: p � 0.422), but only the difference be-
tween these two associations was significant (difference between
modes: p � 0.049). These latter findings are consistent with the
relatively high expression of � receptors in subcortical areas com-
pared with cortical areas (Rainbow et al., 1984; Reznikoff et al.,
1986; Joyce et al., 1992; van Waarde et al., 1997).

The spatial mode/gene map associations were negatively
correlated between the two spatial modes assessed here (Fig.
4c). In other words, the more similar (dissimilar) the spatial
distribution of a particular catecholamine receptor gene was
to the spatial mode that showed the atomoxetine-induced
increase in cofluctuations, the more dissimilar (similar) this
distribution was to the spatial mode that showed the atom-
oxetine-induced reduction in fluctuations. This was despite
the fact that the spatial modes per se were unrelated to one
another (see Spatial modes fluctuating less strongly during ato-
moxetine than placebo).

In sum, the spatial association analyses reported here link the
brainwide distribution of catecholaminergic effects on large-scale
neural dynamics to the distribution of different catecholamine
receptor types, with important implications for understanding
the principles of cathecholaminergic modulation (see Discus-
sion). In the remainder of Results, we present a number of con-
trol analyses, which corroborated the specificity and validity of
the interpretation of our main findings.

Control 1: Mode 1 uniquely captures atomoxetine-related
effects on correlations in relation to specific catecholamine
receptors
It is possible that spatial modes, other than the first mode we
focused on here, captured meaningful relationships between the
spatial distributions of catecholamine receptors and the distribu-
tion of atomoxetine-related changes in fMRI signal correlations.
To assess the relevance of spatial modes with higher ranks, we
computed a theoretical distribution of eigenvalues under the null
hypotheses of no between-condition differences in correlations
and compared it with the observed eigenvalue distribution (see
Materials and Methods). While for both decomposition direc-
tions the first mode was clearly discernible in its deviance from
the theoretical distribution, a number of subsequent modes also
reflected signal (21 modes in Fig. 5a; 26 modes in Fig. 5c). Yet, two
observations indicated that the first spatial modes (for both de-
composition directions) captured the predominant effects of ato-
moxetine. First, they tended to explain a larger proportion of
variance in one condition relative to another than the remaining
ones: for both decomposition directions, the ROC index was
strongly negatively correlated with mode rank number (Fig.
5b,d). Second, the first spatial mode exhibited significantly stron-
ger correlations with the distributions of catecholamine receptors
than the subsequent signal modes (Fig. 5e,f), and no individual
signal mode correlated more strongly with catecholamine recep-
tors than the first mode (smallest corrected p values and BFs:

Figure 4. Associations between spatial modes and catecholamine receptor gene expression. a, Correlation between individual spatial modes (i) and 6 postmortem samples (s). This procedure
was repeated for each gene (for details, see Materials and Methods). b, Correlations between spatial modes and receptor gene expression maps. Within-mode significance is assessed by comparison
with zero. AR, Adrenoceptor; ACh, acetylcholine receptor. *p � 0.05. **p � 0.01. c, Relationship of spatial mode versus catecholamine gene associations between both spatial modes. Error bars
indicate SEM (N � 24 participants).
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atomoxetine � placebo: p � 0.13, BF � 0.93; placebo � atom-
oxetine: p � 0.28, BF � 0.75). Thus, the first mode optimally
reflected atomoxetine-induced changes in signal correlation
strength in relation to the distribution of specific catecholamine
receptors.

Control 2: spatial modes reflect drug-induced, not
session-related, differences in signal fluctuations
The linear decomposition analysis performed here, by design,
returned a spatial mode of which the fluctuation strength differed
between the two conditions that were used to calculate the spatial
mode (here: atomoxetine and placebo). Our reliability analyses
established that the two spatial modes shown in Figures 2b and 3b
accurately discriminated between pharmacological conditions,
even in short stretches of data independent from the ones used to
identify the modes (Figs. 2d,e, 3d,e). This establishes that both
spatial modes captured meaningful alterations of brain dynam-
ics, rather than measurement noise. Nevertheless, they may have
reflected changes in brain dynamics that differed systematically
between the placebo and atomoxetine sessions, without reflecting
specific drug treatment effects. Specifically, because both sessions
took place 1 week apart, it was possible that the spatial modes
might have reflected the session rather than the treatment.

We addressed this concern by analyzing the pre-pill ingestion
fMRI measurements that took place on the same days. We pro-
jected the spatial modes onto the multivariate fMRI data of the
pre-pill measurements and calculated the strength of the fluctu-
ation of the resulting time series (variance explained, see Eq. 6). If
the spatial modes reflected changes in brain dynamics that were
specifically due to the catecholaminergic intervention rather than
to session differences, then (1) their fluctuation amplitudes
should differ more for the post-pill measurements than for the
pre-pill measurements, and (2) spatial modes computed in an
analogous fashion for the pre-pill ingestion conditions should
exhibit a different spatial structure from the spatial modes we
investigated so far. That is what we found (Fig. 6). First, the
interaction contrast (atomoxetine � pre-atomoxetine) � (pla-
cebo � pre-placebo) was significant, in the expected direction for
both spatial modes analyzed here (Fig. 6a). Second, the spatial
modes that were computed for the pre-pill measurements (Fig.
6b) did not resemble those from the post-pill measurements
(compare with Figs. 2b, 3b), with no significant spatial correla-
tions (all absolute r values �0.06, all p values �0.60). Together,
these control analyses rule out session-related effects as a con-
found and further establish that the spatial modes assessed in

Figure 5. Results of control analyses for mode selection. a, Atomoxetine � placebo: difference between theoretical “noise” distribution � and eigenvalues. b, Atomoxetine � placebo: ROC
curves and indices for all modes that were categorized as “signal.” *p � 0.05 (FDR). Error bars indicate 66% CI. c, d, Same as a, b but for the decomposition direction placebo � atomoxetine. e, f,
Correlations between modes and receptor gene expression. *p � 0.05. **p � 0.01.
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the previous sections reflected drug-induced changes in brain
dynamics.

Control 3: Craddock parcellation yields similar results as
AAL parcellation
To rule out that our results depended on the specific anatomical
parcellation scheme used for computing the spatial modes
(AAL), we repeated the analyses using an alternate atlas that re-
sulted from a functional parcellation and had a higher density
(Craddock et al., 2012). Both resulting spatial modes explained
more variance in one condition than in the other, in the expected
direction (atomoxetine � placebo: p � 0.001; placebo � atom-
oxetine: p � 0.001). Again, these effects were reliable at the level
of independent and short (�114 s) data segments (atomox-
etine � placebo: p � 0.001; placebo � atomoxetine: p � 0.001).
Thus, the Craddock parcellation also yielded spatial modes that
reliably differed between the two pharmacological conditions in
terms of fluctuation strength.

The resulting spatial modes were also similar to the ones from
our main analyses in terms of their spatial structure. To establish
this, we again imaged the expression of the spatial mode time
series across all brain voxels and compared the resulting map with
the corresponding map from the AAL parcellation in our main
analyses (Figs. 7, Fig. 8). Despite using parcellation schemes that
differed both in the number of brain regions and in the way the
brain regions were defined (anatomical parcellation and func-
tional clustering, respectively), the mode spatial maps generated
with the two atlases corresponded robustly across participants for
the spatial mode atomoxetine � placebo (placebo: t(23) � 3.96,
p � 0.001; atomoxetine: t(23) � 3.98, p � 0.001; Fig. 7). More-
over, the spatial modes, imaged at single-voxel level, correlated
between drug conditions (AAL atlas: t(23) � 6.93, p � 0.001;
Craddock atlas: t(23) � 14.89, p � 0.001; Fig. 7). This was also the
case for the spatial mode placebo � atomoxetine: spatial modes
correlated across atlases (placebo: t(23) � 10.43, p � 0.001; ato-
moxetine: t(23) � 9.54, p � 0.001; Fig. 8) and drug conditions

Figure 6. Results of control analyses examining mode specificity. a, Percentage of variance explained by the AAL atlas-derived first modes in relation to the percentage of variance explained when
the modes were projected onto the pre-pill ingestion measurements. Error bars indicate SEM across participants (N�24). Interaction effects of the contrast (atomoxetine vs pre-atomoxetine) versus
(placebo vs pre-placebo): **p � 0.01; ***p � 0.001. b, Threshold-free spatial maps of AAL atlas-derived modes that were generated using only the pre-pill ingestion conditions. Maps are shown
only for the pre-placebo condition for brevity. Colored regions represent covariation with the mode time series.

Figure 7. Threshold-free spatial maps of Mode 1 for the decomposition atomoxetine � placebo. The r̄ values indicate the average correlation coefficients across participants.
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(AAL: t(23) � 15.57, p � 0.001; Craddock: t(23) � 14.89, p � 0.001;
Fig. 8). In sum, the Craddock atlas-derived modes yielded similar
results in terms of direction and significance of effects as well as
spatial structure of the resulting spatial modes.

Control 4: artifacts in global signal do not account for
main results
Recent findings have suggested that the global MRI signal may
contain artifacts that are related to various non-neural sources,
and these artifacts are not effectively removed by standard pre-
processing techniques (Power et al., 2017). Such artifacts may
have caused spurious differences between conditions in the struc-
ture of interregional covariance. We therefore applied global sig-
nal (the mean of all regional time series) regression to the regional
BOLD time series before computing covariance matrices and re-
peated our key spatial mode decomposition analyses.

For the decomposition atomoxetine � placebo, the percent-
age variance explained of Mode 1 differed between conditions
and in the expected direction (AAL: t(23) � 4.45, p � 0.001, ROC
index � 0.64, t(23) � 6.88, p � 0.001; Craddock: t(23) � 4.55, p �
0.001, ROC index � 0.69, t(23) � 7.54, p � 0.001). For the de-
composition placebo � atomoxetine, the percentage variance
explained of Mode 1 also differed between conditions and in the
expected direction (AAL: t(23) � �5.15, p � 0.001, ROC index �
0.63, t(23) � 8.97, p � 0.001; Craddock: t(23) � �6.23, p � 0.001,
ROC index � 0.63 t(23) � 7.06, p � 0.001). Moreover, the spatial
structure of the modes that included global signal regression was
similar to that of the modes that did not include global signal
regression, as indicated by significant correlations between mode
weights (all r values � 0.42, all p values �0.001). Thus, our find-
ings were unlikely to be driven by spurious differences between
conditions relating to artifacts in the global signal.

Control 5: differences in peripheral physiology do not
account for main results
Because atomoxetine significantly increased both heart rate and
breath rate (atomoxetine vs placebo: heart rate: t(23) � 3.24, p �

0.004; breath rate: t(23) � 3.02, p � 0.006), it is possible that the
RETROICOR denoising procedure operated differently in the
atomoxetine and placebo conditions, thereby conceivably intro-
ducing spurious changes in the structure of interregional covari-
ance. We therefore repeated the spatial mode decomposition
analyses on data to which no RETROICOR had been applied. For
both atlases and for both decomposition directions, all between-
condition comparisons of variance explained by the modes were
significant and in the expected direction (AAL, atomoxetine �
placebo: p � 0.001; ROC index: 0.62, p � 0.001; Craddock, ato-
moxetine � placebo: p � 0.001; ROC index: 0.63, p � 0.001;
AAL, placebo � atomoxetine: p � 0.001; ROC index: 0.62, p �
0.001; Craddock, placebo � atomoxetine: p � 0.001; ROC index:
0.63, p � 0.001). Moreover, to examine whether the modes that
resulted from decomposition of non–RETROICOR-corrected
data were similar in spatial structure to the modes that resulted
from decomposition of RETROICOR-corrected data, we corre-
lated the mode weights between the RETROICOR-corrected and
noncorrected modes. All correlations were significant (all r values
�0.47, all p values �0.001), thus ruling out the possibility that
the modes reflected between-condition differences in peripheral
physiology.

Control 6: eigenvalue decomposition identifies similar
networks as ICA
When applied to our dataset, ICA identified components, shown
in Figure 9, that corresponded well with so-called “resting-state
networks” previously obtained from ICA of fMRI data (Smith et
al., 2009). We verified that the linear decomposition approach
used here identified similar spatial patterns. To this end, we se-
lected voxel-level mode maps based on maximal spatial correla-
tion with the 10 intrinsic connectivity networks reported by
Smith et al. (2009). For the placebo condition, the average corre-
lation coefficient was 0.41 (SD 0.12, minimum 0.16, maximum
0.56), and for the atomoxetine condition the average correlation
coefficient was 0.40 (SD 0.12, minimum 0.15, maximum 0.53).
Similar results were obtained with the Craddock atlas.

Figure 8. Threshold-free spatial maps of Mode 1 for the decomposition placebo � atomoxetine. The r̄ values indicate the average correlation coefficients across participants.
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Discussion
Catecholamines are important regulators of behavior, have pro-
found effects on physiological brain states, and play a key role in
mental disorders (Montague et al., 2004; Aston-Jones and Cohen,
2005; Robbins and Arnsten, 2009; McGinley et al., 2015). A sub-
stantial body of work has characterized the catecholaminergic
modulation of single-neuron activity (Berridge and Waterhouse,
2003; Winterer and Weinberger, 2004) or microcircuit opera-
tions (Marder, 2012; Polack et al., 2013). Fewer studies have
assessed catecholaminergic modulation of large-scale brain net-
work dynamics. Pharmacological fMRI studies in monkeys and
humans have shown that catecholamines alter the strength of
correlations between distant brain regions (Hermans et al., 2011;
van den Brink et al., 2016; Warren et al., 2016; Guedj et al., 2017a;
Hernaus et al., 2017). While “resting-state” studies have reported
catecholamine-induced decreases in correlation strength (van
den Brink et al., 2016; Guedj et al., 2017b), task-based studies
have reported increases (Warren et al., 2016; Hernaus et al.,
2017), or the converse for noradrenergic antagonism (Hermans
et al., 2011). Critically, the brainwide distribution of these mod-
ulatory effects has thus far remained unknown.

Here, we imaged the brainwide distribution of catecholamine-
induced changes in intrinsic correlations across the human brain
and related the resulting spatial patterns of brain dynamics to the
brainwide distribution of specific catecholamine receptors. We
thus applied an analysis approach tailored to delineate spatial
patterns of both drug-induced increases and decreases in corre-
lation strength (Fig. 1) to “resting-state” fMRI data from a
placebo-controlled atomoxetine intervention. This uncovered
two distinct, and widely distributed, sets of brain regions (Figs. 2,
3), each of which showed a distinct spatial correspondence to the
brainwide distribution of catecholamine receptor genes, but not
acetylcholine or NMDA receptor genes (Fig. 4). Our results es-
tablish that the impact of catecholamines on brain network dy-

namics exhibits remarkable spatial specificity. Our results bridge
between the endogenous modulation of large-scale brain net-
work dynamics and the low-level properties of the underlying
neurotransmitter systems.

The catecholaminergic system is equipped with a large variety
of receptor types, which are nonuniformly distributed across the
cortex (Zilles and Amunts, 2009; Nahimi et al., 2015; Salgado et
al., 2016). These receptors have dissociable effects on neural ac-
tivity (McCormick et al., 1991; Robbins and Arnsten, 2009; Nou-
doost and Moore, 2011; Salgado et al., 2016). In particular, �1 and
� receptors have relatively low affinity for NE and are therefore
activated only at relatively high synaptic NE levels (e.g., due to
stress). These receptors seem to weaken cortical circuit interac-
tions (Ramos and Arnsten, 2007), an interesting observation
given that the spatial distribution of these receptors was specifically
associated with the spatial mode that captured a catecholamine-
induced suppression of fMRI signal correlations. By contrast, the
spatial mode atomoxetine � placebo (i.e., enhancement of corre-
lations) was associated with the expression of D2-like receptors,
which have been associated with cortical disinhibition (Seamans
et al., 2001; Winterer and Weinberger, 2004), and some of which
also show particularly high affinity for NE (Arnsten, 2011). Thus,
it is possible that inhibition/disinhibition of local populations of
neurons cause, by virtue of widespread receptor expression,
large-scale decreases/increases in correlation strength, respec-
tively. Regardless of the precise mechanistic origin of changes in
correlation strength, our findings suggest that the diversity in
distribution and function of catecholamine receptors is respon-
sible, at least in part, for the opposite sign modulations of corre-
lations we uncovered here.

This insight is in accordance with the emerging view of the
LC-NE system as a more specific regulator of brainwide neural
interactions than traditionally assumed. In addition to the recep-
tor heterogeneity across the brain that we focused on here, recent

Figure 9. Spatial maps of the ICs that were selected based on spatial correlation with the 10 canonical resting-state networks presented by Smith et al. (2009). Spatial maps were visualized with
BrainNet Viewer (Xia et al., 2013).
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results indicate that the ascending projections of the LC are
more spatially specific than once thought (Chandler and Wa-
terhouse, 2012; Chandler et al., 2014; Schwarz and Luo, 2015;
Schwarz et al., 2015; Uematsu et al., 2015, 2017; Kebschull et
al., 2016). Furthermore, distinct subpopulations of LC neu-
rons mediate opposite behavioral effects (Uematsu et al.,
2017), and could thus also affect the underlying neural inter-
actions in dichotomous ways.

In our previous work, we identified atomoxetine-related re-
ductions in signal correlation strength at the whole-brain level
(van den Brink et al., 2016). Other fMRI work has revealed
similar global changes in the strength of correlations, due to
pupil-linked arousal (Eldar et al., 2013; Warren et al., 2016),
pharmacological intervention (Hermans et al., 2011; Warren et
al., 2016), and concurrent alterations in the topological proper-
ties of whole-brain cofluctuations (Shine et al., 2016, 2018b). At
first glance, such unitary modulations of correlations may appear
to be at odds with the opposing atomoxetine-related effects in
different sets of brain regions that we identified here. However,
our analysis approach was specifically tailored to delineate the
predominant catecholamine-induced changes in fluctuations.
Thus, our findings do not rule out the possibility of spatially
homogeneous modulations of correlations due to catecholamines;
they only show that such potential global effects accounted for
a smaller proportion of variance than the spatially specific
catecholamine-related changes focused on here. Our current
findings should thus be viewed as complementary to previous
work, offering a detailed view of the predominant aspects of
catecholamine-modulated correlations.

The brainwide effects of catecholaminergic manipulation ob-
served here stand in striking contrast to the recently reported
effects of a cholinergic manipulation (deactivation of the nucleus
basalis). The latter attenuates the so-called “global MRI signal”
(i.e., averaged across all gray matter voxels) at rest while leaving
the structure of specific resting-state networks relatively unaltered
(Turchi et al., 2018). Instead, we found that the catecholamine-
induced effects are heterogeneous, affecting specific functional net-
works. Thus, the catecholaminergic and cholinergic systems, despite
similarly widespread ascending projections, may have dissociable
influences on large-scale brain activity.

Noteworthy is that both spatial modes exhibited a negative
correlation between homotopic brain regions. Similar left-right
asymmetries in endogenous NE concentration (Oke et al., 1978)
and noradrenergic modulations of correlations (Grefkes et al.,
2010) have previously been reported. The “bilaterally opponent”
structure we observed (Figs. 2b, 3b) may have resulted from mod-
ulation of interhemispheric anatomical connectivity, via direct or
indirect pathways, as homotopic brain regions are strongly inter-
connected (Segraves and Rosenquist, 1982; Lim et al., 2012). In
this scenario, catecholamines simply modulated the functional
efficacy of the structural connectome. Another (nonmutually ex-
clusive) possibility is that this bilaterally opponent structure re-
sulted from the spatial structure of the unilateral ascending
projections from the left and right LC to the cortex. In addition,
atomoxetine shifted correlations from left-lateralized to right-
lateralized frontoparietal networks, an observation corroborated
by correlation with ICA-derived resting-state networks. Indeed,
right-lateralized frontoparietal regions might be particularly sus-
ceptible to NE influences and involved in goal-oriented stimulus
processing (Corbetta and Shulman, 2002; Corbetta et al., 2008).
It is tempting to speculate (participants were not engaged in a
task) that our current results indicate an atomoxetine-related

shift toward goal-oriented stimulus processing, a hypothesis that
could be tested in future work.

The current study showcases the utility of generalized eigen-
value decomposition for the analysis of resting-state fMRI data.
One of its primary advantages over conventional analysis tech-
niques (e.g., dual regression) (Beckmann, 2009) is that it does not
require an a priori selection of functional networks but instead
yields the spatial modes that show the strongest drug effects.
Thus, it increases the sensitivity to potentially more subtle drug-
related changes, as evidenced by the atomoxetine-induced in-
creases in correlated fluctuations that were not identified in our
previous study (van den Brink et al., 2016). The approach also has
limitations. First, although we demonstrated robustness of re-
sults across two particular parcellation schemes, the resulting
spatial modes might differ for other parcellation schemes, in par-
ticular those of radically different densities. Second, the approach
can only be used to compare correlations between two conditions
(or groups), limiting its applicability for more complex (e.g., lon-
gitudinal) study designs. Third, the approach required focusing
on one or a few out of the large number of spatial modes yielded
by the decomposition.

An examination of all potential modes of interest revealed that
several modes other than the first exhibited statistically signifi-
cant differences between condition (Fig. 5b,d). Each of these
modes may have captured meaningful information about atomo-
xetine-related changes in correlations. We focused on the first
mode for a number of reasons. First, orthogonality between the
spatial modes that is imposed by the analysis could obscure the
interpretation of modes subsequent to the first. Second, for both
decomposition directions, the first spatial mode tended to ac-
count for more variance in independent data than subsequent
modes (Fig. 5a– d). We thus used it as a readout of the predomi-
nant effect of atomoxetine on correlation strength. Third, for
both decomposition directions, the first spatial mode captured
the strongest association with the distribution of specific cate-
cholamine receptors (Fig. 5e,f).

In conclusion, we have shown that catecholamines increase
and decrease the strength of intrinsic fMRI signal correlations
within two distinct sets of distributed brain regions. These spa-
tially specific and opposite-polarity modulations of ongoing
brain dynamics mirror the spatial receptor diversity within the
catecholaminergic system. Our results provide a reference for
understanding catecholaminergic effects on network interactions
during task performance, and provide important constraints for
modeling catecholaminergic effects on the forebrain.
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