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Abstract: We probe the influence of branching on the configurational, packing, and density correlation
function properties of polymer melts of linear and star polymers, with emphasis on molecular
masses larger than the entanglement molecular mass of linear chains. In particular, we calculate
the conformational properties of these polymers, such as the hydrodynamic radius Rh, packing
length p, pair correlation function g(r), and polymer center of mass self-diffusion coefficient, D,
with the use of coarse-grained molecular dynamics simulations. Our simulation results reproduce
the phenomenology of simulated linear and branched polymers, and we attempt to understand our
observations based on a combination of hydrodynamic and thermodynamic modeling. We introduce
a model of “entanglement” phenomenon in high molecular mass polymers that assumes polymers can
viewed in a coarse-grained sense as “soft” particles and, correspondingly, we model the emergence
of heterogeneous dynamics in polymeric glass-forming liquids to occur in a fashion similar to
glass-forming liquids in which the molecules have soft repulsive interactions. Based on this novel
perspective of polymer melt dynamics, we propose a functional form for D that can describe our
simulation results for both star and linear polymers, covering both the unentangled to entangled
polymer melt regimes.

Keywords: polymers; entanglement; branching, packing length; translational diffusion coefficient;
hydrodynamic radius; hyperuniformity; decoupling; packing length; glass-formation

1. Introduction

Polymers play an important role in materials in everyday life, including film packaging,
the molded parts of furniture, airplanes, and automobiles, as well as, diverse tools and devices
for industry and the medical sciences. The usefulness of polymers is due to the many advantages of
polymeric materials in comparison to metals, e.g., low weight, corrosion resistance, thermally and
electrically insulating properties, along with lower processing and maintenance costs. A central feature
of polymers is that material properties can be greatly influenced by the molecular characteristics,
in addition to the chemical nature of the monomers [1–3], so that polymeric materials are literally
a “plastic” form of matter.

Two basic topological molecular characteristics of polymers are chain length and topological
interactions arising from repulsive interpolymer interactions. For example, when the length of the
polymer chains in a melt is relatively short, the resultant bulk material displays common features
of low molecular mass (Mw) materials, such as propensity to form brittle powders. However,
when the length of the polymer chains is relatively long, then the topological interactions between
the polymer chains result in “entangled” structures that greatly restrict chain motion and augment
the transmission of mechanical stresses within the material. It is not really clear at present to what
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extent entanglement represents a tendency of chains to be localized by surrounding chains versus the
extent that interchain interactions give rise to collective chain motion in the form of dynamic clusters
of polymers. Branching normally reduces polymer entanglement since polymer conformations become
more compact, while stiffer chains tend to be more entangled for a given chain length, provided the
polymers are not so stiff that liquid crystalline ordering occurs instead.

Given the long history of polymer science, there are several proposed polymer models that have
been introduced to describe the dynamics of the polymers in the melt state [1–3]. The Rouse model [4]
is often used to describe the dynamics of low molecular mass polymers. This model predicts that the
shear viscosity, η, scales as the square of the polymer radius of gyration [5], i.e., η ∼ R2

g, which reduces
to η ∼ Mw. This scaling relation arises from the “Flory theorem” indicating that excluded volume
interactions in the melt are screened, resulting in polymer chains having configurations effectively
equivalent to random walk chains [6,7], i.e., Rg ∼ M1/2

w . The Rouse model is broadly consistent with
experimental findings [8–10], but several studies point to deviations from the Rouse model [9,11–13].
When the polymer chains become long enough they enter into the so called “entangled” regime,
defined empirically by a stronger scaling in η with Mw [5], i.e., η ∼ M3.4

w . The reptation model [2,14,15],
and its various modifications, have found success in rationalizing the emergence of this change of
mass scaling for η and the polymer diffusion coefficient, D. Currently, the reptation class of models,
emphasizing chain localization by surrounding polymers, dominates the modeling of linear polymer
melts, but several inconsistencies remain [16–18]. For the modeling of star polymer melts, the concept
of arm retraction [19,20] of invoked to rationalize their dynamics, but as in the case of reptation
for linear chains, there are many open questions [18,21]. An additional source of concern about
these models is their emphasis on the role of polymer topology in relation to the polymer motion
within a background matrix of other fixed chains. This type of phenomenological modeling leads to
an increasing number of different mechanisms of polymer dynamics for each topology. In our view,
this proliferation of models only highlights the need for a unifying framework for understanding
polymer melt dynamics.

While experiments have been instrumental in testing the macroscopic predictions of polymer
theories, computer simulations can be utilized to probe the microscopic structure of polymers.
Atomistic simulations are often employed to probe the structure and the dynamics of polymers in
solution and in melt state [22–31]. Their value lies in matching the properties of specific monomers and
by comparison of conformational and dynamical properties between different monomer chemistries to
gain insights on how to design polymeric materials with optimal material properties. A significant
limitation of atomistic simulations is that are computationally expensive as the trajectory of every
atom needs to be calculated. Coarse-graining provides accessibility to larger length scales and longer
time scales, i.e., reducing the computational costs, by losing detailed information associated with the
structure of the target monomer [32–37]. A good coarse-grained model is one that balances these
two effects. Multiple coarse-grained approaches have been proposed in the past. We focus on a well
established coarse-grained bead-spring model with thermodynamics consistent model that provides
access to the long time scales necessary to probe the dynamics in the entangled regime.

In a previous study [38], we have successfully utilized established hydrodynamic models to
describe the polymer dynamics of unentangled polymers under the assumption that continuum
hydrodynamic theory should be applicable to molecular and polymer fluids. Our aim here is to
expand upon our previous work to address the entangled polymer melt regime. We focus, mainly on
linear chains and regular stars, but we also briefly discuss unknotted ring and bottlebrush polymers.
We investigate the packing properties of entangled linear chains and make comparisons with branched
polymers of different degrees of branching having same molecular mass. We also probe how a given
polymer interacts with its environment. We calculate the hydrodynamic radius Rh with the use of
a path integration algorithm ZENO [39] and the self-diffusion of the polymer center of mass, D.
We propose a functional form for D based on Rh that can provide a description for unentangled and
entangled polymer chains, as well as, for regular star polymers. Our findings suggest a tentative
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unifying framework of polymer melt dynamics that is agnostic about the role of topology on the nature
of polymer diffusion.

Our paper is organized as follows. Section 2 contains details of the model and simulation methods.
Results of the packing and conformational, and dynamic properties of linear chain and branched
melts are presented in Section 3. Section 4 concludes the paper with some general discussion of the
significance of our results.

2. Model and Methodology

Our system consists of Np polymers with Np = 400. A star polymer is represented as a spherical
core particle with f attached arms and each arm is composed of M segments with a total number of
interaction centers Mw = f M + 1. A linear chain is denoted as a star polymer with f = 2 and its the
core particle is taken to be the same type as those of the arms. The molecular parameters investigated
correspond to arm lengths having a molecular mass Mw = 641, 321, and 161 segments, which are above
the estimated boundary between unentangled and entangled regimes for linear chains on a Lennard-Jones
chain models, i.e., entanglement length Me ≈ 85 [40]. We examine four different functionalities,
f = 2, 4, 8, and 16. Additional molecular masses are considered that are in the unentangled regime
(Mw < Me) with Mw = 81, 41, 21, and 11. The interactions between polymer segments are described
by a cut-and-shifted Lennard-Jones (LJ) potential where ε and σ define the units of energy and length,
and a cutoff distance rc = 2.5 σ. The core–core and core–monomer interactions are modeled as purely
repulsive Weeks-Chandler-Andersen potential [41] with a modification taking into account the difference in
the particle sizes [42]. The segments along a chain are connected with their neighbors via a stiff harmonic
spring, VH(r) = k(r− l0)2, where l0 = 0.99 σ is the equilibrium length of the spring, and k = 2500 ε/σ2

is the spring constant. In terms of the units of real polymer chains, the beads should be identified with
statistical segments of flexible polymer having a typical scale on the order of 1 nm to 2 nm [3] and the core
particle of the stars should have a dimension on the order polymer monomer and we then take Rc = 0.5 σ

as representative estimate of the star core size. The energy and interaction range parameters are chosen to be
the same for these interactions such that εcc = εcb = ε and σcc = σcb = σ. Typical polymer conformations
are presented in Figure 1.
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Figure 1. Schematic illustration of the topological architecture of regular stars, and linear chains.
Screenshots of typical molecular conformations of polymers having different molecular architectures at
the same molecular mass are also presented.
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Simulations were performed in a cubic box with length L; periodic boundary conditions were
applied in all three directions. We utilized the large-scale atomic/molecular massively parallel
simulator (LAMMPS) [43]. Simulations were performed in the NVT ensemble after equilibration in the
NPT ensemble at the desired temperature. The time step was set to δt = 0.005 τ, where τ = σ(mb/ε)1/2

is the unit of time. Temperature and pressure are measured in units of ε/kB and σ3/ε, respectively.
Simulations were performed at different temperatures T = 0.75 and 〈P〉 ≈ 0.1 in reduced units.

3. Results and Discussion

3.1. Packing Length

The reptation model and its generalizations do not provide a prediction of what molecular factors
govern the “critical entanglement molecular mass”, Mc, at which the mass scaling of the viscosity,
η, and polymer center of mass D, change from their low mass scaling of the unentangled regime
to a new scaling relation for M > Mc. This phenomenology defines “entanglement”, whatever its
physical origin. Experimental studies, however, have also indicated a strong structural correlation with
between a closely related related quantity Me, defined by the reciprocal of the plateau modulus [5]
and the “packing length”, p [44–47]. Mc differs from Me by roughly a factor of approximately 2 [5],
and it is generally appreciated that Me and Mc “track” each other even if these properties are not
actually equivalent.

The packing length is defined [44–47] by the ratio of the volume occupied by the polymer divided
by the square of the polymer radius of gyration, Rg, so that this quantity has units of length and its
value is on the order of the statistical segment size,

p =
Vocc

R2
g

=
Mw

R2
gρ

. (1)

The volume occupied by the polymer is determined by Vocc =
Mw

ρ , where ρ is the segmental density.
According to arguments noted above by Flory [6], and later supported by detailed theoretical modeling
by Freed and Edwards [7] and others [48–50], the excluded volume interactions of linear polymer
chains are screened at high segmental densities, leading the polymer chains to adopt configurations
equivalent to random walk chains, also know as “Flory theorem”. Many experimental studies have
established that Rg ∼ M1/2

w , thus supporting the “Flory theorem” and this result widely viewed as
triumph of modern polymer science. The implication of this result is that p is a constant for long flexible
linear polymer chain melts and this basic configurational molecular property has been extensively
tabulated for various polymers [46].

We emphasize that this asymptotic large mass scaling of Rg ∼ M1/2
w has only been established

for linear polymer chains. Recent simulation and experimental work has indicated that Rg for
unknotted rings scales with polymer mass with a power of approximately 1/3 with increasing polymer
mass [51–53]. This scaling would imply that p should diverge to infinity as Mw → ∞ for polymers
having this non-linear molecular topology. This increase suggests that pure melts of this type of
polymer should never become entangled, as in the case of linear chains. We are then led to consider
how p varies with branching topology. We also note that increasing chain stiffness has the effect of
increasing Rg of polymers, which tends to reduce p, suggesting that stiffer polymers should more
readily “entangle” at a given mass based on this entanglement criterion. Experimental evidence
supports this trend with chain rigidity, raising questions regarding the role of polymer knotting in the
chain “entanglement” phenomenon [54].

Recent simulation studies have suggested that other molecular architectures than linear chains
may have mass scaling exponents governing polymer size (e.g., Rg), less than ν = 1/2. For randomly
branched polymers in their melt state, ν has been proposed to be exactly 1/3 [55–58], indicating that
these polymers also form rather ‘compact’ structures in the melt state [59]. Ring polymers in the melt
have been predicted to exhibit this same type of asymptotic scaling [52], strongly suggesting that these
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polymers belong to the randomly branched polymer universality class when they are in the melt state.
Screening evidently operates differently between linear chains and randomly branched polymers.
In recent work, the authors found that both regular branched polymers, i.e., stars and unknotted
rings [60], and bottlebrush polymers [59], exhibit a scaling of Rg with M over a wide range of M that is
more similar to randomly branched polymers and rings than linear polymer melts, i.e., ν is significantly
less than the random walk value of 1/2. We reiterate that an exponent ν < 1/2 for polymers in the
melt state means that p should progressively increase with Mw for all these non-linear polymer melts.
Indeed, an increase in p is apparent in all our simulated branched polymer melts, in contrast, p remains
constant for linear chain melts; see Figure 2. Correspondingly, we expect a diminished tendency of
branched polymers to entangle by the packing length criterion.

10 100 1000

M
w

1

2

p

f = 2

f = 4

f = 6

Figure 2. Packing length, p as a function of molecular mass, Mw; segmental density is assumed ρ = 1.
A progressive increase of p with M and diminished entanglement is also expected in bottlebrush
polymers based on the Rg mass scaling observed in [59].

We mention that the mathematical equivalent of p for polymers arises in many other areas
of physics and mathematics. Specifically, the ratio of the volume swept out by an ideal Brownian
particle divided by its mean square radius of gyration of its trajectory defines the “capacity”, C, of the
particle [61]. Recent work has shown that C is essentially equivalent to the particle hydrodynamic
radius Rh and this quantity has many other applications (it is proportional to the Smoluchowki
diffusion-limited rate constant, etc., self-electrostatic capacity, scattering lengths in acoustics and
quantum theory, etc.) [61]. In a lattice model context, this quantity corresponds to the number of sites
visited by a random walk divided by R2

g and this ratio C∗ is exactly related to the average number
of intersections of long random walk, and many of the critical constants of statistical mechanics
(percolation thresholds, critical temperatures of spin models, critical binding energies for particle
localization, etc.) can be approximately expressed in terms of C∗ [62]. It is no wonder that p has
served as a useful quantity in understanding the packing of entangled polymer chains [63] and the
thermodynamics of polymer blend miscibility [64], since the capacity governs the contact probability
of random coil polymers [62].

3.2. Influence of Polymer Mass and Scaling of Rg

As discussed above, the size of a polymer can be described by Rg, which typically scales with Mw

as a power-law, i.e., Rg ∼ Mν
w. The mass scaling of polymers have been extensively studied in the past

both in solution and in the melt [1–3]. Based on our previous study of regular stars in the melt state [38],
we again find that the effective ν exponent indicates a relatively compact configuration relative to
random coil polymers, i.e., ν < 1/2, see Figure 3. As the star functionality increases, ν progressively
decreases and then reaches a minimum value at f = 6 where ν takes a value approximately equal
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to the effective value having unknotted ring polymers for comparable Mw. For f > 6, there is small
increase in ν due to the stretching of the chains near to the core of the particle. Our previous findings
are based on polymers having Mw < 10 Me, so that it remains an open question as to what values
these apparent exponents take in the limit, Mw → ∞.

Another important length characteristic of polymers is the hydrodynamic radius Rh, which is
a function of polymer conformation in hydrodynamic theory. We find that this quantity qualitatively
follows the same mass scaling trends as with Rg for linear polymer chains. A typical example of
mass scaling with Rh for linear polymers is presented in Figure 3 where the mass scaling exponent is
indicated to equal, 0.48. We discuss the importance of Rh for the determination of D below for both
linear and branched polymers.
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Figure 3. The mass scaling exponents ν (circles) and µ (squares) for radius of gyration Rg and Rh,
respectively, as the function of functionality, f ; filled symbols correspond to the linear chain (with f = 2)
and star polymers and open symbols to ring polymers. Inset: Rh as a function of molecular mass Mw

for linear chains.

3.3. Quantification of the Influence of Molecular Topology on Molecular Packing

Branching clearly results in the formation of more compact polymer conformations than linear
chains, which correspondingly influences the packing of the polymers in the melt. Typically the
packing of the polymers is described by the structural correlation functions, such as radial distribution
function, g(r). For linear chains, the g(r) of the polymer center of mass exhibits characteristics of
ultra soft particles where the center of mass of two polymers can overlap [65], i.e., g(r) > 0 for
r/σ < 1. We note that the g(r) for the core particle and the g(r) for the polymer center of mass
are distinct at length scales smaller than the polymer size. Increasing the molecular mass of linear
chains increases the depletion region r/σ < Rg in the g(r) for polymer center of mass. As f increases,
particle-like correlations emerge between star polymers [66–68]. The probability for the polymer center
of mass at short distances decreases and for highly branched stars we see that there no overlap region
in the polymer center of mass in g(r) when f becomes sufficiently large; see Figure 4. Moreover, g(r) of
the polymer center of mass and that of the core particle become approximately the same, see Figure 4.
This means that the center of mass and the core particle essentially coincide in space in an average sense
for highly branched star polymers [68]; an effect also seen in polymer grafted nanoparticles [69,70].
We can view this effect as a kind of the core particle “localization” that accompanies the emergence of
the particle-like character of the polymers.

Polymers near this transition between random coil to particle-like conformational structure exhibit
strong fluctuations in shape that can greatly impact molecular segmental packing. Segmental packing
at a local scale is subject to thermal fluctuations which influence the density fluctuations at large
scales. This coupling can be understood from the structure factor S(q) (the Fourier transform of
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g(r)). As seen in Figure 5 the structure factor between the segmental and core particle are quite
distinct. Of particular importance is S(q) in the limit where the wave vector q goes to zero. Specifically,
we have S(0) = ρkTκT at equilibrium, where ρ is the segmental density and κT is the isothermal
compressibility defined as κT = − 1

V

(
∂V
∂P

)
T

. The segmental packing for polymer melts result in values

of S(0) that are small in comparison to hard particles, but the core particles and, by extension of the
above discussion, the polymer center of mass, exhibit anomalous small density fluctuations, a feature
known as “hyperuniformity” [71,72]. This large suppression of density fluctuations in these floppy
molecules is associated with the localization of the core particle within the polymeric structure and
renders branched polymers as candidates for hyperuniform materials [70,73]. These results illustrate
the importance of understanding molecular packing in material properties.

Figure 4. Comparison of the radial distribution function g(r) of the polymer center-of-mass
(black continuous line) and the core particle (red dashed line) for polymers having molecular mass,
Mw = 81. Results for different functionalities and the g(r) for the polymer center of mass of polymers
having Mw = 321 (black dotted line) are also presented. The highlighted regions illustrate the emergent
particle-like character of the polymer.
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Figure 5. Total static structure factor S(q) (continuous line) and partial structure factor of star polymer
melts. The relation between the S(0) = ρ kBT κT for S(q) and a schematic of the packing for star
polymers are also shown, Reproduced with permission from [73]. Copyright American Physical
Society, 2018.

These structural correlations suggest that polymers as a whole can be viewed as “soft” particles
having a variable degree of overlap with neighboring polymers, depending on molecular topology,
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stiffness, etc. [65,74–78] This coarse-grained perspective suggests that it is possible to develop models
for polymer transport in the melt that do not rely on specific molecular topology, giving hope for the
development of a unifying perspective of polymer melt dynamics that is agnostic regarding the role
polymer topology in the process of molecular diffusion. Treating polymers as “soft” particles is an old
idea, for example Flory and Krigbaum [79] modeled polymers in solution by a mean field Gaussian
segmental density cloud. Gobush et al. [80] generalized this picture to more faithfully reflect the
average anisotropic shape of flexible polymers. The Gaussian segmental cloud description of polymers
has recently reemerged in coarse-graining studies of the thermodynamic and dynamic properties of
polymer melts [65,74–78] .

3.4. Application of Stokes-Einstein and Fractional Stokes Einstein Relations to Polymer Melts

There is a long history of treating molecular diffusion in liquids through the Stoke-Einstein
fluctuation-dissipation relation between D, thermal energy kBT, the fluid viscosity η, and the
hydrodynamic radius, Rh. While Rh is normally measured in solution, it is certainly possible to
measure the tracer diffusion coefficient D of polymers in the melt [81–84] and the determination of D
in the melt is particularly natural for molecular dynamics simulations.

Now, if we assume and take η ∼ R2
g ∼ Mw, in accord with Rouse model and experimental

reports, then in the view of approximately scaling Rh ∼ Rg for linear flexible polymers, we may
expect D to scale as D ∼ kBT/R3

h for linear chains; we note that above calculations are approximate,
since Rh/Rg reaches a plateau for Mw � Me [13,38]. Despite the shortcomings of the Rouse model,
recent simulations by Xu et al. [85] and experiment seem to support the scaling η ∼ R2

g for star
polymers so that an inverse scaling of D with Rg with a power near −3 is also plausible for branched
polymers. We previously found this scaling to be a good approximation for linear and branched
polymer unentangled polymer melts. However, Martin and coworkers [86,87] previously suggested
that this scaling should have a somewhat modified form, D ∼ kBT/R2.7

h for randomly branched
polymers. In the limit of an extremely high degree of branching, where the polymers become ball-like,
we must recover Stokes law, D ∼ kBT/Rh, so a progressive reduction in the magnitude of the scaling
exponent can be expected with increased branching density. In particular, star polymers have been
shown to exhibit a transition to particle like behavior in the limit of many arms, consistent with the
observation of the Stokes-Einstein scaling, D ∼ kBT/Rh, for a large number of arms f [20,88,89].
We observed a trend in this direction in our previous work, i.e., D ∼ R−λ

h for a wide range of
unentangled polymers from linear chains, stars, and unknotted ring polymers. Interestingly, we find
the exponent λ has values of λ ≈ 2.7 for lightly branched polymers [38], according with the estimation
of Martin and coworkers for concentrated randomly branched polymers formed by cross-linking low
molecular mass polymers [86,87].

This scaling of D with polymer size has also been rationalized by Wyart and DeGennes [90],
and others following them [91–94], as arising from the particles “sensing” a local viscosity distinct from
the macroscopic viscosity. These observations again suggest that we the consider diffusion of polymers
in the melt as being similar in a coarse-grained sense to a tracer particle diffusion of particles having
dimensions a comparable to the surrounding polymers. Consistent with this picture, we previously
showed that the the λ = 3 for linear polymer chains could be recovered from simulations of spheres
having a size equal to the chain Rg and identifying the spheres with a typical tracer “particle”,
supporting this physical picture of the origin of λ [38]. However, our previous study [70] was restricted
to unentangled polymers, and it is natural to extend our calculations to entangled polymers.

The basic premise of our treatment of the entangled regime regime is based on the general
tendency of soft sphere fluids to form glass-forming liquids at high concentrations. Once the
polymers are considered to be soft spheres (or ellipsoids), it is a natural proposition to consider
entanglement to correspond to a type of entropically driven glass-formation [54,63,70,95]. There is
direct evidence for dynamic heterogeneity in entangled polymer melts evidenced in recent polymer
tracking measurements [96]. The role of molecular shape in the anisotropy in the case of melts
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of entanglement of linear polymers can also be expected to be important and it was previously
suggested that these materials should form “nematic glasses” with an Onsager condition describing the
intermolecular coupling, leading to a packing length criterion for the critical entanglement molecular
mass, Mc [63].

We present our results for D as a function of Mw in Figure 6. For linear chains, we clearly obtain
a crossover from an unentangled to an entangled regime at Mw ≈ 85 = Me, as found in previous
work [40]. In the entangled regime, D scales approximately as D ∼ M−2

w , which is consistent with
experimental observations [97]. For highly branched polymers, i.e., f = 8 and 16, we find that D can
be better described by an exponential function rather than a power-law function. On the other hand,
it has been observed previously that the viscosity of star polymer melts scales exponentially with arm
mass, i.e., η ∼ exp (M/Me), over a wide range of functionalities, 2 < f < 33 [89]. This scaling was
rationalized by de Gennes as arising from arm retraction mechanism of the stars. In particular, it was
argued that in order for the core particle of the star to relax it must to wait for the arms to relax through
retraction several times. Several intuition-based modeling studies have been made to adjust the star
arm-retraction model to better fit experimental observations. We next develop a conceptually different
model of the melt dynamics of stars.

Figure 6. Self-diffusion coefficient D of the polymer center of mass as a function of the molecular mass,
Mw, at temperature T = 0.75. The highlighted region outlines the unentangled regime for linear chains.
The dashed lines are guides for the eye and the dot-dashed lines are fits to an exponential relation,
D = α exp(−βMw), where α and β are fitting parameters.

Specifically, we start from a consideration of D as a function of Rh. In the unentangled regime
D ∼ R−λ

h , where λ ≈ 2.7 was found to be a satisfactory description for linear chains and low f stars in
a previous study [38]. We assume that in the entangled regime there is dynamic cluster formation, as in
of glass-forming liquids, persisting on sufficiently long time scales and to dominate the stress relaxation
in the fluid [95]. This physical picture of “entanglement” naturally leads us to expect a “decoupling”
or “fractional Stokes-Einstein relation” between D and η as often found in glass-forming liquids,
i.e., D ∼ η−δ, where δ < 1 [95]. Data summarized by Wang et al. [98] indicates that δ is about
0.71 for a number of different entangled polymer melts so there is clear evidence consistent with
entanglement giving rise to “decoupling” relation between D and η, a basic feature of glass-forming
liquids. This view of entanglement is further supported by other evidence such a stretched exponential
relaxation, aging and many other established features of glass-forming liquids [54].

If a transition to heterogeneous polymer dynamics on the scale of Rg underlies the entanglement
phenomenon in polymer melts, then we would expect a transition between η ∼ Rλ

h to η ∼ Rλ/δ
h as

the polymer enters the dynamically heterogeneous melt regime. We indeed obtain D ∼ R−λ/δ
h in

the entangled polymer melt regime, as anticipated. In particular, δ in our simulations is found to be
about δ ≈ 2/3; see Figure 6. This estimate of the decoupling exponent δ is typical of glass-forming
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liquids where this type of fractional power-law relating η and D is referred to as the “fractional Stokes
Einstein relation” [99]. Since Rh ∼ Mµ

w with µ ≈ 0.485 for linear chains, then we get D ∼ R−λ
h ∼

M−λµ
w ∼ M−2.1

w , according with experimental observations [97] of the mass scaling exponent of D in
the entangled regime D ∼ M−2.3

w [100]. Similar results are obtained from f = 4 stars, but for highly
branched stars we find that the M variation of D switches to an exponential form, D ∼ exp (−Rh),
that is more similar to an exponential Mw dependence, as noted above. Evidently, some other factor
must be important for understanding the dynamics of branched polymers.

We take the view that the observed exponential dependence of D on the polymer mass in stars is
a reminder that the polymer topology also alters the thermodynamics of polymer melts. Polymers are
molecules rather than macroscopic particles where hydrodynamics obviously applies. In particular,
the activation energy governing D and η of polymer melts, at least at high T, when the glassy
dynamics is not prevalent, is dominated by the cohesive energy density of the fluid [13,101]. A change
in the polymer topology can be expected to alter the cohesive interaction strength, and thus the
activation energy for transport properties, an aspect of fluid dynamics that is not captured by a purely
hydrodynamic description. We then interpret the exponential variation of D to naturally arise from
a change of activation energy due to a change in molecular topology.

We start our consideration by recognizing that recent studies of transport of particles in
concentrated polymer fluids have indicated an apparent D of the tracer particles that exhibits
an apparently universal scaling, D ∼ exp (−Ea/kBT), where the activation energy Ea scales as a power
of the particle radius, Ea ∼ Rθ

h, where the power θ is often found to be empirically near one [102].
Based on the arguments presented in the discussion above, we consider a hybrid expression for D that
addresses both hydrodynamic and thermodynamic effects of the altering chain topology on D,

D = α R−λ/δ
h exp (−Rh/γ) . (2)

The prefactor α is a fitting parameter that appears to obey the scaling relation of α ≈ f−5/2 for
star polymers when M < Mc; for linear polymers an additional factor is necessary, i.e., α ≈ 1

24 f−5/2

for unentangled and α ≈ 5
12 f−5/2. The parameter γ describes a crossover from “soft” linear chains to

particle-like highly branched stars in the limit, f → ∞. For highly branched stars, which exhibit
particle-like characteristics, γ is found to be of the order of unity. The decoupling exponent δ

represents the crossover from unentagled to the entangled regimes, as described above. Specifically,
for unentangled systems we have δ = 1 and while because of “decoupling” we have δ < 1 for
entangled melts. The values for these parameters and exponents for each case are presented in Table 1
and the quality of agreement between the calculated values of D and the proposed function form
based on Rh in Equation (2) is presented in Figure 7.

Table 1. List of parameters of Equation (2) for polymers of varying functionality f and arm length M.

f M α γ δ λ

2 < Me/2 1
24 f−5/2 ∞ 1 2.88

2 > Me/2 5
12 f−5/2 ∞ 2/3 2.88

4 < Me
1
6 f−5/2 ∞ 1 2.42

4 & Me 0.5 2.2 2/3 2.42
8 − 1

6 f−5/2 1.60 1 −0.46
16 − 1

6 f−5/2 1.95 1 −1.25
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Figure 7. Self-diffusion coefficient of the polymer center of mass, D, as a function of a function form
based on hydrodynamic radius, Rh. Results for entangled and non-entangled polymers as well as
polymers of different functionality, f are also presented. The values of the parameters α, λ, γ, and δ.
The symbols are the same as in Figure 6. The dashed line is a guide for the eye.

4. Conclusions

In summary, we investigated the packing and conformational properties of entangled polymers
and their dynamics with the use of a coarse-grained polymer model. In particular, we calculated the
self-diffusion coefficient of the polymer center of mass, D, and the hydrodynamic radius Rh for linear
chain in unentangled and entangled regimes, as well as, regular stars at equivalent molecular masses
in the melt state. We utilized a path-integration algorithm, ZENO, to calculate the hydrodynamic
radius Rh of the polymers in the melt state. We find that we can rationalize the dependence of D
based on the polymer Rh by viewing polymers in the melt as being similar to “particles” whose
degree of “softness” is influenced by their molecular topology. Specifically, we develop an empirical
relation for the self-diffusion coefficient of the polymer center of mass for polymer in the melt state,
which describes D in both the entangled and unentangled regimes. This relation also accords with
D data for high branched star polymers. Our approach provide a provides a tentative unifying
framework that is agnostic to the polymer topology (e.g., linear chain, star, bottlebrush, and ring),
thus offering a practical approach for describing diffusion and viscosity of polymer melts having
different molecular architectures.
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