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Interplay of weak interactions in the atom-by-atom
condensation of xenon within quantum boxes
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Condensation processes are of key importance in nature and play a fundamental role in

chemistry and physics. Owing to size effects at the nanoscale, it is conceptually desired to

experimentally probe the dependence of condensate structure on the number of constituents

one by one. Here we present an approach to study a condensation process atom-by-atom

with the scanning tunnelling microscope, which provides a direct real-space access with

atomic precision to the aggregates formed in atomically defined ‘quantum boxes’. Our

analysis reveals the subtle interplay of competing directional and nondirectional interactions

in the emergence of structure and provides unprecedented input for the structural compar-

ison with quantum mechanical models. This approach focuses on—but is not limited to—the

model case of xenon condensation and goes significantly beyond the well-established

statistical size analysis of clusters in atomic or molecular beams by mass spectrometry.
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C
ondensation is a fundamental process, and the interactions
involved in the aggregation of atoms or molecules govern
the structure of condensates1,2. Moreover, at the nanoscale

level the properties of a condensate depend on its size, structure
and bonding between the atoms or molecules. Although the
analysis of noble gas condensates of different sizes, interacting by
isotropic van der Waals forces, has provided valuable insight into
the mechanisms of particle clustering3–6, the condensation in a
real environment usually proceeds under the competing influence
of weak forces.

In order to take an interplay of such forces into account in a
model condensation process, we chose a nanopatterned vacuum/
solid interface, which not only provides the competition between
interparticle forces and interactions with a surface7–10 but may
also give rise to a more complex interplay of forces11–13, which, as
we observe, governs the emergence of structural patterns. We
demonstrate how the atom-by-atom condensation of noble gas
atoms proceeds under the influence of competing interactions.
This is conveniently probed within the atomically defined cavities
of a supramolecular network, generated on the metal substrate.
This approach is based on the ability of such on-surface networks
to trap different adsorbates and thus to create host–guest
systems14–20.

Results
Design of the host–guest system. We employ a highly ordered
Cu-coordinated, triply dehydrogenated 4,9-diaminoperylene
quinone-3,10-diimine (3deh-DPDI) porous network grown on
Cu(111)21,22 as a template. The electronic Shockley surface state
of the underlying substrate is confined in the pores23, resulting in
a single quantum well state per pore with the spatial |C|2

maximum in its centre (Fig. 1a–c) and thus in a specific
electronic environment in each pore. As a model condensate we
choose Xe atoms, which provide an ideal probe of the weak
interactions because of their closed-shell electronic configuration.

Repositioning sequences of single Xe atoms. Upon deposition of
Xe unto the structured surface, the pores of the network were
found to host different numbers of Xe atoms, as revealed in the
scanning tunnelling microscopy (STM) image shown in Fig. 1d.
Notably, no single Xe atom was observed to adsorb spontaneously
in the centre of a pore. To investigate whether it was possible to
place a single Xe atom at this position, we performed reposi-
tioning sequences as displayed in Fig. 1e–g. In each sequence the
tip was first decorated with a single Xe atom and then placed
above the pore centre where its deposition was performed.
Despite numerous attempts to place the Xe atom in the pore
centre, none was successful. Each attempt resulted in the diffusion
of the Xe atom to the border of the pore (Fig. 1f) or even in its
displacement to a neighbouring pore (Fig. 1g). We assign this
behaviour to the Pauli repulsion9 between the Xe atoms and the
quantum well ground state of the pore. This contrasts with the
observation made for open-shell Fe atoms and the p-acceptor CO
molecules adsorbed in the pores of supramolecular networks
grown on Cu(111), which experienced an attractive interaction
with the quantum well state24,25.

Spontaneously occurring Xe condensates. The spontaneously
occurring occupancies ranging from 0 to 12 Xe atoms (denoted
hereafter as occ-0—occ-12) were found across the pores of the
network. Figure 2 presents the various spatial arrangements of Xe
atoms, with two different forms of aggregation being observed for
occ-2, occ-5 and occ-7. The histogram of pore occupancy (Fig. 2)
reveals the presence of favoured occupancies, which may be
related to particularly stable condensates. The most favoured

occupancies are occ-1 and occ-12, whereas condensates with
greater occupancies (occ-6—occ-11) were less frequently
observed. We note that occ-3 and occ-4 occur more frequently
than occ-2, and that there is a slight preference for occ-8,
indicating an increased stability of multiples of a tetrameric
arrangement. In contrast, the occupancy of Fe adatoms inside
pores of an organic on-surface network mentioned above was
found to correspond to a Poisson distribution24, further
accentuating the fundamental differences between (open shell)
metal atom condensation and noble gas condensation in
somewhat related porous confinements, both of which exhibit a
quantum well state (cf. Supplementary Fig. 1).

Discussion
For an analysis of the self-assembled patterns of Xe atoms within
the pores, a closer inspection of the metal–organic surface
structure is essential. Each pore of the network possesses
threefold symmetry because of the inequivalence of its nodes.
The node labelled A in the schematic representation of an occ-12
pore (Fig. 2) is centred above a hollow surface site, whereas the
node B is centred above an on-top site of a surface atom22. Three
different adsorption sites of Xe are identified: one in the inner
pore (which is only occupied for occ-7b and larger) and two at
the pore boundary either near the organic network molecule or in
the vicinity of node A. The sites next to node B are never
occupied in the occ-12 condensates, and therefore the Xe
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Figure 1 | Repulsive interaction between Xe and the electronic quantum

well state. (a) STM image of the vacant network and (b) simultaneously

acquired dI/dV map taken at the energy of the confined state: � 200 meV

(the bright colour reflects a local density of states maximum). (c) The

cross-section taken along the red line showing the spatial distribution of the

confined state. (d) STM image of Xe adsorbed in some pores after exposure

to 120 L (Langmuir) of Xe at 9 K: a pore hosting a single Xe atom (orange

arrow), a partially filled pore (violet arrow) and a fully filled pore (dark-blue

arrow). (e–g) Subsequent STM images acquired during a sequence of

Xe-repositioning experiments targeted at the addition of Xe atoms one by

one to the same pore, demonstrating the repulsion between Xe and the

confined state. The Xe-decorated tip was placed above the pore centre

during each attempt to deposit Xe (yellow cross); (f) the first attempt of the

shown sequence resulted in the migration of a Xe atom (green dot) to the

pore boundary, whereas (g) the second in the diffusion of one of the Xe

atoms to an unoccupied corner of the pore (green arrow) and in the jump of

the other Xe atom to a neighbouring pore (blue dashed arrow). The black

dot in e marks Xe adsorbed on the node of the network (Supplementary

Fig. 2). All scale bars: 1 nm.
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adsorption reflects the threefold rotational symmetry of the pores
as indicated by the three yellow lines in the schematic
occ-12 model in Fig. 2. In agreement with this, each occ-12
condensate consists of three tetramers, with Xe atoms adsorbed in
on-top sites of the Cu(111) atomic lattice in a (O3�O3)R30�
overlayer structure, in accordance with previous studies of Xe on
Cu(111)26,27.

For the classification of the structural arrangements of the
occ-n inside the pores, we initially focus on two aspects: first,
whether a certain n-mer exhibits a subset of the adsorption sites
observed for the occ-12, meaning that the (O3�O3)R30�
structure, exhibited by each tetramer of occ-12, is preserved,
and second, whether the considered occ-n can be described either
as occ-(n-1) with one additional Xe atom, or as superposition of

condensate structures observed for lower occupancies. Focusing
on the first aspect, we find that only condensates occ-2b, occ-5a,
occ-7a, occ-8, occ-10 and occ-11 are always congruent with the
registry of the occ-12. The other condensates (partially) violate
the registry of the dodecamer (Figs 2 and 3, Table 1), implying
that the interaction of a single Xe atom with the backbone of the
organic network is sufficient to cause the Xe atom to occupy a
slightly less favourable adsorption site. Moreover, the modified
quantum well state may also have an impact on the favourability
of the adsorption sites of Xe atoms. Furthermore, the observed
registry violations retain or decrease the Xe–Xe distance,
indicating an equal or increased Xe–Xe condensation energy as
compared with the corresponding positions identified for occ-12
(Figs 2 and 3).
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Figure 2 | Atom-by-atom self-assembly of Xe within quantum boxes influenced by the interplay of directional weak interactions. Pores with

different numbers of adsorbed Xe atoms are indicated by the numbers placed in the left upper corner of each STM image (2.4 nm� 2.4 nm);

letters are used to denominate condensates with the same number of Xe atoms but having different arrangements. As a guide to the eye, a colour

code that defines the adsorption position and the number of nearest neighbours is used and is defined in the legend. In the bottom left corner,

the histogram of the occupancy of the pores obtained from one sample exposed to 120 L of Xe at 9 K, resulting in a coverage Y¼0.178 (cf. Supplementary

Note 1), is displayed (2,067 pores have been analysed).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms7071 ARTICLE

NATURE COMMUNICATIONS | 6:6071 | DOI: 10.1038/ncomms7071 | www.nature.com/naturecommunications 3

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


With the second aspect brought into focus, namely the
relationship between occ-n and its predecessors in the hierarchy,
our analysis shows that only condensates occ-2, occ-5a, occ-9,
occ-11 and occ-12 feature the same arrangement of adsorption
sites as their corresponding occ-(n-1) condensates. In fact, they
derive from their predecessor by having one additional adsorp-
tion site occupied. Only condensates occ-2a, occ-4 and occ-7a
can be described by a superposition of condensates observed at
lower occupancies. Moreover, all observed condensates were
found to be stable with the exception of occ-5b in which five Xe
atoms are sharing 12 adsorption sites along the rim of the pore
and exhibit rapid site exchange (Fig. 2; the number of Xe atoms in
this condensate was identified from Xe-repositioning sequences).

In summary, the atom-by-atom condensation of Xe in the
pores of the Cu-coordinated 3deh-DPDI network results in a
wide range of occupancies (occ-1—occ-12), which do not follow a
single set of ‘hierarchic filling rules’25, but adapt their structures
in the different regimes. This work demonstrates that the
confinement of adsorbates in the pores of a metal–organic on-
surface network provides the opportunity to study condensation
under the influence of the subtle interplay of weak forces with
single-atom precision. The experimental resolution providing the
real-space structure of atomic condensates adsorbed on an
atomically defined patterned surface provides the unique
opportunity to compare experimental data and theoretical

models. We note that our approach can benefit from the
comparison of the condensation behaviour in differently sized
pores, as owing to that, the interference of weak interactions
involved can be tuned, which is expected to be stronger/weaker
with decreasing/increasing pore size.

Methods
Sample preparation. The samples were prepared and investigated in an ultrahigh
vacuum system with a base pressure of 5� 10� 11 mbar. The Cu(111) crystal
(MaTecK GmbH) was prepared by cycles of Arþ sputtering at E¼ 1,000 eV per-
formed at room temperature followed by annealing at 800 K. The DPDI molecules
were deposited with the use of nine-cell commercial evaporator (Kentax, GmbH,
Germany) on the Cu(111) by sublimation at B240 �C. The rate was controlled
before deposition by a quartz crystal microbalance. After deposition, the sample
was annealed to 300 �C in order to convert DPDI into 3deh-DPDI, which creates
the Cu-coordinated network21. Xe of purity 99.99% was dosed to the sample placed
in the STM (Omicron Nanotechnology GmbH) operated at 4.2 K, with the
cryoshields open and the leak valve being in line-of-sight with the sample.
Supplementary Fig. 2 presents STM data acquired after exposure of the Cu-
coordinated 3deh-DPDI network to 20 L of Xe performed at a pressure equal to
1.3� 10� 7 mbar for 200 s causing the increase in the sample temperature to 8 K.
Xe was found to be adsorbed in the pores as well as in the nodes of the network.
Figure 1d and the histogram in Fig. 2 present data after a 120-L exposure at the
same pressure for 1,200 s resulting in the increase in the sample temperature to 9 K.
Only Xe adsorbed in the pores was found.

Repositioning sequences of single Xe atoms. All the self-assembled con-
densates, except of occ-2b, were reproduced with the use of repositioning
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Figure 3 | Registry violation observed in Xe self-assembly within quantum boxes. Tentative models of the occ-n exhibiting registry violation (the

occ-n labelling is consistent with the one presented in Fig. 2. A colour code is defined in the legend). In case of occ-1 the single Xe atom was found

to be adsorbed near both types of nodes with a slight preference for the node of type B (57%; Table 1). As in the proximity of this type of node no

on-top site is available, the adsorption site of a Xe atom in this case is shifted to the hollow site. The same phenomenon is observed for occ-2a.

Important to note is that the distance of B3 Å between Xe and hydrogen of 3deh-DPDI is the same in both cases (adsorption near node A and near

node B), implying that the proximity with the backbone can modify the Xe adsorption site. We tentatively assign this preference of Xe to adsorb

in the vicinity of node B to be caused by the inequality of the nodes, which leads to slightly different strengths of the Xe–H interaction. In case of occ-3,

occ-6, occ-7b and occ-9, a registry violation is always observed for one, three or four Xe atoms (cf. Fig. 2, Table 1).
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sequences, by taking away Xe atoms from the 12-fold occupied pore as these are
represented in Fig. 2. The difficulty in reproducing occ-2b can be connected with
increased stability of occ-3, as revealed by the histogram of pore occupancy (Fig. 2).
To perform Xe manipulations in a reproducible manner, a home-written Labview
software compatible with the Nanonis SPM control system (Specs GmbH) was
used. To pick up a single Xe atom, in the first step the sample bias was set to
� 2 mV and the tip was moved towards the atom until a not-continuous change in
the resistance of the tunnelling junction occurred. Then the tip was retracted.
To place a Xe atom in a desired place, the sample bias was set to 800 mV and the
procedure was repeated.

STM measurements and data analysis. STM measurements were performed in
the constant current mode with Pt–Ir tips (90% Pt, 10% Ir), prepared by
mechanical cutting followed by sputtering and controlled indentation in the bare
Cu(111). The STM images shown in Fig. 1a,b were acquired with such prepared
metallic tip, whereas the others with additionally Xe-decorated tips, which allowed
achieving atomic resolution on Xe condensates (Supplementary Fig. 3). The STM
image with the simultaneously acquired dI/dV map, shown in Fig. 1a,b, was
measured with � 200 mV/200 pA and with a lock-in frequency of 512 Hz and
a zero-to-peak value of 8 mV. To avoid modification of the condensates via
interaction with the tip, the sample bias was selected within a range of � 10
to � 80 mV, whereas the tunnelling current was set within the range 5–50 pA.
The exact tunnelling parameters of STM images presented in the main text are as
follows: � 10 mV/10 pA (Fig. 2, occ-3, occ-5b, occ-9, occ-10), � 10 mV/20 pA
(Fig. 2, occ-11), � 10 mV/50 pA (Fig. 2, occ-1, occ-8, occ-12), � 20 mV/5 pA
(Fig. 2, occ-7b), � 20 mV/10 pA (Fig. 2, occ-2a), � 50 mV/5 pA (Fig. 2, occ-6),

� 50 mV/10 pA (Figs 1d and 2, occ-2b, occ-4, occ-7a), � 80 mV/5 pA (Fig. 2,
occ-5a), � 200 mV/80 pA (Fig. 1e) and � 500 mV/50 pA (Fig. 1f,g). The STM data
were processed with the WSxM software28. For better comparability of the data, the
colour histograms have been adjusted. Low-pass filtering was used for noise
reduction.
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17. Stöhr, M., Wahl, M., Spillmann, H., Gade, L. H. & Jung, T. A. Lateral
manipulation for the positioning of molecular guests within the confinements
of a highly stable self-assembled organic surface network. Small 3, 1336–1340
(2007).
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Table 1 | Condensation regimes of Xe adsorbed in the pores
of the Cu-coordinated 3deh-DPDI network.

The column ‘occ-n’ schematically represents each condensate; the blue lines indicate the
threefold symmetry of the pore; marks a Xe atom adsorbed in an on-top site; marks a Xe
atom not adsorbed in an on-top site; in case two different structures occur for the same
occupancy, the occurrence of each is stated in percent. The signs and indicate, if the
condition stated in the column caption is fulfilled. The column ‘Registry preservation?’ lists
whether Xe atoms of certain occ-n preserve the (O3�O3)R30� structure exhibited by each
tetramer of occ-12. If only a part of the observed occ-n of concern preserves the registry, their
occurrence in percent is given; red numbers in brackets indicate the number of Xe atoms, which
are not adsorbed in on-top sites. The column ‘occ-(n-1)þXe or superposition?’ relates the
structure of each condensate to its predecessors in the hierarchy by taking into consideration
the registry of the underlying Cu(111); *marks an occ-(n-1) without registry violation (for
example, occ-2b can be described as the sum of one Xe adsorbed near node A, that is, occ-1
without registry violation, and one Xe atom adsorbed in on-top site); indicates Xe atoms
arranged in a trimer; indicates Xe atoms arranged in a tetramer. The column ‘Xe–Xe #’
lists the number of interactions between two Xe atoms independently of the interatomic
distances.
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