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Summary

Non-tuberculous mycobacteria (NTM) can cause vari-
ous respiratory diseases and even death in severe
cases, and its incidence has increased rapidly world-
wide. To date, it’s difficult to use routine diagnostic
methods and strain identification to precisely diag-
nose various types of NTM infections. We combined
systematic comparative genomics with machine
learning to select new diagnostic markers for

precisely identifying five common pathogenic NTMs
(Mycobacterium kansasii, Mycobacterium avium,
Mycobacterium intracellular, Mycobacterium che-
lonae, Mycobacterium abscessus). A panel including
six genes and two SNPs (nikA, benM, codA, pfkA2,
mpr, yjcH, rrl C2638T, rrl A1173G) was selected to
simultaneously identify the five NTMs with high
accuracy (> 90%). Notably, the panel only containing
the six genes also showed a good classification
effect (accuracy > 90%). Additionally, the two panels
could precisely differentiate the five NTMs from M.
tuberculosis (accuracy > 99%). We also revealed
some new marker genes/SNPs/combinations to
accurately discriminate any one of the five NTMs
separately, which provided the possibility to diag-
nose one certain NTM infection precisely. Our
research not only reveals novel promising diagnostic
markers to promote the development of precision
diagnosis in NTM infectious, but also provides an
insight into precisely identifying various genetically
close pathogens through comparative genomics and
machine learning.

Introduction

Non-tuberculous mycobacteria (NTM) is a group of atypi-
cal mycobacteria other than Mycobacterium tuberculosis
(Mtb) complex and Mycobacterium leprae (Johnson and
Odell, 2014). They are widespread in the environment,
and about one-third of them can infect people, mostly
human lung tissue, leading to various respiratory dis-
eases and even death in severe cases (Winthrop et al.,
2010; Johnson and Odell, 2014). In recent years, the
incidence of NTM lung disease has increased rapidly
worldwide (Reves and Schluger, 2014; Wu et al., 2014)).
From 2008 to 2015, the annual incidence of NTM lung
disease increased from 3.13 to 4.73 per 100 000 per-
sons, and the annual prevalence increased from 6.78 to
11.70 per 100 000 persons (Winthrop et al., 2020). More
seriously, many studies have shown that NTM could be
transmitted from person to person, and its outbreaks
have been reported in many hospitals (Aitken et al.,
2012; Bryant et al., 2013).
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At present, it is difficult to use routine diagnostic meth-
ods (such as clinical symptoms, imaging characteristics,
and biochemical indicators) to precisely diagnose various
types of NTM clinical infections (Kwon and Koh, 2016).
For one thing, the clinical symptoms, imaging character-
istics, and biochemical indicators of most NTM infectious
are usually similar to those of tuberculosis (Kwon and
Koh, 2016). About 30% of NTM patients have been mis-
diagnosed and treated as multidrug-resistant tuberculo-
sis at the beginning of treatment (Shahraki et al., 2015).
For another thing, there are many types of pathogenic
NTMs (Mycobacterium avium, Mycobacterium intracellu-
lare, Mycobacterium kansasii, Mycobacterium absces-
sus, Mycobacterium chelonei, etc.), and related
infectious diseases usually show similar clinical symp-
toms, imaging characteristics, and biochemical indicators
(Griffith and Aksamit, 2016). These led to a high misdi-
agnosis rate for clinical NTM infections, further resulting
in more serious clinical symptoms, prolonged course and
even death (Gupta et al., 2020) since the treatments of
TB and various NTM infections are different due to differ-
ent drug-resistant spectrums (Gagneux, 2018).
On the other hand, accurate strain identification can

promote the precision diagnosis of various types of NTM
infections, but traditional strain identification technology
is difficult to achieve the goal since only several NTM
isolates can be identified through colonial morphology
so far. Rapid-growing genetic testing has elevated the
identification accuracy of various types of NTM isolates
to some extent, with some common target genes such
as 16S rRNA, rpoB, hsp65 and gyrA/gyrB (Chimara
et al., 2008; Unubol et al., 2019). However, due to high
homology among various species of NTMs, the genetic
testing results for different target genes are often incon-
sistent (Kim et al., 2018). Therefore, accurate strain
identification of multiple types of NTMs and Mtb is still
lacking.
Recent rapid development in next-generation sequenc-

ing technology, genomics, bioinformatics and big data
analysis offers an opportunity to achieve the goal of
accurate molecular typing of various microorganisms. To
date, related studies about NTM only focussed on com-
parative genomic analyses within the same NTM spe-
cies, which mainly revealed some genomic features
(evolution, population structure, adaptation and virulence
factors, etc.) in one certain NTM species like Mycobac-
terium avium/Mycobacterium abscessus (Sapriel et al.,
2016; Yano et al., 2017). Thus, it is essential to search
for the diagnostic markers to precisely identify various
species of pathogenic NTM isolates through cross-
species comparative genomic studies.
In this study, we conducted systematic comparative

genomic and machine learning analyses (including pan-
genome, random forest model and ensemble

classification analyses) for five common pathogenic
NTM species (Mycobacterium kansasii (Mka), Mycobac-
terium avium (Mav), Mycobacterium intracellular (Min),
Mycobacterium chelonae (Mch), Mycobacterium absces-
sus (Mab)), which accounted for a considerable propor-
tion (> 80%) of clinical NTM infections (Stacey et al.,
2019). Pan-genome and comparative genomic analyses
of 123 NTM complete genomes or assembled genomes
at chromosome level (discovery set) were first performed
to search for the specific core genes (SCGs) and speci-
fic core SNPs (SCSNPs) of the five NTMs. v2 test and
random forest model were then used to explore the mar-
ker genes/SNPs and the optimized combinations for dis-
criminating any of the five NTMs through a larger
validation set. Finally, an ensemble classification algo-
rithm was performed to search for the panels that could
simultaneously identify the five NTMs.

Results

Genomic features of five common pathogenic NTM
species

One hundred and twenty-three complete genomes/
assembled genomes at chromosome level from five
common pathogenic NTM species were included in this
study (7 Mka strains, 34 Mav strains, 30 Min strains, 8
Mch strains and 44 Mab strains) (Table S1). Among
them, Mka, Mav and Min strains belong to slow-growing
NTMs, in which Mav and Min are the members of
Mycobacterium avium-intracellulare complex; Mch and
Mab strains belong to rapid-growing NTM species and
are the members of Mycobacterium chelonae-abscessus
complex. Genome features are shown in Table 1. Com-
pared with Mtb (~ 4.4 Mb; ~ 4100), the five NTMs pos-
sess larger genomic size (> 5 Mb) and more gene
number (> 4700). Mka has the largest genome and the
most genes (6.5 Mb; ~ 5800 genes), followed by Min
(5.8 Mb; ~ 5400 genes). The other three NTM species
contain a ~ 5 Mb genome and 4700–5000 genes. There
is no obvious difference between rapid-growing and
slow-growing NTM species in genome size and gene
number. Besides, the GC content of three slow-growing
NTM species (> 66%) is higher than that of Mtb
(~ 65%), whereas the GC content of rapid-growing ones
(~ 64%) is lower than that of Mtb.
We then performed phylogenetic analysis for the five

NTMs (123) and Mtb strains (40) (Fig. 1). Figure 1
showed that different species of NTM isolates were clus-
tered in different clades, which were obviously differenti-
ated from the Mtb clade. Here the strains from M. avium-
intracellulare complex (Mav and Min strains) and M.
chelonae-abscessus complex (Mch and Mab strains) are
clustered together compose one large clade differenti-
ated from Mka.
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These phylogenetic features agree with the results of
comparative genomics analysis: The same species/com-
plex/group of NTM isolates have higher ANIs and more
homologous genes than different ones (Table S2A–C).
The result of ANI analysis showed that the ANIs of the
same NTM species are ~ 99%; the ANI between Mav and
Min is ~ 86%; the ANI between Mab and Mch is ~ 83%.
The ANIs between Mka and M. avium-intracellulare/M.
chelonae-abscessus complexes are ~ 78% and ~ 70%,
respectively; the ANIs between slow-growing and rapid-
growing NTMs are 70–72% (Table S2A).
On the other hand, gene homology analysis

(Table S2B, C) showed that the same species of NTM
strains owned the highest homology (> 4000 homolo-
gous genes; > 89% of homologous gene ratios); same
complexes of NTMs (M. avium-intracellulare/M.
chelonae-abscessus) own higher homology (~ 4000
homologous genes, ~ 80% of homologous gene ratios)
than different ones (~ 2000 homologous genes, ~ 40%
of homologous gene ratios); same groups of NTMs
(slow-/rapid-growing NTMs) possessed more homolo-
gous genes (> 3200) and higher homologous gene ratios
(> 56%) than different ones (~ 2000 homologous genes,
~ 40% of homologous gene ratios). Incidentally, com-
pared with Mtb, slow-growing NTMs (> 2500 homolo-
gous genes; > 62% of homologous gene ratios) showed
higher homology than rapid-growing NTMs (~ 1700
homologous genes; ~ 43% of homologous gene ratios),
which is consistent with the ANI analysis (Table S2A).

Pan-genome and comparative genomic analyses
revealing specific core genes/SNPs (SCGs/SCSNPs) of
the five common pathogenic NTM species

To search for SCGs and SCSNPs of the five NTMs, we
adopted a pan-genome analysis strategy. Mtb strains

were also analysed as controls. We first obtained the
core genes of each NTM species by pan-genome analy-
sis (Fig. S1). There are 6490 orthologous genes in the
seven Mka strains including 5234 core genes (90.93%),
7925 orthologous genes in the 34 Mav strains including
3786 core genes (80.48%), 11 559 orthologous genes in
the 30 Min strains including 3881 core genes (71.79%),
7733 orthologous genes in the eight Mch strains includ-
ing 3565 core genes (72.61%), 12 472 orthologous
genes in the 44 Mab strains including 3699 core genes
(74.76%) and 4295 orthologous genes in the 40 Mtb
strains including 3810 core genes (93.43%) (Table 1). In
general, the percentage of core genes of NTM species
is less than that of Mtb, while the percentage of strain-
specific genes of NTM species is more than that of Mtb
(Table 1, Figs S2, S3). This is mainly due to the con-
served genome sequences (similarity >99%) of Mtb
strains (Jia et al., 2017).
We then conducted a comparative genomic analysis

to look for the SCGs of five species of NTM isolates,
which could discriminate any of the five NTMs and Mtb
strains. The number of SCGs varies among the five
NTM species: Mka strains possessed the most SCGs
(1136), followed by Min (264), Mch (169), Mab (140) and
Mav (92) (Fig. S1, Fig. 2).
On the other hand, we implemented the comparative

genomic analysis to reveal the SCSNPs, which could
discriminate one NTM species from the other four NTM
species and Mtb. We detected the SCSNPs using 1514
core genes shared in all the 123 NTM and 40 Mtb
strains (Fig. 2). Compared with reference genome (Mtb
H37Rv: NC_000962), Mka possesses the most SCSNPs
(55 858 SNPs on 913 genes), followed by Mav (20 860
SNPs on 679 genes), Min (16 256 SNPs on 590 genes),
Mab (1550 SNPs on 71 genes) and Mch (1451 SNPs on
70 genes) (Fig. S1).

Table 1. Genomic feature of the five common pathogenic NTM species.

Strain
number

Average
genome
size (Mb)

Average gene
number (CDS)

Average
GC content

Average core
gene number

Average
dispensable
gene number

Average
strain-specific
gene number

Slow-
growing
NTM

Mycobacterium
kansasii (Mka)

7 6.46 5756 66.01% 5234 (90.93%) 426 (7.40%) 96 (1.67%)

Mycobacterium
avium (Mav)

34 5.04 4704 69.18% 3786 (80.48%) 858 (18.24%) 60 (1.28%)

Mycobacterium
intracellulare
(Min)

30 5.79 5406 67.82% 3881 (71.79%) 1402 (25.93%) 123 (2.28%)

Rapid-
growing
NTM

Mycobacterium
chelonei (Mch)

8 5.04 4910 63.99% 3565 (72.61%) 1151 (23.44%) 194 (3.95%)

Mycobacterium
abscessus (Mab)

44 5.03 4948 64.16% 3699 (74.76%) 1170 (23.65%) 79 (1.60%)

Reference Mycobacterium
tuberculosis
(Mtb)

40 4.41 4078 65.60% 3810 (93.43%) 263 (6.45%) 5 (0.12%)
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Fig. 1. Phylogenetic analysis of 123 NTM and 40 Mtb strains with complete genomes. The five common pathogenic NTMs are shown in differ-
ent colours. The phylogenetic tree was constructed based on 289 751 core gene SNPs shared by these strains.
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Although the number of SCGs and SCSNPs may be
affected by the number of strains with complete gen-
ome sequences, they provide a reliable discovery set
for subsequent screening of identification markers
across NTM species by enlarging sample size. Inciden-
tally, the more SCGs and SCSNPs in Mka species indi-
cate the farther evolutionary distance from other NTM
species (Fig. 1).

From discovery set to validation set: screening potential
diagnostic markers to precisely identify any one of the
five NTM species

To obtain a large validation set, we downloaded all the
five NTM genome draft sequences from the NCBI SRA
database (https://trace.ncbi.nlm.nih.gov/Traces/sra/),
including 20 Mka, 159 Mav, 37 Min, 47 Mch and 285
Mab ones (Table S3). Genome sequences of 233 Mtb
strains were also included as controls (Table S4). We
first used v2 tests to obtain marker SCGs and SCSNPs
for identifying any of the five types of NTMs (p-value
<0.01): 349 Mka, 91 Mav, 263 Min, 95 Mch and 139
Mab SCGs; 146 Mka, 305 Mav, 21 Min, 8 Mch and 28
Mab SCSNPs (Fig. S1).
Random forest algorithm was then used to explore the

optimized gene/SNP combinations for identifying any of
the five NTM species based on the above marker SCGs/
SCSNPs. The results showed the optimized marker

gene combinations to discriminate any of the five NTM
species: two Mka marker genes (pfkA2 and
MKAN_11495), three Mav marker genes (nikA, ddpC,
and yejF), three Min marker genes (mnhF1, codA, and
dmlR), two Mch markers genes (yjcH and mpr) and five
Mab marker genes (benM, aqpZ, aldHT, osmX, and fsr)
(Fig. S1, Fig. 3, Table 2). The predictive ability of these
gene combinations was further assessed using the area
under the receiver operating characteristic curve
(AUROC, AUC), which presented excellent predictive
powers in the validating sets (AUC: 1.000 for Mka, 0.991
for Mav, 0.985 for Min, 0.955 for Mch and 0.952 for
Mab; Sensitivity: 1.000 for Mka, 0.987 for Mav, 0.973 for
Min, 0.957 for Mch and 0.909 for Mab; Specificity: 1.000
for Mka, 0.995 for Mav, 0.996 for Min, 0.952 for Mch and
0.996 for Mab) (Table 2). The predictive power of a sin-
gle marker gene was then analysed, which also showed
excellent predictive power (AUC > 0.95, Sensitivity
> 0.9, Specificity > 0.95, Table S5). Overall, both single
marker gene and marker gene combination could accu-
rately identify any of the five species of NTM strains. In
addition, these marker genes from the same combination
showed similar AUC, sensitivity, and specificity values
(Table S5).
By using random forest algorithm, we further screened

out the optimized marker SNP combinations to discrimi-
nate the five NTM species, including eight Mka marker
SNPs (rrl G377A, rrl C426T, rrl G2923A, rrl T3022C,
R1461 G2427C, Rv2808 A28C, Rv2808 A50C, Rv2808
A111G), 11 Mav marker SNPs (ino1 G832A, clpB
G2124C, rrl G447A, rrl T455A, rrl G2368T, rrl T3066A,
Rv1461 G2133A, acpM C177T, Rv2402 G570C, rpsK
C90G, pks13 G672C), six Min marker SNPs (rpoC
T1282A, rpoC C1283G, eccC5 G1908T, acpM C180G,
sdhA C348G, sdhA G394T), two Mch markers SNPs (rrl
C2638T, rrl G2654A) and two Mab marker SNPs (rrl
A1173G, aceE C867T) (Fig. S1, Fig. 3, Table 2). The
predictive abilities of the above marker SNP combina-
tions (Table 2) were then analysed (AUC: 0.975 for Mka,
0.942 for Mav, 0.837 for Min, 0.756 for Mch and 0.922
for Mab; Sensitivity: 0.950 for Mka, 0.887 for Mav, 0.676
for Min, 0.553 for Mch and 0.846 for Mab; Specificity:
1.000 for Mka, 0.992 for Mav, 0.998 for Min, 0.958 for
Mch and 0.996 for Mab; Fig. 3 and Table 2). We also
analysed the predictive power of single marker SNP
(Table S6), which was lower than the corresponding
marker SNP combinations.
Importantly, we discovered that some marker SNPs on

a 2000 bp region (1000–3000) of rrl gene coding for 23S
ribosomal RNA could distinguish four species of NTMs
(Mka, Mav, Mch, and Mab) with high accuracy (Table 2,
Table S6), showing potential for accurately identifying
some NTM species.

Mka_core

(ATCC12478, 5249)

Mav_core

(K10, 3799)

Min_core

(ATCC13950, 3873)

Mab_core

(ATCC19977, 3693)

Mch_core

(CCUG47445, 3561)

Mtb_core

(H37Rv, 3799)

1136

92

264

169

140

50
2439

2093

19391969

1790

2181

1514

Fig. 2. Flower plot showing the core, dispensable, and species-
specific genes of the five NTM species. Mtb were included as con-
trols. The flower plot displays the core gene cluster number (in the
centre), the dispensable gene number (in the annulus), and the
species-specific gene number (in the petals) of the five NTM spe-
cies. The numbers under the species name denote the core gene
numbers of related species.
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Ensemble classification analysis revealed gene/SNP
panels to identify the five common pathogenic NTM
species simultaneously

To further achieve good classification performance for
the five NTM species simultaneously, an ensemble clas-
sification algorithm was adopted based on the pre-
selected genes and SNPs in each RF binary classifier
(Fig. 3, Table 2, Fig. S1). A gene&SNP panel, a gene
panel, and an SNP panel were screened out for

simultaneously identifying the five NTM species with high
accuracy (Fig. 4). The gene&SNP panel (nikA, benM,
codA, pfkA2, mpr, yjcH, rrl C2638T and rrl A1173G;
overall accuracy > 94%) and the gene panel (nikA,
benM, codA, pfkA2, mpr and yjcH; overall accuracy
> 92%) own higher classification accuracy than the SNP
panel (rrl A1173G, acpM C177T, rrl G2368T, aceE
C867T, acpM C180G, rrl G2923A, rrl G2654A, Rv2808
A111G, rrl T3066A, Rv2808 A50C, rpoC C1283G, rrl
C2638T, rrl C426T, Rv1461 G2427C, and Rv2808

Table 2. Optimized gene/SNP combinations to identify the five common pathogenic NTM strains.

Species
Optimized gene/SNP combinations Sensitivity

(%)
Specificity
(%) AUC

Mka Genes pfkA2, MKAN_11495 1 1 1
SNPs rrl G377A, rrl C426T, rrl G2923A, rrl T3022C, Rv1461 G2427C, Rv2808 A28C, Rv2808

A50C, Rv2808 A111G
0.95 1 0.975

Mav Genes nikA, ddpC, yejF 0.987 0.995 0.991
SNPs ino1 G832A, clpB G2124C, rrl G447A, rrl T455A, rrl G2368T, rrl T3066A, Rv1461 G2133A,

acpM C177T, Rv2402 G570C, rpsK C90G, pks13 G672C
0.887 0.992 0.942

Min Genes mnhF1, codA, dmlR 0.973 0.996 0.985
SNPs rpoC T1282A, rpoC C1283G, eccC5 G1908T, acpM C180G, sdhA C348G, sdhA G394T 0.676 0.998 0.837

Mch Genes yjcH, mpr 0.957 0.952 0.955
SNPs rrl C2638T, rrl G2654A 0.553 0.958 0.756

Mab Genes benM, aqpZ, aldHT, osmX, fsr 0.909 0.996 0.952
SNPs rrl A1173G, aceE C867T 0.846 0.996 0.922
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A28C; overall accuracy > 84%). Here the three panels
show higher classification accuracy for Mka, Mav and
Min, followed by Mab; whereas they have the lowest
classification accuracy for Mch (Fig. 4).

Discussion

In this study, we combined systematic comparative
genomics with machine learning (including pan-genome,
random forest model and ensemble classification) to
screen out some diagnostic markers for precisely identi-
fying five common pathogenic NTM species (Mka, Mav,
Min, Mch and Mab). A panel including six genes and
two SNPs (nikA, benM, codA, pfkA2, mpr, yjcH, rrl
C2638T and rrl A1173G) was selected to simultaneously
identify the five NTM species with high accuracy (> 95%
for Mka, Mav, Min and Mab; > 80% for Mch; Fig. 4). The
panel only containing the six genes also showed a good
classification effect on the five NTM species (Fig. 4).
The two panels could also precisely differentiate the five

NTMs from Mtb (accuracy > 99%). Overall, the two pan-
els provide novel promising diagnostic markers to pro-
mote the development of precision diagnosis in human
infectious diseases caused by NTM. Here, we noticed
the lower prediction accuracy for Mch in the two panels
(Fig. 4), which might be due to fewer complete genomes
of Mch strains in NCBI. Larger sample size can optimize
this in the future. In addition, our studies also revealed
15 new marker genes, 29 new marker SNPs, and ten
optimized combinations to accurately discriminate any
one of the five NTM species separately (Fig. 3, Table 2,
Tables S5, S6), which provided the possibility of how to
diagnose one certain NTM infection precisely.
In general, our study showed a lower prediction accu-

racy of marker SNPs than that of marker genes
(Table 2), indicating the better NTM strain identification
effect by marker genes. Functional analysis revealed
that many of these marker genes were related to trans-
membrane transporter activity (nikA, ddpC, mnhF1, yjcH
and osmX), rapid growth (aqpZ) and drug resistance

Mka vs. 
non-Mka

Gene&SNP panel

nikA, benM, codA, pfkA2, mpr, yjcH,
rrl C2638T, rrlA1173G

Gene panel

nikA, benM, codA, pfkA2, mpr, yjcH

SNP panel

rrlA1173G, acpM C177T, rrl G2368T, aceE
C867T, acpM C180G, rrl G2923A, rrl

G2654A, Rv2808A111G, rrl T3066A, Rv2808
A50C, rpoC C1283G, rrl C2638T, rrl C426T,

Rv1461 G2427C, Rv2808A28C

Mav vs. 
non-Mav

pfkA2,MKAN_11495,
rrl G377A, rrl C426T, rrl

G2923A, rrl T3022C, Rv1461
G2427C, Rv2808A28C, Rv2808

A50C, Rv2808A111G

nikA, ddpC, yejF,

ino1 G832A, clpB G2124C, rrl
G447A, rrl T455A, rrl G2368T, rrl
T3066A, Rv1461 G2133A, acpM

C177T, Rv2402 G570C, rpsK C90G,

pks13 G672C

mnhF1, codA, dmlR,

rpoC T1282A, rpoC C1283G,

eccC5 G1908T, acpM C180G,

sdhA C348G, sdhA G394T

yjcH, mpr,
rrl C2638T,

rrl G2654A

benM, aqpZ, aldHT,

osmX, fsr,
rrlA1173G,

aceE C867T

Min vs. 
non-Min

Mch vs. 
non-Mch

Mab vs. 
non-Mab

Binary classifier

Multiclass classifier

Bagging Reference

Prediction Mka Mav Min Mch Mab

Mka 16 0 0 0 0

Mav 0 125 1 1 0

Min 0 1 26 0 0

Mch 0 0 0 40 0

Mab 0 1 0 22 205

Sensitivity 100.00% 98.43% 96.30% 63.49% 100.00%

Specificity 100.00% 99.36% 99.76% 100.00% 90.13%

Balanced Accuracy 100.00% 98.90% 98.03% 81.75% 95.07%

Overall Accuracy 94.06%

Bagging Reference

Prediction Mka Mav Min Mch Mab

Mka 15 0 0 0 0

Mav 0 124 1 0 0

Min 0 1 28 0 0

Mch 0 0 0 38 1

Mab 0 1 0 14 215

Sensitivity 100.00% 98.41% 96.55% 73.08% 99.54%

Specificity 100.00% 99.68% 99.76% 99.74% 93.24%

Balanced Accuracy 100.00% 99.05% 98.16% 86.41% 96.39%

Overall Accuracy 95.43%

Bagging Reference

Prediction Mka Mav Min Mch Mab

Mka 12 0 0 0 3

Mav 0 115 0 0 14

Min 0 1 22 0 9

Mch 0 0 0 21 15

Mab 0 1 0 17 208

Sensitivity 100.00% 98.29% 100.00% 55.26% 83.53%

Specificity 99.30% 95.64% 97.60% 96.25% 90.48%

Balanced Accuracy 99.65% 96.97% 98.80% 75.76% 87.01%

Overall Accuracy 86.30%

Training set
Bagging Reference

Prediction Mka Mav Min Mch Mab

Mka 4 0 0 0 0

Mav 0 32 0 0 0

Min 0 0 10 0 0

Mch 0 0 0 6 1

Mab 0 0 0 3 54

Sensitivity 100.00% 100.00% 100.00% 66.67% 98.18%

Specificity 100.00% 100.00% 100.00% 99.01% 94.55%

Balanced Accuracy 100.00% 100.00% 100.00% 82.84% 96.37%

Overall Accuracy 96.36%

Bagging Reference

Prediction Mka Mav Min Mch Mab

Mka 5 0 0 0 0

Mav 0 33 0 0 1

Min 0 0 8 0 0

Mch 0 0 0 7 1

Mab 0 0 0 5 50

Sensitivity 100.00% 100.00% 100.00% 58.33% 96.15%

Specificity 100.00% 98.70% 100.00% 98.98% 91.38%

Balanced Accuracy 100.00% 99.35% 100.00% 78.66% 93.77%

Overall Accuracy 92.73%

Bagging Reference

Prediction Mka Mav Min Mch Mab

Mka 5 0 0 0 0

Mav 0 25 0 1 4

Min 0 0 3 0 2

Mch 0 0 0 5 6

Mab 0 0 1 3 55

Sensitivity 100.00% 100.00% 75.00% 55.56% 82.09%

Specificity 100.00% 94.12% 98.11% 94.06% 90.70%

Balanced Accuracy 100.00% 97.06% 86.56% 74.81% 86.40%

Overall Accuracy 84.55%

Test set
Mka, Mav, Min, Mch, Mab

Fig. 4. Ensemble classification workflow for data generation and analysis of Gene/SNP panels for simultaneously discriminating the five com-
mon pathogenic NTM species. The multiclass classifier was proposed based on the above RF binary classifier (‘non-Mka’ indicates the Mav,
Min, Mch, Mab and Mtb strains; ‘non-Mav’ indicates the Mka, Min, Mch, Mab and Mtb strains; ‘non-Min’ indicates the Mka, Mav, Mch, Mab and
Mtb strains; ‘non-Mch’ indicates the Mka, Mav, Min, Mab and Mtb strains; ‘non-Mab’ indicates the Mka, Mav, Min, Mch and Mtb strains). Confu-
sion matrixes of the gene/SNP panels in the training set and test set were shown on the left and right, respectively.
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(fsr) (https://www.uniprot.org/). They might be responsi-
ble for host/environmental/antibiotic adaptation of NTM
strains (https://www.uniprot.org/) and further partially
contributed to the individuality of different types of NTM
strains. As a result, they showed better classification
performance on various kinds of NTMs than marker
SNPs.
Importantly, our research shows the potential of

machine learning on the detection and identification of
biomarkers from big data. Machine learning has been
applied to precision medicine progressively because it
can improve the prediction accuracy of patterns/features
by automated training for algorithms that learn from
genomic data (Goecks et al., 2020). In this study, we
first revealed some SCGs and SCSNPs by comparative
genomic analysis, and two important algorithms of
machine learning (random forest and ensemble classifi-
cation) were further adopted to screen out the species-
biomarkers in a large validation set. First, to obtain the
optimized marker genes/SNPs to identify any of the five
NTM species, a binary classifier belonging to machine
learning, random forest algorithm was selected to dis-
criminate one NTM species from others (Mka vs. ‘non-
Mka’, Mav vs. ‘non-Mav’, Min vs. ‘non-Min’, Mch vs.
‘non-Mch’, and Mab vs. ‘non-Mab’). Random forest algo-
rithm is a flexible, easy-to-use machine learning algo-
rithm that produces, even without hyper-parameter
tuning, a good result of binary classifier (Blanchet et al.,
2020). To further achieve good classification perfor-
mance for the five NTM species simultaneously, an
ensemble classification algorithm was adopted based on
the pre-selected genes and SNPs in each binary classi-
fier. Here, ensemble classification is a powerful machine
learning tool capable of achieving the excellent perfor-
mance of multiple classifiers, which can correct for errors
made by any individual classifier and lead to better accu-
racy overall (Bramer, 2013).
In summary, our research not only reveals some new

panels and marker genes/SNPs to accurately discrimi-
nate the five NTM species, but it also provides an insight
into precisely identifying various genetically close spe-
cies of pathogens through comparative genomics and
machine learning. Indeed, these panels and markers
warrant further confirmation and optimization with larger
sample size studies.

Experimental procedures

Bacterial genomes

To completely understand the genomic features of differ-
ent NTM species, we collected the ones with more than
five completed genomes or assembled genome
sequences at the chromosome level in NCBI. The com-
plete genome sequences and assembled genome

sequences were downloaded from NCBI (https://www.
ncbi.nlm.nih.gov/) up to March 12, 2021. Here, one com-
plete genome (M. kansasii Kuro-I) was deleted due to
the suspicious gene number (8110), which is much more
than that of other M. kansasii strains (~ 5700). In total,
one complete genome and six assembled genomes at
chromosome level of seven Mycobacterium kansasii
(Mka) strains, 33 complete genomes and one assembled
genome at chromosome level of 34 M. avium (Mav)
strains, 30 complete genomes of 30 M. intracellular
(Min) strains, 5 complete genomes and three assembled
genomes at chromosome level of 8 M. chelonae (Mch)
strains, and 40 complete genomes and four assembled
genomes at chromosome level of 44 M. abscessus
(Mab) strains were obtained (Table S1). The raw Illu-
mina sequencing reads of genomic DNAs of NTM spe-
cies were also downloaded from the SRA database as a
validation set. In total, 20 Mka strains, 159 Mav strains,
37 Min strains, 47 Mch strains and 285 Mab strains with
a total base of more than 400 Mb were downloaded
(Table S3). For comparison, complete genomes of 40
randomly selected M. tuberculosis (Mtb) strains
(Table S1) were also analysed as a control in the dis-
covery data set, and complete genomes of the other 233
Mtb strains were included in the validation data set
(Table S4).

Genome re-annotation, Average nucleotide identity (ANI)
and gene homology analysis

All the downloaded genome sequences were re-
annotated with Prokka (Seemann, 2014). The protein
functions were further annotated using Blast2GO (https://
www.blast2go.com/). Pairwise ANI was calculated using
pyani 0.2.10 with ANIb (Pritchard et al., 2016). Gene
homology analysis was analysed using BLAT with a
threshold of identity 50% and coverage 50%, and
Inparanoid/multiparanoid (Remm et al., 2001).

Phylogenetic analysis

The phylogenetic analysis of the NTM and Mtb strains
was based on the core gene SNPs detected by MUM-
mer 3.23 (Delcher et al., 2002)) using M. tuberculosis
H37Rv (NC_000962) as the reference. The MAFFT
(Nakamura et al., 2018) was adopted to align the con-
catenated SNP sequences and phylogenetic tree was
generated by FastTree (Price et al., 2009).

Identification of Mka/Mav/Min/Mch/Mab specific core
genes (SCGs)

All proteins from the 7 Mka, 34 Mav, 30 Min, 8 Mch, 44
Mab and 40 Mtb strains were clustered by the pan-
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genome pipeline Roary to create a multiFASTA align-
ment of core genes using PRANK and a fast core gene
alignment with MAFFT, and paralogs are not split
(Andrew et al., 2015), respectively. The characteristic
curves of NTM/Mtb pan-genome, core-genome and new
genes were depicted by Pan-Genome Profile Analyze
Tool (PanGP) (Zhao et al., 2014) with DG-sampling algo-
rithms. Gene homology analysis was further conducted
among core genes of different types NTM species (Mka/
Mav/Min/Mch/Mab/Mtb) using Inparanoid/multiparanoid
(Remm et al., 2001). The SCGs of Mka were defined as
those present in all Mka strains but absent from all other
strains containing Mtb. The Mav/Min/Mch/Mab SCGs
were identified using similar parameters.

Identification of Mka/Mav/Min/Mch/Mab specific core
SNPs (SCSNPs)

SNPs were detected by MUMmer 3.23 (Delcher et al.,
2002) using Mycobacterium tuberculosis H37Rv
(NC_000962) as the reference. The Mka SCSNPs were
defined as those present in all Mka strains but absent
from all other strains containing Mtb. The Mav SCSNPs
were defined as those present in all Mav strains but
absent from all other strains containing Mtb. The Min/
Mch/Mab SCSNPs were identified using similar parame-
ters. SNPs were further annotated according to the *.gff
file generated by Prokka (Seemann, 2014).

Validation of Mka/Mav/Min/Mch/Mab SCGs and SCSNPs

To verify the SCGs obtained above, the raw Illumina
sequencing reads downloaded from the SRA database
were mapped to the sequences of SCGs of each NTMs
using BWA 0.5.9 (Li and Durbin, 2009), respectively.
Only SCGs with depth more than 10X and coverage of
more than 80% were considered to exist in the strain. To
verify the SCSNPs, the raw Illumina sequencing reads
were mapped to the genome sequences of Mtb H37Rv
(NC_000962) using BWA 0.5.9 ((Li and Durbin, 2009),
respectively. SNPs were analysed using SAMtools
0.1.19 (Li et al., 2009) and VarScan (Koboldt et al.,
2009), and filtered with at least ten reads covered and
70% supported.
To verify the SCGs/SCSNPs of Mka, all downloaded

data were classified into two groups (Mka and
non-Mka). Categorical data were expressed as 0 or 1,
categorical variables using v2 tests. All analyses were
performed using R software, and differences were con-
sidered statistically significant at P < 0.01. The Mav/
Min/Mch/Mab SCGs were screened using a similar
procedure.

Markers identification and panel screening using random
forest and ensemble classification algorithm of machine
learning

To build strain identification models of each kind of
NTM, a random-forest classification algorithm of machine
learning was further conducted using the screened
results obtained from v2 tests. This analysis was per-
formed using the randomForest package in R and the
number of trees grown was 10 000. 70% and 30% of
samples were randomly selected as training group and
testing group, respectively. Cross-validation was con-
ducted using rfcv () function with parameter ‘cv.fold=10’
and ‘step=0.8’. Important features were extracted using
the imp () function based on the value of Mean
Decrease Accuracy (MDA) and Mean Decrease Gini
(MDG). AUCs were calculated by receiver operating
characteristic (ROC) analysis using the roc () function of
pROC package in R. To simultaneously achieve good
classification performance on five NTM groups, an
ensemble classification algorithm of machine learning,
‘bagging ()’ from the package ‘adabag’ in R, was pro-
posed based on the above RF binary classifier (4/5 for
training and 1/5 for testing) using pre-selected features
in each binary classifier obtained from random forest.
The analysis process is shown in Fig. S1.
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Fig. S1. The screening process of some potential diagnostic
markers (SNP/gene) for the five common pathogenic NTM
species. One hundred and twenty-three NTM complete gen-
omes from NCBI were first performed the comparative
genomic analysis to obtain the discovery set of SCGs/
SCSNPs for the five common NTM species. 548 NTM
strains with raw genome sequencing reads and 233 Mtb
strains were further analysed as the validation set to screen
some potential diagnostic markers (SNPs/genes).
Fig. S2. Gene accumulation curves of the pan-genome
(blue) and core-genome (green) of five common pathogenic

NTMs and Mtb. The blue boxes denote the pan-genome
size for each genome for comparison. The green boxes
show the core-genome size for each genome for compari-
son. The curve is the least-squares fit of the power law for
the average values.
Fig. S3. Curve (red) for the number of new genes with an
increase in the number of five common pathogenic NTMs
and Mtb.
Table S1. Information of NTM strains with complete genome
sequences used in this study.
Table S2. (A) Pairwise comparison of ANIs among the five
NTMs. (B) Pairwise comparison of homologous gene num-
bers among the five NTMs. (C) Pairwise comparison of
homologous gene ratio among the five NTMs.
Table S3. Information of NTM strains downloaded from
SRA used for further validation.
Table S4. Information of Mtb strains with complete genome
sequences used for further validation.
Table S5. Single-gene markers from optimized combina-
tions to identify the five common pathogenic NTM strains.
Table S6. Single-SNP markers from optimized combinations
to identify the five common pathogenic NTM strains.
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