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1 Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Institute,
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Abstract: Recent years have seen remarkable progress in research into free radicals oxidative stress,
particularly in the context of post-ischemic recirculation brain injury. Oxidative stress in post-
ischemic tissues violates the integrity of the genome, causing DNA damage, death of neuronal,
glial and vascular cells, and impaired neurological outcome after brain ischemia. Indeed, it is
now known that DNA damage and repair play a key role in post-stroke white and gray matter
remodeling, and restoring the integrity of the blood-brain barrier. This review will present one of
the newly characterized mechanisms that emerged with genomic and proteomic development that
led to brain ischemia to a new level of post-ischemic neuropathological mechanisms, such as the
presence of amyloid plaques and the development of neurofibrillary tangles, which further exacerbate
oxidative stress. Finally, we hypothesize that modified amyloid and the tau protein, along with the
oxidative stress generated, are new key elements in the vicious circle important in the development
of post-ischemic neurodegeneration in a type of Alzheimer’s disease proteinopathy.

Keywords: brain ischemia; free radical; oxidative stress; reactive oxygen species; reactive nitrogen
species; amyloid; tau protein; elastin-derived peptides; hormesis; vitagene; proteinopathy

1. Introduction

The human brain accounts for only 2% of the total body weight, uses about 20% of the
oxygen supplied to the whole body [1,2] and produces more free radicals than other organs
of the body [2,3]. The brain’s enormous energy consumption makes it more susceptible to
oxidative stress than any other organ in the human body [1,3]. The main structural and
functional part of the brain, namely neurons, are particularly susceptible to oxidative injury
due to the high level of metabolism compared to other cells of the nervous system [4].
The human brain is the most complex organ that controls all of the body’s responses. It
contains billions of neurons that continuously control the proper functioning of the body.
Neurons oversee and transmit signals that enable us to speak, think, move and achieve
everything we do [5]. The brain’s neurons are closely interconnected to form a neural
network. Therefore, the slightest disconnection between neurons can lead to disruption
of various activities controlled by the brain, causing serious damage to the brain [5].
Disrupting the transmission of information between neurons in the brain has devastating
effects, affecting human brain functions such as memory, movement, intelligence, speech
and many other activities [5,6].
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Human ischemic stroke is an age-related neurodegenerative disorder that is the lead-
ing cause of long-term disability and mortality, placing a huge burden on patients and
their carers, the community and the healthcare system [7]. Currently available therapies for
ischemic stroke are intravenous injection of tissue plasminogen activator and thrombec-
tomy. However, both treatments are limited by a narrow therapeutic window and should
be performed within 4.5 and 12 h, respectively, of the onset of an ischemic stroke. These lim-
itations mean that the vast majority of post-ischemic patients are inadequately treated and
therefore develop severe neurological deficits, with frequent full-blown dementia [8–10].
So, restoring blood flow following cerebral ischemia is an important challenge for stroke
researchers and clinicians. Therefore, the effective restoration of blood circulation to the
area of the ischemia is the main goal after the onset of the acute phase of an ischemic stroke.
It should be emphasized that there may also be complications during the restoration of
blood flow, among which one of the most serious further and complicated risks is the
brain reperfusion itself. Restoration of blood flow is an inevitable problem once circula-
tion is restored by therapy at the site of a stroke and carries with it important additional
neuropathological changes. Despite the successful restoration of blood flow, neurological
progress is still not observed in a significant number of patients due to the presence of
neuropathological phenomena that prevent the return to normal activity [11,12]. After
reversible cerebral ischemia with recirculation changes, now referred to as proteomic,
genomic and biochemical cascades, they damage the ischemic parenchyma of the brain,
counteracting the beneficial effects of restoring cerebral circulation [13,14]. During post-
ischemic reperfusion, neuropathological pathways include excitotoxicity, intracellular Ca2+

accumulation, neuroinflammation, free radical and amyloid generation, modification of
tau protein, necrosis, apoptosis, lipolysis, and elastin degradation to polypeptides [15–19].
Recently, elastin-derived polypeptides have been reported to induce overproduction of
β-amyloid peptides in a model of Alzheimer’s disease [20–22]. Among these various
neuropathological phenomena, free radical changes in brain tissue play an important role
in the process of ischemic brain damage during recovery of blood flow at the primary
ischemic focus.

The oxidation of nucleic acids, proteins and lipids in neurons is crucial for the survival
or death of neuronal cells during recirculation at the area of cerebral ischemia. Neurons
contain large amounts of polyunsaturated fatty acids that interact with reactive oxygen
species, triggering a self-propelling cascade and initiating, for example, increased lipid
peroxidation [23]. It should be emphasized that neuronal cells are low in glutathione,
an essential antioxidant for scavenging free radicals [24]. Consequently, neuronal cells
are extremely susceptible to oxidative stress. Accordingly, post-ischemic stroke patients
are more predisposed to cognitive impairment and Alzheimer’s disease type dementia,
which significantly affects the patient’s quality of life. All of these symptoms are related to
secondary brain damage after stroke [25].

Oxidative stress indicators are not limited to ischemia of the injured brain [26], but are
also present in serum or cells of the immune system and this is a universal phenomenon [27].
Therefore, in systemic blood circulation, after ischemia, elevated components of oxidative
stress and mediators of chronic inflammation were found in patients, and in addition
to the impaired immune response, polynuclear and mononuclear leukocytes were acti-
vated [26,28]. Leukocytes release, in addition to the overproduction of oxidation products,
including reactive oxygen species and pro-inflammatory cytokines, including interleukin-6
or interleukin-1β [28]. As a result, the overproduction of reactive oxygen species through
increased activity of a number of oxidative enzymes (e.g., myeloperoxidase, xanthine oxi-
dase, etc.) or through dysregulation of the mitochondrial respiratory chain along with the
elimination of antioxidants (e.g., catalase, superoxide dismutase, glutathione, glutathione
peroxidase, etc.) finally causes oxidation of molecules (e.g., DNA, lipids and proteins),
which ultimately damage cells and tissues. Moreover, since oxidation and inflammation
are linked phenomena [26], the accumulation of oxidative factors trigger the release of pro-
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inflammatory mediators, and then strengthen and continue the vicious cycle of oxidative
damage, inducing progressive neurodegeneration of the brain tissue [28].

Recently, an intensively researched post-ischemic neuropathology has emerged in
connection with genomic and proteomic development, which has transferred ischemia-
reperfusion brain injury to a new level of neuropathological mechanisms, due to the
presence of amyloid plaques and the development of neurofibrillary tangles, which further
exacerbate oxidative stress in the brain in addition to the classic processes described so
far after ischemia. The major amyloid plaque molecule are β-amyloid peptide 1-42 or
1-40, which is derived from proteolytic metabolism of the amyloid protein precursor.
Additionally hyperphosphorylated tau protein is the major component of neurofibrillary
tangles. Therefore, oxidative stress is a common and key factor in post-ischemic brain injury
during recirculation. It consists of an increased generation of reactive oxygen species and
reactive nitrogen species that damage various components of the cell such as DNA, lipids
and proteins [29]. DNA oxidative injury is one of the deadliest end effects of increased
oxidative stress post-ischemia [30,31]. Oxidative damage to DNA occurs within minutes in
an ischemic brain [30,31], but oxidative breakdown can continue for up to six months after
a stroke [27]. Problems with repairing damaged DNA result in the activation of various
mechanisms that trigger the death of neuronal cells through apoptosis that threatens
functional regeneration after stroke, with a high probability of developing full-blown
dementia [31].

Finally, in this review we will discuss the hypothesis that modified amyloid with
tau protein hyperphosphorylation and oxidative stress are new key elements in the vi-
cious cycle important in post-ischemic neurodegeneration with Alzheimer’s disease-type
proteinopathy. In addition, we will present a new look at the oxidative stress generated
by amyloid and tau protein, and at the same time show the effect of oxidative stress on
the behavior of amyloid and tau protein in the context of post-ischemic brain neurode-
generation with the development of Alzheimer’s disease-type proteinopathy. The data
show a progressive large redox imbalance due to the overproduction and accumulation of
oxidative factors in the cells and brain tissue, which exceeds the clearance capacity by the
antioxidant system. We will also focus on the role of two main factors, such as amyloid
and tau protein, which trigger oxidative stress in post-ischemic reperfusion injury in the
vicious cycle.

2. Free Radicals in Recirculation

Free radicals fall into two main groups: reactive oxygen species and reactive nitrogen
species [2]. Reactive oxygen species and reactive nitrogen species play a key role in many
pathological processes, including ischemic-reperfusion injury. Therefore, the toxicity of
free radicals in ischemic-reperfusion injury is currently being intensively studied. Based on
the above data, the concept of “oxidative stress” was introduced by Helmut Sies [32] as
an imbalance between the production of oxidants and antioxidants that can cause damage
to various organs and organisms. Since then, the field of redox biology has developed the
concept of the important role of oxidative stress in the development of various pathologies,
including cerebral ischemia [33,34]. In the following sections, we will discuss some of
the mechanisms involved in the toxicity of free radicals to the brain during ischemia-
reperfusion injury.

2.1. Reactive Oxygen Species in Recirculation

Oxidative stress is triggered by the overproduction of reactive oxygen species. The
main types of reactive oxygen species include superoxide anion, hydroxyl radicals and
hydrogen peroxide. Under normal circumstances, superoxide dismutase, glutathione per-
oxidase, catalase, and other antioxidants protect the brain from oxidative stress. In the
following, we will discuss some of the mechanisms involved in the toxicity of reactive
oxygen species to brain tissue during post-ischemic reperfusion [2]. During post-ischemic
reperfusion, the production of free radicals increases significantly, leading to the breakdown
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of the antioxidant processes [2]. According to previous research, overproduction of reactive
oxygen species involves four pathways: NADPH oxidase, mitochondrial respiratory chain
dysfunction, xanthine reaction mediated by xanthine oxidase and arachidonic acid cat-
alyzed by cyclooxygenase 2 [2,35]. In the early stages of cerebral ischemia, reactive oxygen
species are mainly produced by the mitochondria [2].

Following ischemia, the brain lacks oxygen and glucose, which negatively affects
ATP production. In the case of ATP deficiency, calcium levels in neurons increase, causing
massive production of reactive oxygen species through the depolarization of the mitochon-
dria [2,36–38]. Along with the penetration of macrophages and other immune cells into the
brain during the development of neuroinflammation, the activation of NADPH oxidase in
these cells contributes to the production of reactive oxygen species [39]. With recirculation
of the blood, an abundance of oxygen appears which causes oxidative damage. It is well
known that oxidative stress can activate pro-apoptotic mechanisms such as the cytochrome
c pathway, autophagy, inducing DNA damage, affecting protein structure and function,
especially lipid peroxidation during reperfusion [40–42].

2.2. Brain Damage Due to Reactive Oxygen Species during Recirculation

Oxidative stress can induce cell death by modifying the structure and function of
proteins, DNA damage and lipid peroxidation. DNA injury includes active and passive
DNA damage. Oxidative stress causes particularly passive DNA injury. Active DNA injury
(mediated by DNA endonucleases, which mainly contain caspase-activated deoxynuclease,
endonuclease G, and an apoptosis-inducing factor) causes double-stranded DNA fragmen-
tation (Figure 1). Passive DNA injury is caused by the direct reaction of DNA with reactive
oxygen species or the indirect reaction of DNA with the products of the reaction of reactive
oxygen species with proteins or lipids, leading to modification of nucleotide bases or the
development of single or double strand breaks (Figure 1) [2,31].

The hydroxyl radical, a form of reactive oxygen species produced by the Fenton re-
action, can cause lipid peroxidation. As a result of the reaction of hydroxyl radicals with
unsaturated fatty acids, an alkyl radical is formed, which when reacted with molecular
oxygen, can form a peroxyl radical. Then the peroxyl radical receives hydrogen from
another fatty acid and produces lipid hydroperoxide and a second alkyl radical, which
causes another lipid peroxidation [2]. Lipid peroxidation damages membranes, leading to
organelle dysfunction and changes in ion transport [2,43]. Lipid peroxidation products play
an important role in damage from oxidative stress. These products are 4-hydroxynonenal,
malondialdehyde and acrolein [2]. They can cause protein dysfunction, leading to more
dangerous damage from oxidative stress [2]. Protein 53 is a key molecule in the process of
generating reactive oxygen species during the death of neurons in the brain following is-
chemia [2,44,45]. Reactive oxygen species can cause a protein 53 reaction with cyclophilin D,
which opens the mitochondrial transition pores, causing mitochondrial swelling and cells
necrosis (Figure 2) [2,46]. Reactive oxygen species increase the permeability of the mitochon-
drial membrane and affect the released cytochrome c, which forms an inhibitory complex
with proteins of the Bcl-2 family, such as Bid and Bax, and protein 53. Cytochrome c can
generate active caspases by forming a complex with procaspase-9, an apoptotic protease
activating factor-1 and ATP, resulting in apoptosis of pyramidal neurons in the CA1 region
of the hippocampus following reversible global cerebral ischemia in rats (Figure 2) [2,47].
Protein 53 apoptosis modulator is a key pro-apoptotic protein that belongs to the Bcl-2
protein family [2,48]. Some evidence suggests that inhibition of oxidative stress by abun-
dant superoxide dismutase 1 may suppress upregulated apoptosis modulator by protein
53, indicating an association between protein 53 upregulated apoptosis modulator and
oxidative stress in death of pyramidal neurons in the CA1 region of the hippocampus after
reversible global ischemic brain injury [2,45]. Another most important cell death regulating
mechanism is related to the mitogen-activated protein kinase, which is associated with
the activity of reactive oxygen species. Mitogen-activated protein kinase has been shown
to induce the death of neuronal cells in the cortex and hippocampus in transient cerebral
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ischemia in mice [2,49]. The mechanism of the mitogen-activated protein kinase consists
of three main components: extracellular signal-regulated kinase 1/2, c-Jun NH2-terminal
kinase, and protein 38 mitogen-activated protein kinase. C-Jun NH2-terminal kinase and
protein 38 mitogen-activated protein kinase play an important role in apoptosis. The mecha-
nisms of the c-Jun NH2 terminal kinase and the protein 38 mitogen-activated protein kinase
can be activated by the apoptosis signal regulating kinase 1, which is activated by reactive
oxygen species, inducing post-ischemic apoptosis [2]. Additionally, as post-ischemic neu-
roinflammation develops, immune cells containing NADPH oxidase produce significant
amounts of reactive oxygen species, worsening damage from oxidative stress [2]. Also,
reactive oxygen species can activate inflammatory cells. Reactive oxygen species activate
neutrophils, microglia and macrophages by the nuclear factor kappa B pathway. Leuko-
cytes possess myeloperoxidase that can trigger the production of hydrochloric acid, a strong
oxidant that is essential for the survival and plasticity of neuronal cells post-ischemia [2,50].
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2.3. Reactive Nitrogen Species in Recirculation

There are two specific types of reactive nitrogen species, oxidative peroxynitrite and
NO, which dominate the progression of post-ischemic brain injury [2]. NO is produced
by the reaction of oxygen with L-arginine, which is controlled by three types of nitric
oxide synthase, including neuronal nitric oxide synthase, endothelial nitric oxide synthase
and induced nitric oxide synthase. Neuronal nitric oxide synthase and endothelial nitric
oxide synthase are calcium dependent, while induced nitric oxide synthase is calcium
independent. Overall, the NO generated from induced nitric oxide synthase and neuronal
nitric oxide synthase is harmful to cells. It was shown that mice lacking endothelial nitric
oxide synthase had a greater infarct volume than control mice in post-ischemic brain
injury [2,51]. Endothelial nitric oxide synthase produces huge amounts of NO at the
onset of ischemia in endothelial cells, causing the blood vessels to widen [2]. In contrast,
NO, produced mainly from activated induced nitric oxide synthase and neuronal nitric
oxide synthase, is detrimental to focal ischemic brain injury [2]. In addition, it has been
shown that overactive endothelial nitric oxide synthase may be harmful, and its limited
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inhibition may act preventively in post-ischemic conditions by inhibiting the development
of peroxynitrite [2,52]. Additionally, NO reacts with O2− and generates a strong oxidant
and peroxynitrite, which is associated with a stronger oxidation than both O2− and NO
together [2,53].

2.4. Brain Damage Due to Reactive Nitrogen Species during Recirculation

Too much NO can lead to loss of control of the blood-brain barrier, neuroinflammation,
and death of neurons [2]. Both matrix metalloproteinase and tight junction proteins are in-
fluenced by NO, which opens the blood-brain barrier after ischemia [54–56]. NO stimulates
matrix metalloproteinase-2 in the first phase, and in the second phase, it activates matrix
metalloproteinase-9, which affects the opening of the blood-brain barrier [2]. Activated
matrix metalloproteinases disintegrate the extracellular matrix and tight junction proteins
of the walls of blood vessels [57]. Excess NO causes neuronal death by protein modification,
mitochondrial dysfunction and the formation of peroxynitrite [2]. During brain ischemia,
NO strongly inhibits cytochrome c oxidase in the respiratory chain of the mitochondria [2].
In contrast, the reaction of NO with proteins leads to the nitrosylation of proteins or the
formation of nitrosothiol [2,58]. NO also increases the activity of cyclooxygenase-2, which
can mediate glutamate toxicity by generating additional oxygen reactive species and partic-
ipate in the neuroinflammatory response by pro-inflammatory production of prostaglandin
E2 [59]. Serious damage to the brain after ischemia by oxidative peroxynitrite is the death
of neurons and changes in the permeability of the blood-brain barrier. The reaction of the
oxidant peroxynitrite with tyrosine produces 3-nitrotyrosine, which causes damage to the
proteins of the cytoskeleton and inhibition of enzymatic activity, resulting in the death of
neurons [2,60]. In addition, the oxidant peroxynitrite reacts with DNA elements, such as the
sugar phosphate backbone and guanine nucleotides, causing DNA damage and ultimately
activating poly (adenosine diphosphate-ribose) polymerase (PARP) processes [2]. Increased
PARP-1 activation depletes NAD+, leading to cell death, including neuronal cells [2,61].
In addition, oxidative peroxynitrite causes mitochondrial dysfunction by affecting the I-V
complexes of the mitochondrial respiratory chain [2,62,63]. Peroxidation of membrane
lipids by oxidative peroxynitrite also causes cells death [2,64]. There are also observations
that oxidative peroxynitrite can activate matrix metalloproteinase-1, -2 and -9, leading to
dysfunction of the tight junction proteins of blood vessels [65,66], finally triggering the
permeability of the blood-brain barrier after ischemia-reperfusion injury to the brain [2].

3. Amyloid Accumulation in Post-Ischemic Brain

The key processes related to amyloid accumulation and its effects on ischemic brain
injury are virtually unclear. The following is the amyloidogenic processing of the post-
ischemic amyloid protein precursor that is associated with the production and deposition
of amyloid in the brain following ischemia [67–69]. In addition, it has been shown that
patients with a history of ischemic stroke have an increase in elastin-derived polypeptides
in the cerebrospinal fluid that contribute to the accumulation of amyloid in the extracellular
space [19–22]. The accumulation of amyloid in the brain after ischemia [67,70] and its
presence in the blood [71,72] indicate an important role of amyloid in the progression of
ischemic brain injury with Alzheimer’s disease proteinopathy.

The expression of the amyloid protein precursor (APP) gene in the CA1 area of the
hippocampus decreased within 2 days, in contrast, it increased 7–30 days after ischemia
(Table 1) [68]. Expression of the β-secretase gene (BACE1) increased during 2–7 days and
decreased 30 days following ischemia (Table 1) [68]. Presenilin 1 and 2 (PSEN1 and 2) genes
increased in 2–7 days and decreased in 30 days after ischemia (Table 1) [68].
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Table 1. Post-ischemic expression of genes associated with Alzheimer’s disease in the CA1 and CA3
regions of the hippocampus.

Survival
Genes

APP ADAM10 BACE1 PSEN1 PSEN2 MAPT

CA1 area

2 days ↓ n.a. ↑↑ ↑ ↑↑ ↑↑
7 days ↑ n.a. ↑ ↑ ↑ ↑
30 days ↑ n.a. ↓ ↓ ↓ ↓

CA3 area

2 days
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loid accumulation in the intra- and extracellular space was observed [67,75–86]. Accumu-
lation of amyloid in the extracellular space has been observed as diffuse or senile amyloid 
plaques [67,76,82,85,87–93]. Amyloid plaques have been found in the hippocampus, cere-
bral cortex, thalamus, around the lateral ventricles, and in the corpus callosum. The accu-
mulation of amyloid inside neuronal and neuroglial cells indicates the importance of am-
yloid in the progressive neurodegeneration of the brain after ischemia with the develop-
ment of Alzheimer’s disease proteinopathy [67,80,87,88,94–98]. These data indicate that 
after experimental ischemia, amyloid production is responsible for additional neuro-
degenerative processes that may worsen post-ischemic neurological outcomes due to the 
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Expression: ↑ increase; ↑↑ increase; ↓ decrease,↔ oscillation around control values; n.a. not available. Genes:
APP-amyloid protein precursor, BACE1-β-secretase, PSEN1-presnilin 1, PSEN2-presenilin 2, MAPT-tau protein.

In the CA3 region of the hippocampus, the expression of the APP gene fluctuated
around the control values within 2 and 30 days after ischemia (Table 1) [69]. But 7 days
post-ischemia, expression of the above gene increased [69]. The expression of the α-secretase
(ADAM10) gene fell below control during 2, 7, 30 days post-ischemia (Table 1) [69]. Expres-
sion of the BACE1 gene in the above region decreased in 2–7 days and increased 30 days
after ischemia (Table 1) [69]. The PSEN1 gene was elevated within 2–7 days and was
fluctuating around control 30 days following ischemia (Table 1). In this area, post-ischemic
PSEN2 gene expression fluctuated around control within 2 days, while it decreased on day
7, but increased above control on day 30 (Table 1) [69].

The expression of the APP gene in the temporal cortex decreased within 2 days of
survival and increased above the control 7–30 days after ischemia (Table 2) [73]. The
highest increase in BACE1 gene expression was recorded within 2 days, but 7–30 days after
ischemia, it oscillated around the control (Table 2) [73]. PSEN1 gene expression fluctuated
about control within 2, 7 and 30 days post-ischemia (Table 2) [74]. The highest increase in
the expression of the PSEN2 gene was observed within 2 days, while in 7–30 days after
ischemia, the expression of this gene oscillated around the control (Table 2) [74].

Table 2. Post-ischemic expression of genes associated with Alzheimer’s disease in the medial
temporal cortex.

Survival
Genes

APP BACE1 PSEN1 PSEN2

2 days ↓ ↑↑
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After transient experimental cerebral ischemia with a survival of up to 2 years, amyloid
accumulation in the intra- and extracellular space was observed [67,75–86]. Accumula-
tion of amyloid in the extracellular space has been observed as diffuse or senile amyloid
plaques [67,76,82,85,87–93]. Amyloid plaques have been found in the hippocampus, cere-
bral cortex, thalamus, around the lateral ventricles, and in the corpus callosum. The
accumulation of amyloid inside neuronal and neuroglial cells indicates the importance
of amyloid in the progressive neurodegeneration of the brain after ischemia with the de-
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velopment of Alzheimer’s disease proteinopathy [67,80,87,88,94–98]. These data indicate
that after experimental ischemia, amyloid production is responsible for additional neu-
rodegenerative processes that may worsen post-ischemic neurological outcomes due to
the constant wasting of neurons [7,76,82,85,86,99,100]. Amyloid is a toxic molecule that
activates intracellular mechanisms in ischemic astrocytes, neurons and microglia, which
further induce damage and loss of neuronal and glial cells following ischemia. Following
ischemia in the human brain, both diffuse and senile amyloid plaques have been observed
in the brain cortex and hippocampus [70,101–103]. In addition, clinical trials showed that
blood amyloid was increased in patients with post-ischemic brain damage [71,72]. The
rise in blood amyloid negatively correlated with the neurological outcome after cerebral
ischemia [72].

4. Amyloid versus Oxidative Stress in Recirculation

Studies have shown that methionine 35 from β-amyloid peptide is important for
oxidative stress and its toxicity induced by amyloid [104–106]. Methionine undergoes
two-electron oxidation to form methionine sulfoxide [106,107]. Oxidation of methionine
to sulfoxide plays a significant role in reducing the antioxidant defense of cells [108]. In
addition, the presence of methionine sulfoxide reductase suggests that sulfoxide reductase
may influence the antioxidant effect [106,109–111]. Additionally, methionine residing in
side amyloid in the lipid bilayer can undergo single-electron oxidation to form a sulfuranyl
free radical. Since amyloid is generated from an amyloid protein precursor, it is suggested
that the amyloid once produced may insert as small oligomer into the lipid bilayer adopting
the α-helical conformation [106]. This suggests that the secondary structure of amyloid is a
peptide neurotoxicity factor. It has been suggested that molecular oxygen or Cu2+ may be
the key to the oxidation of methionine to the sulfuranyl radical. In the absence of oxygen,
amyloid cannot lead to the formation of free radicals [106]. In vitro studies have shown
that β-amyloid peptide can promote the reduction of Cu2+ to Cu+ by binding to Cu2+ and
forming hydrogen peroxide. Then, the Cu+ can react with hydrogen peroxide to form highly
reactive hydroxyl free radicals [106,112]. The importance of copper in amyloid-induced
toxicity is suggested by a study where methionine 35 was replaced with valine, which
showed an increase in toxicity, suggesting that this substitution may change the amyloid
conformation from α-helix to a mixture of α-helical and β-sheet conformations, thus
increasing Cu2+ binding followed by associated toxicity [106]. In addition, the replacement
of histidine 6, 13 and 14 in the β-amyloid peptide 1–42 by tyrosine, which binds to Cu2+

with a lower affinity than histidine, showed that this did not affect oxidative stress and
neurotoxicity, further emphasizing the importance of methionine in inducing oxidative
stress and its toxicity by amyloid [106].

After generating the sulfuranyl free radical, it can detach allylic H atoms from the acyl
chains of unsaturated fatty acids in the lipid bilayer to initiate the lipid peroxidation process
and, consequently, affect the lipid bilayer [106]. The oxidation products further diffuse
across the membrane, affecting other cellular organelles, greatly enhancing the action
of the primary amyloid free radical, leading to neuronal cells death and post-ischemic
brain neurodegeneration.

Studies with transgenic Caenorhabditis elegans expressing human β-amyloid pep-
tide 1-42 presented increased oxidation which correlated with worm paralysis [106,113].
However, some studies have found that the 33-35 area of the β-amyloid peptide 25-35 is
critical to the aggregation and neurotoxic properties of the β-amyloid peptide [106]. Study
in transgenic mice presented that methionine residing in the β-amyloid peptide affects
neurotoxicity, oxidative stress, and the formation of amyloid plaques [114].

5. Tau Protein Modification in Post-Ischemic Recirculation

Recent studies have documented an association between the expression of the tau
protein (MAPT) gene in the CA1 and CA3 regions of the hippocampus after ischemia
with a 30-day survival (Table 1) [69]. In the CA1 area, the expression of the MAPT gene
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increased significantly during 2 days following the ischemic brain injury (Table 1). In
contrast, expression of the above gene was reduced 7–30 days post-ischemia (Table 1). After
ischemia in the CA3 area, an oscillation of the expression of the MAPT gene around the
control was observed 2 days after ischemia (Table 1) [69]. In contrast, the expression of the
above gene increased 7–30 days after ischemia (Table 1) [69].

Studies of ischemic brains in animals and humans have documented the accumulation
of tau protein in neurons and glial cells in the hippocampus, cortex, and thalamus [83,115–121].
An increase in soluble tau protein in brain tissue using microdialysis in an ischemic brain is
also shown [122]. In addition, studies have indicated that the modified tau protein inhibits
the movement of neurofilaments, organelles, vesicles with an amyloid protein precursor,
and increases oxidative stress in neurons [123].

An increase in blood tau protein level was observed after global cerebral ischemia
in humans with a maximum increase on days 2 and 4 of survival [124]. This observa-
tion correlated with two types of neuronal death in the brain: necrosis and apoptosis,
respectively [125]. The above information suggests that blood tau protein levels may be
a prognostic factor for neurological outcome post-ischemia [124,125]. Increased levels of
tau protein have also been found in the blood of patients after ischemic stroke, which is
probably a factor in the progression of damage in neuronal cells [126]. In addition, an
increase in tau protein has been observed in humans in the cerebrospinal fluid following an
ischemic stroke [126]. Moreover, post-ischemia, blood-derived tau protein [126] crosses the
ischemic blood-brain barrier in two directions and can enhance its own pathology in the
brain [127]. Finally, ischemic blood-brain barrier insufficiency may exacerbate tau protein
neuropathology in the brain and also suggests that post-ischemic brain injury may be part
of the cause responsible for the increase in plasma tau protein concentration [126,127].

After transient local ischemic damage to the brain, the tau protein underwent excessive
hyperphosphorylation and accumulated at the border of the ischemic focus [128]. Following
forebrain ischemia in gerbils, tau protein phosphorylation has been shown to be controlled
by mitogen-activated protein kinase, cyclin-dependent kinase 5, and glycogen synthase
kinase 3 [129]. New data show that after ischemia, the tau protein undergoes hyperphos-
phorylation in neuronal cells and accompanies their apoptosis [120,121,128,130,131].

The information presented argues that the tau protein undergoes continuous hyper-
phosphorylation after a transient episode of cerebral ischemia. This triggers post-ischemia
the generation of paired helical filaments [132], neurofibrillary tangle-like [128,130,131] and
neurofibrillary tangles [133,134]. This points to the involvement of various modifications of
the tau protein in the death of neurons in the brain following ischemia. The above evidence
also explains a different principle regarding the time of death of neuronal pyramidal cells
in the CA1 and CA3 areas of the hippocampus after ischemia in a manner dependent on
tau protein hyperphosphorylation and modification of its structure.

6. Tau Protein versus Oxidative Stress in Recirculation

Several studies have documented that oxidative stress triggers tau protein phos-
phorylation in neuronal cells in vitro [135–137]. Additionally, carbonyl-4HNE facilitates
hyperphosphorylation of the tau protein and aggregation in cultures [137–140]. In addi-
tion, oxidative stress also generates the oxidation of fatty acids which have been found
to promote tau protein polymerization in cultures [137,141]. In mice deficient in mito-
chondrial superoxide dismutase 2, tau protein hyperphosphorylation, oxidative stress,
and mitochondrial dysfunction were observed in parallel [137,142]. In addition, mito-
chondrial oxidative stress has been shown to induce hyperphosphorylation of the tau
protein [137,142]. It was shown that zebrafish deficient in folic acid induced oxidative stress
related to hyperphosphorylation of tau protein and its aggregation and accumulation of
amyloid plaques [137,143,144]. Damage to mitochondria, development of oxidative stress,
increased tau protein phosphorylation and nuclear translocation of glycogen synthase
kinase 3 beta were observed in rabbits after intracisternal injection of β-amyloid peptide
1-42. It was shown that in vitro treatment of rat cortical neurons with cuprizone, a copper
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chelator, with Fe2+ and H2O2 oxidizing molecules, significantly increased the activity of
glycogen synthase kinase 3 beta and tau protein hyperphosphorylation [137,145]. However,
simultaneous addition of lithium chloride to these cultures lowers the activity of glycogen
synthase kinase 3 beta and tau protein phosphorylation, recognizing glycogen synthase
kinase 3 beta as an enzyme involved in tau protein phosphorylation after oxidative stress
in this model [137,145]. This was supported by the promotion of the hyperphosphorylation
of the tau protein observed in rat cortical neurons in vitro by glycogen synthase kinase
3 beta and oxidative stress [137,145]. Taken together, this evidence suggests that glycogen
synthase kinase 3 beta plays an important role in the pathology of tau protein and that
effective modulation of its action may prevent apoptosis and tau protein phosphorylation
induced by oxidative stress [137,146]. However, in addition to the glycogen synthase
kinase 3 beta, oxidative stress affects other signaling pathways and kinases that mediate tau
protein hyperphosphorylation. In fact, 4-hydroxynonenal has also been found to directly
activate stress-activated kinases, such as c-Jun NH2-terminal kinase and protein 38, in
neurons in vitro [147]. Another possible element in the interaction between oxidative stress
and tau protein phosphorylation is peptidyl prolyl cis-trans isomerase 1. Therefore, it
has been found that the accumulation of hyperphosphorylated tau protein promotes the
production of reactive oxygen species and oxidative stress (Figures 1 and 2) [137]. Ad-
ditionally, this evidence strongly suggests that oxidative stress, in turn, directly induces
hyperphosphorylation of the tau protein [137]. In this context, tau protein hyperphospho-
rylation and oxidative stress emerge as two components of a vital “vicious circle” leading
to a progressive increase in radical oxygen species and modified tau protein, and ultimately
to neuronal death [137]. The data presented above clearly prove that the tau protein in
patients and animals after cerebral ischemia causes oxidative stress in neuronal cells [137].
On the other hand, the line of evidence also suggests that the generation of reactive oxygen
species may directly induce hyperphosphorylation and aggregation of the tau protein.

7. DNA Damage in Brain Cells during Recirculation

Ischemic brain damage leads to an increase in free radicals oxidative stress, which
causes damage to DNA, gray and white matter and the blood-brain barrier. Oxidative
damage to DNA occurs immediately after cerebral ischemia [30]. Oxidative damage to
DNA in the brain following ischemia has been studied frequently in neurons. Unlike
neurons, microglia, astrocyte, oligodendrocyte, and endothelial cells, which are also prone
to ischemic damage, glial DNA damage is less studied than neuronal DNA damage.

7.1. Neurons

Research suggests that post-ischemic brain injury produces base modifications, apurinic/
apyrimidinic sites, double- and single-strand breaks of DNA in neuronal cells, all of which
activate pro-death signaling pathways and accelerate neuronal death (Figure 1) [148]. Study
found that the amount of urine base modification was negatively correlated with neuro-
logical outcome after brain ischemia and significantly decreased after rehabilitation [148].
This information suggests that an increased amount of base modification in urine could be
used as a biomarker for neurological outcome post-ischemia, while a decreased amount of
base modification after rehabilitation is associated with a better prognosis. This evidence
supports the idea that damage to DNA structure, for example the development of base
modification, may serve as a prognostic marker after ischemia and that DNA repair may
be a potential therapeutic target post-ischemia.

7.2. Microglia

Microglia cells are responding rapidly to cerebral ischemia, including production
reactive oxygen species [2,148]. After ischemic damage, microglia shows oxidative DNA
damage, including the generation of base modifications [31]. Microglia cells in mice
can increase oxidative stress by the voltage-gated proton channel, thus contributing to
DNA damage [148]. It should be noted that microglia plays a dual role in relation to
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cerebral ischemia due to different phenotypes, namely with a pro-inflammatory phenotype
it threatens the life of neurons and with a repair phenotype it supports the survival of
neurons [29,31,148]. Thus, modulation of the microglia phenotype may have a favorable
effect on post-ischemia recovery.

7.3. Astrocytes

Astrocytes are also sensitive to DNA oxidative damage. Cerebral ischemia is known to
induce astrocyte activity, and this phenomenon can cause DNA damage in astrocytes [148].
Activated astrocytes in the ischemic focus show oxidative damage to DNA, such as single-
and double-strand breaks and base modifications (Figure 1) [148]. The activity of astrocytes
influences the formation and transformation of the glial scar, the structure and function
of neuronal cells and the blood-brain barrier after ischemia. Given the pivotal role of
astrocytes in repairing blood-brain barrier, they are expected to facilitate the rebuilding of
the blood-brain barrier and improve neurological outcomes following cerebral ischemia.

7.4. Oligodendrocytes

Since oligodendrocytes determine myelination, damage to the DNA in these cells
can cause axonal demyelination following ischemia [148,149]. DNA damage and repair in
oligodendrocyte cells has been demonstrated in studies after ischemic brain injury [149,150].

7.5. Endothelial Cells

DNA oxidative damage is also documented in the vascular endothelium. Experimental
studies prove that endothelial cells in small vessels of the brain show signs of DNA single-
strand breaks within 3 days after focal transient cerebral ischemia [148]. DNA damage in
the vascular endothelium causes cognitive impairment, the development of cerebral edema
and infiltration of inflammatory cells, which may directly affect the neurological outcome
after cerebral ischemia [148,151].

8. Side Effects of Post-Ischemic Recirculation

Recirculation triggers serious complications, such as failure of the blood-brain barrier,
development of cerebral edema and hemorrhagic transformation of the ischemic focus and
the generation of free radicals. Patients who develop life-threatening complications have
poorer neurological outcomes that can often be fatal.

8.1. Blood-Brain Barrier Insufficiency

Matrix metalloproteinases, a key factor in damage to the blood-brain barrier (Figure 3),
can cause oxidative damage to DNA, resulting in neuronal death [148]. Brain ischemia
may induce abnormal behavior of gelatinase A and B, which results in increased perme-
ability of the blood-brain barrier (Figure 3) and enlargement of the ischemic focus [54,148].
Gelatinases, which cause damage to the blood-brain barrier, also act as nucleases that enter
the nucleus of the neuron and break down nuclear DNA repair proteins in post-ischemic
neuronal cells [148]. This evidence supports the existence of internal DNA damage that
induces the death of neuronal cells following ischemia [148].

8.2. Brain Edema Development

Edema development induced by free radical oxygen stress includes cytotoxic and vaso-
genic edema (Figure 3). Cytotoxic edema is associated with abnormal ion transport across
membranes. Ion transport proteins, which are oxidized by reactive oxygen species, are in-
volved in ion pumps, ion channels, ion exchangers and ion cotransporters. Reactive oxygen
species oxidize sulfhydryl groups located on ion transport proteins, peroxidate membrane
phospholipids, reduce the amount of ATP and inhibit oxidative phosphorylation, which
causes abnormal ion transport, causing cytotoxic edema (Figure 3) [152,153]. In addition,
reactive oxygen species are involved in inhibiting glutamate uptake by Na+/glutamate
transport [2]. The enormous release of glutamate during reperfusion injury [15] destroys K+,
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Na+ and Ca2+ homeostasis, causing membrane dysfunction and development of cytotoxic
edema (Figure 3) [154]. Vasogenic edema is caused by a failure of the blood-brain barrier,
and the likely mechanisms leading to damage to the blood-brain barrier are described
above. (Figure 3).
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8.3. Hemorrhagic Transformation of the Ischemic Focus

Hemorrhagic transformation is directly related to uncontrolled permeability of the
blood-brain barrier for plasma and blood cells to the brain (Figure 3). The blood-brain
barrier consists of endothelial cells, basement membrane, tight junctions, astrocytes and
pericytes [2,155]. These cells have enzymes such as nitric oxide synthase and NADPH oxi-
dase [2,52,156–158]. Following ischemia-reperfusion injury and treatment with thrombec-
tomy or thrombolysis, H2O2 generated by NADPH oxidase induces changes in the blood-
brain barrier by altering tight junction proteins and thereby increasing monocyte migra-
tion [2,159–161]. Free radicals, especially NO and peroxynitrite, activate the mechanisms of
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matrix metalloproteinase’s, which lead to the degradation of laminin and collagen in the
basement membrane, which results in uncontrolled permeability of the blood-brain barrier
after cerebral ischemia [157,161–166]. Matrix metalloproteinases have been shown to be
involved in the development of hemorrhage associated with plasminogen activator [2,167].
Thus, it is possible that NO is involved in the hemorrhagic conversion of the ischemic
brain following plasminogen activator therapy mediated by matrix metalloproteinases. In
addition, plasminogen activator may increase matrix metalloproteinases, especially matrix
metalloproteinase-9, via the lipoprotein receptor mechanism, but the ultimate effect of
NO and plasminogen activator on hemorrhagic conversion following embolic ischemia
of brain is still unknown [54,167–170]. It has been shown that peroxynitrite can inactivate
plasminogen activator, influencing the course of action of thrombolysis [2,171–173].

9. Conclusions

Free radicals are physiological byproducts of cellular metabolism and are therefore
inevitable. On the other hand, the imbalance between pro-oxidative and antioxidant cellular
molecules leads to a vicious cycle where free radical oxidative stress causes oxidation of
DNA, lipids and proteins in neurons and ultimately their death after ischemia. Oxidation
can be considered a neuropathological marker in cerebral ischemia. It contributes to disease
progression by increasing amyloid accumulation, tau protein hyperphosphorylation, and
loss of neurons and synapses, leading to post-ischemic brain neurodegeneration in the form
of Alzheimer’s disease proteinopathy (Figure 4). Additionally, several lines of evidence
indicate that amyloid itself causes oxidative stress (Figure 4). Amyloid-triggered oxidative
stress occurs in a bilayer in which the β-amyloid peptide is inserted as oligomer and serves
as a source of reactive oxygen species [106].

It is worth noting that oxidative stress can modify the tau protein by phosphorylation
which mediates the neurodegeneration e.g., in Drosophila melanogaster [174]. Phosphory-
lation of the tau protein blocks the movement of organelles, neurofilaments and vesicles
of the amyloid protein precursor in neurons and increases oxidative stress post-ischemia
(Figure 4) [123]. Oxidative stress is an important factor contributing to the accumulation
and hyperphosphorylation of tau protein with the development of neurofibrillary tangles,
indicating that it plays a key role in the pathogenesis of post-ischemic brain neurodegen-
eration in the form of Alzheimer’s disease proteinopathy (Figure 4). Oxidative stress has
been shown to stimulate tau protein hyperphosphorylation and amyloid production, but
the accumulation of amyloid and hyperphosphorylated tau protein also induces oxidative
stress. Moreover, the close relationship between amyloid, hyperphosphorylated tau protein
and oxidative stress suggests that this phenomenon is a key element in the vicious cycle
that plays a significant role in the pathological process of modifying tau protein and amy-
loid, resulting in post-ischemic neurodegeneration of the brain in the form of Alzheimer’s
disease proteinopathy (Figure 4).

In addition to the accumulation of free radicals, deficiency of superoxide dismutase,
glutathione peroxidase and catalase has also been found after cerebral ischemia. Free radi-
cals, especially reactive oxygen species and reactive nitrogen species, have intense oxidation
or nitrification abilities in the brain. During post-ischemic brain recirculation with re-flow of
blood, the massive production of reactive oxygen species and reactive nitrogen species leads
to the death of neurons through DNA damage, protein dysfunction and lipid peroxidation.
Oxidative/nitrosative stress in brain ischemia-reperfusion injury also plays a key role in
inducing hemorrhagic transformation of the ischemic focus in conjunction with changes in
the blood-brain barrier and development of cerebral edema (Figure 3). Research indicates
that mitochondrial dysfunction [25,175], metal dyshomeostasis [41,176–178], tau protein
hyperphosphorylation [123,174], neuroinflammation and amyloid accumulation [106] are
the primary processes that induce oxidative stress. Inactivation and deficiency of antiox-
idant enzymes reduces the removal of free radicals from the brain during recirculation.
This indicates that oxidative stress is an important neuropathological hallmark of the
post-ischemic brain [175,179].
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Broadly speaking, in order to survive cerebral ischemia, neuronal and glial cells de-
veloped integrated responses, so-called longevity safety processes, consisting of several
genes called vitagenes, including but not limited to members of the heat shock protein
system to detect and control various forms of pathological processes [180]. All of these
considerations strongly support the idea that the smooth functioning of the maintenance
and repair processes is crucial for the survival of brain cells under conditions of oxida-
tive and nitrosative injury, and that tolerance to brain stress can be achieved through
modulation of a multigene system such as the hormesis-vitagene network [180]. The ef-
ficient functioning of repair and maintenance processes is crucial for both survival and
quality of life after ischemic brain injury. This is accomplished by a complex network of
so-called longevity processes, which are made up of several genes of vitagene network,
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including the heat shock system, a highly conserved mechanism responsible for the repair
and preservation of cellular macromolecules such as proteins, RNAs and DNA. During
inflammation after cerebral ischemia, there is a gradual decline in the strength of the heat
shock response, which may prevent protein damage from repairing, leading to the death of
neuronal cells. In this situation, the concept of dose-response hormetic neuroprotection
should be applied with the key role of heat shock proteins as elements of the vitagene
network in neuroprotection and redox proteomics as redox modulators of stress-responsive
vitagenes [181,182]. The use of hormetic machinery makes it possible to apply specific
cell, tissue and/or pathological pathways therapies in a timely manner in post-ischemic
brain. Natural antioxidants [3] are able to activate vitagenes such as heat shock protein
70, heme oxygenase, thioredoxin reductase and sirtuins, which are part of the integrated
cell stress tolerance system [181]. Thus, activation of the vitagene system, with elevation
of thioredoxin reductase, heme oxygenase 1, glutathione and sirtuins, results in a reduc-
tion of pro-oxidative conditions [181]. Dietary antioxidants have been shown to have
neuroprotective effects by activating hormetic pathways, including vitagene. Therefore,
regulation of endogenous cellular defense processes through the heat shock system, natural
and pharmacological antioxidant substances may be an interesting therapeutic approach
in ischemic neurodegeneration of the brain. Thus, by sustaining or restoring vitagenes
activity, it is possible to delay the development of post-ischemic injury and thereby increase
life expectancy [180]. Therefore, preventing oxidative damage to DNA in brain cells and
restoring gray and white matter and normal blood-brain barrier activity is critical to the
successful treatment of post-ischemic brain.
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