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Abstract

We consider a continuous-time Markov chain model of SIR disease dynamics with two lev-
els of mixing. For this so-called stochastic households model, we provide two methods for
inferring the model parameters—governing within-household transmission, recovery, and
between-household transmission—from data of the day upon which each individual became
infectious and the household in which each infection occurred, as might be available from
First Few Hundred studies. Each method is a form of Bayesian Markov Chain Monte Carlo
that allows us to calculate a joint posterior distribution for all parameters and hence the
household reproduction number and the early growth rate of the epidemic. The first method
performs exact Bayesian inference using a standard data-augmentation approach; the sec-
ond performs approximate Bayesian inference based on a likelihood approximation derived
from branching processes. These methods are compared for computational efficiency and
posteriors from each are compared. The branching process is shown to be a good approxi-
mation and remains computationally efficient as the amount of data is increased.

Introduction

First Few Hundred (FF100) studies are data collection exercises carried out in the early stages
of pandemic influenza outbreaks [1-4]. The aim of these is to characterise a novel strain to
determine its impact and hence inform public health planning [5, 6]. FF100 studies involve the
collection of data from households where one person is confirmed to be infected. The mem-
bers of the household are surveilled to identify their time(s) of symptom onset and the study is
continued until the first few hundred cases have been observed, or adequate characterisation
has been achieved. Households are the primary unit of observation because they are conve-
nient to surveil—in contrast to more general contact tracing—and a large fraction of transmis-
sion occurs within the household [7].

Stochastic models, where the population are split into households with different rates of
mixing within and between households, are a natural framework to understand FF100 data
[8]. Recent work inferred within-household epidemic parameters from this type of household
stratified data [9, 10]. In [10], inference is performed using a Bayesian MCMC framework,
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with exact evaluation of the likelihood, returning a joint posterior distribution for all parame-
ters of interest and hence the within-household reproductive ratio. In this paper we present
two methods for performing inference for a Markovian SIR household model—that also infers
the between household transmission parameter. The first method uses a standard data-
augmented approach [11-13]. The second is a new method based on a branching process
approximation, which is potentially more computationally efficient. With an estimate for the
between household mixing we can then in turn estimate the household reproductive number,
R-, and the early growth rate of the epidemic, r, which are of importance to public health
response [5, 6].

The data we assume to be available are illustrated in Fig 1; we observe only the times, at a
daily resolution, when individuals become symptomatic, which is assumed to coincide with
infectiousness; recovery times are not available. This is realistic for a disease such as influenza
where the onset of symptoms and infectiousness are highly correlated, but times of recovery
are very hard to identify. The main challenge in this inference problem, as with many similar
models and datasets, is that the likelihood is difficult to compute due to the missing data. The
standard approach to these sorts of problems is to use a data-augmentation method [11, 14].
In this approach, all unobserved events are treated as unknowns to also be sampled within the
MCMC routine; for the model considered in this paper these would be the exact infection and
recovery times for each individual within each household. When the exact times are assumed
known the likelihood is trivial to evaluate. A data-augmented approach potentially allows great
flexibility in model choice and fitting, but the trade off is that the MCMC scheme needed to
sample from the joint distribution of parameters and unknown data is quite complex and dis-
plays slower mixing. Convergence can be an issue when there is a large amount of missing
data [15, 16] and the scalability of these algorithms is poor as more data is added [17]—
DA-MCMC is essentially a serial algorithm that works on the whole data set at once and can-
not exploit parallelism easily.
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Fig 1. A realisation of the SIR household model. The households are all of size 3 and the model is
described in the Models and Methods section. The times of symptom onset, binned into days, in the first 50
infected households at the beginning of an epidemic outbreak are presented. The size of points corresponds
to the number of infections on that day. The lines provide a visual reference to link infections within the same
household.

https://doi.org/10.1371/journal.pone.0185910.g001
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Motivated by these problems, we develop another approach, based on approximation of the
original process, and compare it to a data-augmentation method. Our main goal in developing
this is to produce a more computationally-efficient algorithm that can potentially be used for
real-time inference. Our approach is to carefully consider the dynamics and structure of the
problem to allow us to derive an approximation to the exact likelihood that can be evaluated
using a novel combination of numerical methods (matrix exponential methods [18], stochastic
simulations [19] and numerical convolutions). This allows us to use a simple Metropolis-
Hastings algorithm to compute a joint posterior for all the parameters of interest. There are
three main assumptions underpinning our method. The first is that we can approximate the
early time behaviour of the epidemic as a branching process where only a single introduction
to each household is possible. This is a very mild assumption and we would expect data col-
lected in the early stages of an outbreak, say from an FF100 study, to conform to this reason-
ably closely. The second, more technical assumption we make, is that we can replace certain
random varijables that arise in the problem with their mean values. The third assumption we
make is that households are infected at uniformly distributed times on the day of their initial
infection. We show that our method provides a good approximation to the full model and the
final posteriors that we compute show good convergence to the true model parameters as the
amount of household data is increased. The method becomes more efficient than the standard
DA-MCMC when dealing with large numbers of households, at the expense of introducing
some positive bias in our estimates of the between household transmission rate.

Models and methods
Households model and data

The dynamics of the epidemic are modelled as a continuous-time Markov chain. Individuals
are grouped into H mutually exclusive households and make effective contact at a high rate
within households and at a low rate between households. In this paper, for simplicity, we will
assume that all households are of the same size, N, and an SIR model for disease dynamics.
Thus each individual is classified as susceptible to infection, s, infectious and able to infect sus-
ceptible individuals, 7, or recovered and immune to the disease, r. As N is fixed, the state or con-
figuration of a household can be specified by the number of susceptible and infectious
individuals within the household (where r = N — s — 7). Note that in this paper we do not con-
sider models with a latent / exposed period. Extensions allowing for this are detailed in the
Discussion.

If we index households by j = 1, .. ., H, then the state of the system, Y(¢) can be specified by
an H x 2 matrix where the j'th row gives the number of susceptible and infectious individuals
in household j,

Y(t) = (Sj(t)? ij(t))jzle' (1)
Thus the state space is then (dropping the dependence on time),
S ={(si) sy €{0,1,... N} |5, +i, <NV j}.

Note that there are lower dimensional representations of household models in which a state is
a vector which describes the total number of households in each possible configuration [20];
however, we adopt the higher dimensional version here as it simplifies inference.

The dynamics of the SIR household model are defined by the transitions that can occur
throughout the population and their corresponding rates. Infectious individuals make effective
contact within their household at rate 8. In household j the probability that effective contact
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within the household leads to an infection is %, and hence the rate of within household infec-

. B0
tion is =~

at rate yij(t). Lastly, infectious individuals may make effective contact with any individual in
the population outside of their own household at rate a. Thus between household effective
contact results in an infection in household j at rate

asj(t)(l(t) - ij(t))
NH-1)

. Each infectious individual recovers at rate ¥, so recoveries in household j occur

where I(t) = ; ij(t) is the total number of infectious individuals in the population.

We assume that the first infection is seeded in a single household at some U(0, 1) distrib-
uted time, 6y, such that the matrix encoding the first state, Y(6), has first row (N — 1, 1) and all
other rows (N, 0). Note that, as our data only reveals cases of infectiousness at a daily resolu-
tion, the time of the first infection is unknown.

Data. Suppose we have observed the start of an epidemic over some time period (0, T].
We assume our data counts the cumulative number of infections in each household each day,
where day t is defined as the time interval (¢ — 1, t]. Here we are assuming that symptoms
coincide with infectiousness. Each household is labelled by j = 1, .. ., M in the order that they
became infected, but note that as the process is only observed at a daily resolution (taken to be
the end of each day) the ordering within a day is arbitrary. It is natural to specify this data in
terms of two quantities: the days on which each household is infected and the time series of
cumulative infection counts within each household, starting from their day of infection. More
precisely, let y, be the set of the labels (j) of the households that became infected on day ¢.
Then let w" = (w;)? be a vector where wy, is the cumulative number of infection events within
the jth household, recorded at the end of day k, from the day of the households initial infec-
tion up to day T. Thus the data is completely specified by the sets {y}, - ;. r and the vectors
{w(j)}j - 1. m» which we denote

D= {{l//t}tzl:T7 {WU) }j:I:M}' (2)

These quantities are illustrated for a specific example in Fig 2. We also define Q, = U}T;ll i

which is the set of labels of households that became infected before day ¢; this will be used in
the derivation of the branching process approximation.

Data augmented MCMC

Data augmented Markov Chain Monte Carlo (DA-MCMC) is a powerful, exact Bayesian infer-
ence method for data with missing information. We adopt an approach similar to [11] to infer
the joint posterior density of (@, 5, 7). The general approach is to construct an augmented like-
lihood, the joint density of the data and the missing information given the model parameters,
and use this to construct a single-component Metropolis-Hastings algorithm. This method
proves useful for FF100 study data as the exact times of infection over each day are missing
and the number of recovery events, and the times at which they occur, are entirely unknown.
Although the data-augmented approach is a standard method for this kind of problem, we are
not aware of it having been implemented in a household model where no transition times are
known exactly and in which all parameters are unknown. For example, data-augmented
MCMC has been implemented for a similar model with data obtained at regular discrete
times, however parameters associated with the infectious period or recvery distribution were
assumed to be known [12, 13]. Hence we outline the algorithm developed for our particular
problem.
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Fig 2. An illustration of how the data is structured for inference. An outbreak observed over T =6 days,
resulting in M = 8 households becoming infected. The red circles indicate the days on which new infections
are observed and their size is proportional to the number of infections. The sets y; indicate which households
become infected on day t. Note that , = @ indicates that no new houses were infected on day 4. The
cumulative number of observed cases within each household, over the 6 days are: w = 1,1,1,2,2,3),
w®=(1,223,3),w¥=(1,1,1,1,1),w®=(1,1,1,2), w® = (1, 1), w® = (2, 3), w” = (1, 1) and w® = (1).

https://doi.org/10.1371/journal.pone.0185910.g002

As per the usual approach we augment our data with the transition times @ € R™ and corre-
sponding states Y = {Y(0,), .. ., Y(6,,)} in the underlying model, where m is the unknown
number of transitions over time (6, T] which is allowed to vary. Additionally we consider the
classification of infection events as missing, that is, we augment the data by transition labels
{ € {recovered, within, between}". This is such that we can construct sets of transition indices,
A, B and C, which correspond to within-household infection, between-household infection
and recovery events respectively. In writing down the expression for the augmented likelihood
function we adopt the convention that all quantities (s, i) are evaluated immediately prior to a
transition. Hence we have,

Lpy = f(D,0,Y,{|o, B,7,0)
B BsOi0) 1T s (10 — i) 1o
= Jeaa[I5=711 N(M—1) [T
jeA keB leC

L (P00 a1 i)
><exp{—pzlcz1 (N —7 + N(M—1) + yz@) 0, — Hp_l)},
where superscripts denote transition indices, subscripts denote household indices, terms with-
out a subscript refer to the household which changes state, 1,y -, denotes an indicator func-
tion corresponding to one if the data, D, could have arisen from the events defined by (0, Y, {)
and 0,,,,; == T for simplicity. The indicator function ensures that the augmented data has the
same number of infections in each household, each day, as our observed data, and that the aug-
mented data corresponds to a feasible realisation of a household SIR model. For example, the
indicator takes the value 0 if there is a within-household infection in a completely susceptible
household. Note that inference could be made without labelling the two kinds of infection,
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however this more explicit representation produces gamma or truncated gamma marginal
densities of § and ¢ for uniform, gamma, inverse uniform or truncated gamma priors; hence
they may be efficiently sampled.

Marginal posterior densities of @, 3, ¥ and 6, can be evaluated and sampled from in a similar
way to [11]. Lastly the joint posterior density, f(8,Y,{|f3,7, 0,, D), is proportional to Ly, thus
it can be sampled from by randomly choosing from the following five kinds of moves accord-
ing to an arbitrary probability mass function with non-zero components, {qy, . . ., gs}:

(i). Randomly select an infection time, 8, choose a candidate Uniform(|8,], [6;]) distributed
infection time, where |- | and [-] refer to the floor and ceiling function respectively. Let

the augmented likelihood corresponding to the candidate be denoted by L. The new
point is accepted with probability
L
min{ 24 15 ; (3)
LDA

(ii). Randomly select an infection event and change its type, (), from between to within
household infection or vice versa. The new point is accepted with probability as in
Eq (3);

(iii). Randomly select a recovery time, ), and choose a candidate Uniform(6y, T) distributed
recovery time, where 0y is the time of the first infection within the household. The new
point is accepted with probability as in Eq (3);

(iv). Insert a Uniform(6;, T) distributed recovery time in a randomly chosen household. Let
M be the number of households infected by time T'and |C| be the number of recovery
transitions in Y. The new point is accepted with probability

L,,M(T —0)q.
mln{ DA ( k)qo71}; Or,
Ly, (ICl + 1)q,

(v). Randomly select and remove a recovery event with probability
min {M ,1 } .
LpaM(T = 0,)q;

Acceptance probabilities are the ratio of the likelihood functions multiplied by the probability
of returning to the current state, divided by the proposal density. For moves (iv) and (v),
related to the insertion and removal of recovery times, we have that the probability density
of choosing move (iv), selecting a particular household and inserting a recovery time is
q4/ (M(T - 6y)), and the probability of choosing move (v) and selecting one of |C| recoveries is
qs/|Cl.

Each iteration of the DA-MCMC algorithm is comprised of Gibbs samples of o, 3, ¥ and
0, followed by a Hastings step for (0, Y, {) as per (i)-(v). The distribution of these samples con-
verge to the joint posterior distribution of (0, Y, {, &, B, 7), though consecutive samples will be
highly correlated. The marginal over the parameters is simply obtained by ignoring the sam-
plesof (0, Y, {).
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Branching process approximation

We now provide an approach for analysing the household model by approximating it by a
model that acts like a branching process at the household level. This model is equivalent to the
model obtained by letting the number of households tend to infinity. As a consequence,
between-household infection occurs into completely susceptible households almost surely; this
approximation is reasonable, as the data we wish to perform inference on is from the very ear-
liest stages of an outbreak in a large population. The main reason for considering the branch-
ing process model is that households act independently after initial infection. Hence we can
consider the dynamics within each infected household, following their initial infection, in iso-
lation from each other [8, 21]. Under this model we construct an approximate likelihood with
the aim of obtaining accurate estimates for the joint posterior distribution of (e, 3, y). The pos-
teriors using this approximation are compared with the full household epidemic model in the
Results section. We show that the resulting posterior distribution approximates the exact pos-
terior distribution of the household model well, while the independence assumption allows for
computational gains in the inference as the data set grows in size.

As we are considering households in isolation from each other, we define the state space for
a single household as

S={(s,i) €{0,1,..,N}’ :s+i < N}.

The within-household dynamics are defined by the transitions that can occur within an indi-
vidual household and their corresponding rates; these are simply the within-household infec-
tion and recovery transitions with rates as described before. The within-household process can
be defined in terms of its infinitesimal transition rate matrix, Q, given by

Nﬂill for (x,y) =(s—1,i+1),s>1

yi for (x,y)=(s,i—1),i>1
[Q]f(s-i)-f(X-y) - Bsi

“N-1 ¥ for (x,y) = (s, i)

0 otherwise,

wheref : § — {1,...,|S|} is a bijective map [22]. The first infection within each household
moves it into state (N — 1, 1), at which point the within-household dynamics determine how
the disease spreads within the household for the remainder of the epidemic.

We assume that between-household infection occurs due to homogeneous mixing of all the
individuals in the population at rate ¢, thus the rate at which new households are infected is
simply al(t), where I(t) is the total number of infected individuals in the population at time ¢.
The model is initialised with a single infected household at a U(0, 1) distributed time.

For this model we can identify the threshold parameter, R-, which is a household (popula-
tion level) reproduction number [8]. This is the expected number of households infected by a
primary infectious household in an otherwise susceptible population of households; where a
household is considered infectious while it contains at least one infectious individual and a
household is considered susceptible if it contains only susceptible individuals. It is one of at
least five reproductive numbers that might be used when assessing the controllability of a dis-
ease in a community of households [23-25], but we adopt it herein as it is relatively easy to cal-
culate and interpret. Let {X,},_+ be the Markovian process that describes the state of an
individual household from the time of its infection (i.e., the time of the first infection within
the household). Let I(k) be the function which returns the number of infectious individuals
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corresponding to state k. Then we have

R, _EUUX aI(X,) dt},

where X, = (N — 1, 1) is the initial state of the process [8, 26, 27]. This can be calculated by solv-

ing a system of linear equations that depend on the parameters of the epidemic model [27, 28].
Also of interest from a public health perspective, is the early growth rate, r; this is also called

the Malthusian parameter. Under the same conditions as above, this is defined as the unique

solution to
E [/ ol (X,)e ™ dt] =1
0

This can once again be evaluated efficiently [27].

Approximate likelihood. The branching process likelihood approximation relies on
expressing the likelihood in terms of the data on a given day, ¢, partitioned into newly infected
households, y;, and formerly infected households each day, Q, = U_jy); (see Fig 2 for an

example). With this partition, the likelihood for (e, 5, y) can then be written as,

) e (v,

we have invoked the independence between ({WO)}jele//t) and {W(j)}jegt due to the branching

process assumption. That is, we use the fact that under the branching process assumption

households are conditionally independent given their initial infection. Note that we have split

the likelihood in a way that does not use the Markov property, this is because the Markov

property can not be easily exploited here as the state of the process is never observed exactly.
As Q, = @, that is, there are no households infected before ¢ = 0, the term

Lo ) = T [P (1), ) ) @

P (v,

Wiheo, ) = P()

is determined by the initial condition. Further, households in v, are identically distributed in
the absence of within-household information. Thus their labels are arbitrary and only the
number of households in y, is relevant, that is

0

where |y,| denotes the set norm of y;, that is, the number of households infected over day .
Thus we can factor the likelihood, Eq (4), into two parts that are related to the within-house-
hold dynamics and between-household dynamics respectively. That is,

) )

) =2 (0

L(OC,[;,V) = Lw((xvﬁvy)l’b(avﬁay)v

where

T

Lw(“aﬁ’y) = HP({WO)}jex//,wjt) (5)

t=1
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and

T

Ly( ,7) = [ TPl {w?}cq)- (6)
t=1
We refer to L,, as the within-household likelihood function and L, as the between-household
likelihood function. In the following we detail how we calculate L, and L,

Between-household likelihood, L,. Each term in the product for the between-household
likelihood, Eq (6), is the probability that we observe H, := || new infected households on day
t, given the data, over the time period [0, T1, for households that were infected before day .
We decompose H, into two components, H"Y and H", such that H, = HY + H". The first
component, H'", is the number of the newly infected households on day ¢ that are infected by
a household in Q, i.e., a household infected before day t. The second component, H.", is the
remaining number of newly infected households on day ¢, i.e., those that are infected by house-
holds that become infected on day t. We do not observe this demarcation in our data, but it
assists us in the evaluation of the likelihood.

We start by considering the calculation of the probability mass function (pmf) of H",
denoted h'". Then, we consider the evaluation of the pmf of H\”, h'. The required pmf of H,,
h,, is subsequently evaluated using efficient methods for calculating convolutions.

First generation of households, H(". To calculate h", the pmf of the number of first gen-
eration infected households, we note that on the first day of the epidemic there is only a single
household infected at a U(0, 1) distributed time. Hence there is exactly 1 infected household in
the first generation of households, so

P(HY =1)=1.

For t > 2 we consider the rate at which the households in Q, infect new households. As we
model the outbreak as a branching process, we assume that only completely susceptible house-
holds are infected, hence the instantaneous rate of infection at time 7 € (¢ — 1, ] from the
households in Q, is

oy 1(x),

jeQy

where X/ is the state of household j at time 7 and I(k) is a function returning the number of
infectious individuals in a household in state k.

Thus the first generation of households are created as an inhomogeneous Poisson process,
and conditioning on the information about the households in Q,, {w(j)}j c o, we have

t
{w} _, ~ Poisson | o / (X
JEQ Z 1

jeq V-

HY

wi) dr) . (7)
Hence, we need to evaluate the distribution of

A, = ocZ/t]I(XJT'

jeo, Y=

wm) dr.

However, this is expensive to compute, so instead we replace A, in Eq (7) with its expectation,
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which can be evaluated in a feasible manner. Precisely, we use

. e HME[A )"
p (H,“) _ h’{wo’}jm[) ~ %

where

EA)=a) /tt1 E [I (X{

je

wUN dr. (8)

This approximation allows tractability of the between-household likelihood; we do not how-
ever restrict the paths of households in €, such that A, = E[A/]. As A, is the force of infection
over a short time period (a day) it should have relatively low variance, thus replacing A, by its
expectation may provide a reasonable approximation. Later we detail how the conditional
expectations, Eq (8), can be calculated using matrix exponential methods.

Subsequent generations of households, H,. Recall that the number of newly infected
households on day tis H, = H" + H. The first component, H\", is the number of the newly
infected households on day t that are infected by a household in Q,, i.e., a household infected
before day t. The second component, H'*), is the remaining number of newly infected house-
holds on day t, i.e., those that are infected by households that become infected on day ¢.

We assume that the infection of the H;" households are uniformly distributed over day t,
and since their dynamics are independent, we have that H'" is the convolution of H"
random variables; we will use G to denote one of these random variables. Each of these random
variables correspond to the size of a household branching process at time 1 that was initialised
at a Uniform(0, 1) time. The calculation of the pmf of G is once again computationally expen-
sive, so here we choose to estimate this distribution using simulation [19]. We are simulating
over a short period of time (a day) and use the most efficient representation to minimise
computational time. This allows for a large number of simulations to be produced in a
computationallyover-efficient manner.

Once we have estimated the pmf of G, we can calculate h, from h" as
h, = Mh{",

where the convolution matrix, M, is defined as follows. Let ¢ be a column vector of the pmf of
the random variable G + 1. Then let

G=¢ *x¢, j=2,

where “’ denotes a discrete convolution and ¢; = ¢. The matrix M is then given by
M =le,c,¢c,...],

where e, is a vector of Os with the exception of a 1 in the first entry. The matrix M is truncated
such that no probability needed for the calculation of the likelihood is lost. The calculation of
this is not expensive, even for large matrices as the convolutions can be done using discrete
Fourier transforms [29]. In this paper we simply use the built in MATLAB function conv (),
although other methods may provide computational gains, if required.

Single household dynamics, E[A,] and L,,. Recall, the evaluation of the pmf hE” fort> 2,
corresponding to the number of first generation infected households on day ¢, requires the
evaluation of the expected force of infection over day ¢t from households infected prior to day f,
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E[A;]. We begin by detailing the evaluation of E[A;], and then note how the within-household
likelihood, L,,, follows.

The computation of the E[A,] can be expressed in terms of integrals of the expected number
of infectious individuals within each household in Q,, Eq (8). As this expression is a sum over
independent households we simplify our exposition, by detailing the calculation for a single
arbitrary household in €, with observed data w (thus dropping the superscript " notation for
now). The independence also means we can rescale time within the household to begin at the
start of the day of the first infection. Thus we need to calculate the expected number of infected
individuals over each of the |w| = w days since the first infection within that house, i.e.

ELXw)] =Y I(RP(X, = Kw) o)
keS
forall € (t - 1, t], where t =2, . . ., w. Note that as we are conditioning on the entire observed

data within the household, w, the random variable w is implicitly conditioned on. That is, we
are conditioning on knowing that the household became infected on day T — w + 1. In the
remainder of this subsection all probabilities are conditioned on w, but this is not written
explicitly for concision.

The expectation Eq (9) can be calculated efficiently, and hence the integral of the expecta-
tion to find the force of infection can also be calculated efficiently and accurately with Simp-
sons Rule, say. Our calculation is similar to that of the forward-backward algorithm [30], but is
more involved as we need to calculate the expectations for all 7, not just the discrete time
points at which observations occur. First we define some quantities. As w; is the total number
of infections observed in the household by the end of day ¢ (within-household time), X, must
be in a set of states such that N — s(f) = w;. These states are encoded by indicator vectors, z,,
with 1s in entries corresponding to states where N — s(t) = w, and zeros otherwise; these are
either row or column vectors as required.

Define the row vector f; as the ‘forward’ probabilities of the system, so the kth element is the
probability the system is in state k at the end of day ¢, given the observed data up to ¢,

[ft]k = P(Xt = k|w(1:t))'

These can be calculated in a recursive manner as follows:

Lo
‘o (ft—leQ) "z, ’

where ‘0’ is an element-wise vector product. The first vector, f;, is determined from the initial
condition as follows: let v be a probability vector with a 1 in the entry corresponding to state
(N -1, 1). Then, as the infection is introduced into each household at a Uniform(0, 1) distrib-
uted time on their day of infection, the distribution of X is given by

1
u:/ ve?l-Idr.
0

Conditioning on w; gives f; =u o z;/u - z;.
We also define the ‘backward’ probabilities, b, with elements

[bt]k = P(W( )|Xt = k)

t+1:w

These are the probabilities of observing the remainder of the data given that the system is in
state k at the end of day ¢. These can be calculated in a similar recursive way to the forward
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probabilities, but working backward from the final observation:
b, , =e¥b,0z), t=0,...,2,

withb, =1.
Applying Bayes’ theorem to the pmfin Eq (9) and using the Markov property we arrive at

P(XT = k|w(1:t—1))P(w(t:<u)|Xf = k) (10)
p (W(m) |W(1;H)) ’

for 7 € (¢ - 1, t]. Using the law of total probability and the Markov property on the three proba-

bility expressions in Eq (10) gives

P(X, = kiw) =

P(X'r = k‘w(lztfl)) = [frfleQ(PtH)]ka

P (WX, = k) = 2 (b, 0 2,)],

t:m
and
P(w(t:o))|w(1:t71)> = ftfl : btfl'

Hence Eq (9) can be expressed in a vectorised form as

f eQ(z—r+1) ° eQ(t—r) b oz
=l (‘ t) , t=2,...,0,
f._, -b
t—1 -1

ElrCc ) =i+

where i is a vector whose elements are the number of infected individuals in each state.

This allows us to numerically evaluate h!"; note that all matrix exponential calculations
here can be expressed as [¢2]% so we only need to compute the matrix exponential once per
parameter set and take powers of the resulting matrix. Further, when numerically integrating,
using a symmetric grid about £ — 1/2 allows us to take advantage of the symmetry of 2"+
and %", effectively halving the number of times we need to take powers of 2.

Using the quantities calculated above, we can also calculate the within-household likeli-
hood, L,,, described in Eq (5). Let I denote the length of w"”. Note, under the branching pro-
cess assumption, infected households act independently of each other, so their within
household dynamics following their infection are independent. Hence,

L = [[P(w0)0)

'jew,)

= T[p o).

I
=
=

B

-
I

Let fV and z{ denote the forward probability, and the state indicator vector on day t for
household j, respectively. The probability of observing the data in each household is
10)
PwWOI) = P(w) [TP(wIwi.r)
t=2
. Z(}) .,
= e [ A,

t=2
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that is, the within-household likelihood is a product of the normalising constants for the for-
ward probabilities. Thus the within-household likelihood is calculated as a by-product of the
expectation calculations.

Results

Our inference methods are compared based upon 50 simulations with true parameter values
(o, B, ¥) = (0.32, 0.4, 1/3) and 50,000 households of size N = 3 (the average household size in
Australia is estimated to be 2.6 [31]). These simulations are from the full stochastic household
model, not the simplified model where households are conditionally independent after their
initial infection. These parameters are chosen such that the average infectious period is three
days (this is a typical infectious period for influenza), Ry = f/y = 1.2 and R- ~ 1.8. For the
branching process approximation (BPA) the number of realisations used to estimate the distri-
bution of G was 10°.

Each algorithm is based upon a Bayesian Markov chain Monte Carlo (MCMC) framework
in order to estimate the joint posterior distribution of our parameters [32]. In particular, the
BPA is a Metropolis-Hastings algorithm and the DA-MCMC is a single-component Metropo-
lis-Hastings algorithm. Each algorithm is run at various stages of the epidemic in order to
show how the posterior distributions converge as more households become infected; the infer-
ence for each simulation is run after 50, 100, 200, 300 and 400 households become infected.
For the BPA, for each simulation, at each stage of the epidemic, 10> MCMC samples are
obtained with a burn-in of 1000 iterations. For the DA-MCMG, for each simulation, at each
stage of the epidemic, 2.5 x 10° iterations are run with an additional burn-in of 10° iterations
and results are thinned to a sample of size 2.5 x 10°. These numbers of iterations were chosen
so that each sample had approximately the same effective sample size (ESS). More iterations
are needed for the DA-MCMC as the mixing is slower, the samples were thinned for data

storage reasons. Both algorithms are implemented with prior distribution for (oc, g ,l) of

U(0.05, 1) x U(0.25, 4) x U(0.25, 7). The BPA was implemented with a
0.01 0 0

X[Y~N|Y,| 0 002 0
0 0 005

proposal distribution. The DA-MCMC is implemented by proposing moves (i)-(v) with prob-
abilities g, = g, = 0.05 and g5 = g4 = g5 = 0.3 respectively. Our results are displayed in terms of
maximum a posteriori (MAP) estimates of the model parameters, (e, 3, y), in Fig 3, and MAP
estimates of key epidemiological parameters (R, r), in Fig 4, and joint posterior density esti-
mates of (R-, 7), in Fig 5. All kernel densities were estimated using the freely available
MATLAB packages kde2 .mand akde .m[33]. Means and standard deviations for MAP esti-
mates are given explicitly in Table 1.

From Fig 3, we observe that MAP estimates begin negatively biased for all parameters and
converge towards fixed points as more data is obtained. The median of the MAPs of the BPA
method for fand y are lower than that of the DA-MCMC method, whereas the median of the
MAPs of a are higher. The boxes associated with § and y for each method are overlapping,
whereas the boxes associated with « are biased higher for the BPA method when data is based
upon 300 and 400 infected households. In Fig 4, we observe that the boxes of the MAP esti-
mates converge to the true values of R- and r for the DA-MCMC method, whereas they are
biased above the true value for the BPA method. The positive bias in these quantities is due to
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Fig 3. Boxplots of maximum a posteriori (MAP) estimates of (a, 8, y) from 50 simulations. Red and Blue boxes
correspond to results from 2.5 x 108 iterations, thinned to 2.5 x 10° samples, of the DA-MCMC algorithm and 10° iterations
of the BPA and respectively. MAP’s are calculated from 3 dimensional kernel density estimates. The pairs of boxes from
left to right are MAP’s from inference based upon data with 50, 100, 200, 300 and 400 infected households. Black dotted
lines indicate the true parameter values at (a, 8, y) = (0.32, 0.4, 1/3).

https://doi.org/10.1371/journal.pone.0185910.9003

the overestimation of & by the BPA method. The box plots indicate a general trend that the
variability of the MAP estimates decrease as more data is obtained. It should be noted that
these box plots do not show the correlation structure of the parameters; this is not presented
here as the dimension of the parameter space makes the correlation structure difficult to dis-
play. In Fig 5 the posterior densities of R- and r appear similar between the two methods,
although the bias of the BPA is clear.

For both methods the variability in the posterior distribution is observed to decrease in a
similar way as more households are infected. Table 1 shows that when inference is run after
400 households are infected, the mean of the MAPs of both methods lie within a standard devi-
ation from the true values of (¢, f, ). We also find that the average MAP estimates of ﬁ is

found to be 1.2484 and 1.2484 in both methods; this excellent agreement at the household level
indicates that the branching process is an appropriate approximation for the full household
epidemic process. Out of the two methods, only the means of the MAPs from the DA-MCMC
method lie within a standard deviation of the true values of R- and . As the DA-MCMC
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Fig 4. Boxplots of maximum a posteriori (MAP) estimates of (Rx, r) from 50 simulations. Red and Blue boxes
correspond to results from 2.5 x 108 iterations (thinned to 2.5 x 10°) of the DA-MCMC algorithm and 10° iterations of
the BPA and respectively. MAP’s are calculated from 2 dimensional kernel density estimates. The pairs of boxes from
left to right are MAP’s from inference based upon data with 50, 100, 200, 300 and 400 infected households. Black
dotted lines indicate the true parameter values at (Rx, r) =~ (1.803, 0.190).

https:/doi.

org/10.1371/journal.pone.0185910.9004

method is an exact method, and both methods were run on the same simulations, we can com-
pare the difference of MAPs from the two methods, this is given in the final row of Table 1.
The difference of the MAPs for 8 and y lie within a standard deviation of 0, the difference for
o, R- and rare in excess of 2.5 standard deviations from 0. This indicates that the BPA method
leads to a significantly different answer, in terms of @, R- and r compared to exact methods. On
average we saw a 7.8%, 16.0% and 24.7% positive error in @, R- and r respectively.

The efficiency of the two algorithms cannot be compared directly in terms of iterations per
time, as samples from the DA-MCMC are more highly correlated than samples from the BPA
[16]. Hence, the algorithms are compared in terms of their multivariate effective sample size
per hour, where the multivariate effective sample size is an estimate of the number of indepen-
dent samples in a dataset [34]. Fig 6 shows that the DA-MCMC is initially much more efficient
than the BPA algorithm, however it scales poorly as more data is obtained and is less efficient
than the BPA after 200 households are infected. The efficiency of the BPA algorithm appears
to be highly left skewed, as there were some outlying simulations that were much less efficient
than the others. These outliers were still more efficient when using the BPA method when
inference is based on 400 infected households. Note, the multivariate effective sample sizes of
the BPA and DA-MCMC had an average of 3366 and 4138 when inference is based on 400
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Fig 5. Contour plots of the joint posterior density of R- and rfrom a single simulation. The top and bottom panels are results from 10° iterations of the
BPA and 2.5 x 10° iterations, thinned to 2.5 x 10° samples, of the DA-MCMC algorithm respectively. The panels from left to right are posteriors from
inference based upon data with 50, 100, 200, 300 and 400 infected households. The intersection of the black dotted lines indicate the true parameter values
at (R~, n) = (1.803, 0.190).

https://doi.org/10.1371/journal.pone.0185910.9005

infected households, so even though the results are based upon different sample sizes, the mul-
tivariate effective sample sizes are comparable and sufficiently large. On average the
DA-MCMC algorithm with 50, 100, 200, 300 and 400 infected households will take 0.06, 0.19,
1.45, 5.14 and 13.72 hours respectively to obtain an effective sample size of 3000, whereas the
BPA algorithm can do the same in 0.49, 0.53, 0.70, 0.94 and 1.24 hours respectively. The BPA
method is twice as efficient as the DA-MCMC algorithm by the time 200 households are
infected and it is more than 11 times as efficient when 400 households are infected.

Discussion

In this paper we have implemented a DA-MCMC algorithm for exact inference on a stochastic
SIR household model and derived a method to approximate the likelihood for an SIR house-
hold branching process. 