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Abstract: This study aimed at developing a model for evaluating the survival of various Campy-
lobacter jejuni strains under different conditions in culture media and poultry data from ComBase.
Campylobacter data of culture media (116) and poultry (19) were collected from Microbial Responses
Viewer, an additional tool of ComBase. The Weibull equation was selected as a suitable model
for the analysis of survival data because of the nonlinearity of survival curves. Then, the fitting
parameters (first reduction time and shape parameter) were analysed through a Kruskall–Wallis test
and box-whisker plots, thus pointing out the existence of two classes of temperature (0–12 ◦C and
15–25 ◦C) and pH (4–6.5 and 7–7.5) acting on the viability of C. jejuni. Finally, a general regression
model was used to build a comprehensive function; all factors were significant, but temperature
was the most significant variable, followed by pH and water activity. In addition, desirability and
prediction profiles highlighted a negative correlation of the first reduction time with temperature and
a positive correlation with pH and water activity.

Keywords: Campylobacter jejuni; Weibull modelling; predictive microbiology; regression

1. Introduction

Campylobacter spp. are commensal organisms in bovine, sheep, pigs and poultry
alongside various birds and usually do not cause any symptoms in animals. They are Gram-
negative, slender, spirally curved rod, non-spore-forming and microaerophilic bacteria [1,2].
It is known that there are 51 species and 16 subspecies belonging to the Campylobacter genus
of the Campylobacteraceae family. Two subspecies belong to the species Campylobacter
jejuni: Campylobacter jejuni subsp. doylei and Campylobacter jejuni subsp. jejuni [3].

Campylobacteriosis is an infectious disease generally caused by C. jejuni, but C. coli,
C. concisus, C. upsaliensis, C. ureolyticus, C. hyointestinalis and C. sputorum also give rise
to this infection [4]. Given foodborne diseases, it is seen that C. jejuni and C. coli are the
most important and most resistant to physical conditions. The most common clinical
manifestations in humans consist of diarrhoea, fever, abdominal pain, headache, nausea
and vomiting. However, there are complications such as Guillain–Barré syndrome after
infection [5].

Campylobacter spp. can contaminate foods in different ways. It is known that the major
contamination sources of C. jejuni infection in humans are poultry products [6,7]. The
important step causing an increase in the thermophilic Campylobacter load, which is one
of the clinically crucial etiologies of gastroenteritis in humans all over the world, is the
transportation and slaughter of animals with intestinal carriers [2,8].
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Predictive microbiology in foods is an area of applied research in food microbiology
using mathematical models to predict microbial growth and responses in different environ-
mental conditions [9,10]. Predictive models can provide accurate predictions on microbial
growth and inactivation. Using these predictions instead of microbiological experiments
offers a cheaper and more efficient alternative for researchers [11,12]. There are different
levels of modelling in Predictive Microbiology; the classic definition is as follows:

1. Primary models, which show cell number as a function of time to model growth,
inactivation or survival;

2. Secondary models (for example gamma approach, square root and polynomial equa-
tions), which focus on some parameters of primary models (e.g., growth or inactiva-
tion rate, lag phase) as a function of intrinsic or extrinsic factors (pH, activity of water,
temperature, salt, the concentration of antimicrobial compounds, etc.)

3. Tertiary models, which are databases and software able to simulate a priori growth or
inactivation as a function of some input conditions.

The most known database or tertiary model is ComBase, which includes more than
60,000 records on microorganisms’ behaviours in different environments and some models
to predict growth and inactivation [13,14]; moreover, it also contains some additive tools,
improving its performances in some fields. One of these additive tools is Microbial Re-
sponses Viewer (MRV), which is a database consisting of microbial growth/no growth data
under specified environmental conditions of temperature, pH and activity of water (aw)
derived from ComBase [15].

Although Campylobacter spp. are challenges in food safety, there are still a few research
works that predict its survival; moreover, the research available in the literature are based
on single strains or a mix composed of few isolates. Some evidence is available for chicken
meat during a model gastric digestion [16] to predict infections through a dose–response
approach [17], inactivation during heat treatment through a Baynesian approach [18], the
compliance to performance criteria in poultry meat [19] or the estimation of incidence
of campylobacteriosis through a Monte Carlo simulation; however, to the best of our
knowledge there are not models able to predict the effect of some intrinsic or extrinsic
factors of foods on a wide range of isolates of Campylobacter spp. Therefore, the main aim
of this research was to develop a polynomial model able to predict C. jejuni survival in
lab media and foods (poultry), taking into account strain variability as well as evaluating
the goodness and the usefulness of this model. This aim was addressed through some
intermediate milestones:

(a) Using MRV to generate the data of C. jejuni (cell counts vs. time);
(b) Primary modelling;
(c) Building a polynomial equation through the multiple regression approach.

2. Materials and Methods
2.1. Research Planning

The research focused on the building of a comprehensive model to assess the effect
of pH, temperature and aw on Campylobacter spp. The source of data was MRV, while the
steps for model building are in Figure 1.
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Figure 1. Study design.

2.2. Data Collecting from MRV

The source of data was Microbial Responses Viewer (MRV), an additional tool of
ComBase. By selecting Campylobacter in MRV and then a culture medium or poultry, from
the general plots it was possible to gain access to the different datasets available in the
model (Supplementary Figure S1/File S1). For some of them, there was only a linear
death kinetic without experimental values (Supplementary Figure S2A/File S1). These
combinations were excluded, while only the combinations with a scatter plot were retained
(Supplementary Figure S2B). The values were pasted and copied into an Excel sheet for the
second step (Supplementary File S2).

Data from both wild and collection isolates (see Supplementary Tables S1 and S2/File S1)
were collected; Table 1 shows the conditions for which data were gained.

Table 1. Conditions of Campylobacter jejuni data from Microbial Responses Viewer.

Conditions Number of Different Levels Range

Temperature (◦C) 10
(0, 4, 5, 8, 10, 12, 15, 20, 25 and 30 ◦C) 0–30

pH

34
(4.1, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 5.0, 5.1, 5.2, 5.3,
5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 6.0, 6.1, 6.2, 6.3, 6.4, 6.5,

6.6, 6.7, 6.8, 6.9, 7.0, 7.1, 7.2, 7.3 and 7.4)

4.0–7.4

aw

10
(0.961, 0.974, 0.977, 0.980, 0.983, 0.986, 0.989,

0.992, 0.995 and 0.997)
0.961–0.997

Poultry

Temperature (◦C) 4
(4, 5, 21 and 23 ◦C) 4–23

pH 3
(6.0, 6.1 and 6.5) 6.0–6.5

2.3. Primary Modelling with Weibull Function

The Weibull equation is considered to be a suitable model for the analysis of survival
data, as it explains the nonlinearity often observed in survival curves [20]. This function
has two parameters: shape parameter (p) and first reduction time (δ). The shape parameter
informs about the shape of the survival curves of microorganisms and takes into account
at least three shapes of the death curve: downward (p > 1), upward (p < 1) and linear
(p = 1). The first reduction time is the time to attain a reduction of 1 log CFU/mL in the
cell counts [21,22]. The δ value is similar with the D (decimal reduction time) value, but it
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differs from D in that the δ parameter gives information about the mean of the distribution
describing the time of death of the microbial population [20].

The Weibull equation was used in the form cast by Mafart et al. [23]:

log N = log N0 − (t/δ)p (1)

The total data in culture media (116 datasets) and poultry (19 datasets) were fitted
through Statistica software version 7.0 (Statsoft, Tulsa, OK, USA). The goodness of fitting
was evaluated according to the coefficients of regression, the sum of squares error/residual
sum of squares/final loss.

2.4. Box-Plots

The first reduction time and the shape parameter were also analyzed through the
Kruskal–Wallis test (p < 0.05) and box–whisker plots as a function of pH, temperature and
aw to gain a comprehensive overview of the effects of these variables on strain survival.

2.5. General Regression Model

A general regression model was used to build a secondary model able to predict
the effects of temperature, pH and aw on the fitting parameters of Weibull function. The
significance of the models and parameters was evaluated by the Sum of Squares, the Mean
Sum of Squares, the R-value for multiple regression and using Fisher’s test.

The effect of each independent variable (temperature, pH, aw) on the fitting parameters
of the death kinetic of Weibull (p and δ) was evaluated through the individual desirability
functions, estimated as follows:

d =


0 y ≤ ymin

(y − ymin)/(ymax − ymin) ymin ≤ y ≤ ymax

1 y ≥ ymax

(2)

where ymin and ymax are the minimum and maximum values of the dependent variable,
respectively.

3. Results
3.1. Primary Model

The main assumption of the models described in this section and in the following
ones is that C. jejuni experiences only a death kinetic, as also reported by MRV. Growth was
not considered.

Campylobacter survival in MRV is described by a linear model; however, for several
situations, the time-dependent survival kinetics of the strains cannot be explained by the
linear model because there were some deviations from linearity (data not shown).

After a preliminary selection, the Weibull function was chosen because it is suitable to
describe concave or convex decay curves of microorganisms. Most datasets from MRV, in
fact, showed a concave shape for a possible shoulder effect. Biologically, it is known that
the shoulder step refers to the period when microorganisms do not die yet due to various
reasons [13]. As an example, Figure 2 shows two death kinetics of Campylobacter spp. in
lab media, while in Supplementary Table S1 there are Weibull parameters and R-values for
all datasets.

In culture media, the δ parameter varied as a function of temperature level, but for
each temperature, a strong variability was found; mainly at 0, 4, 8 and 12 ◦C, the difference
between the min–max values of δ were the highest. For example, it has been observed
that the δ parameters for 0 ◦C were 37.4–955.4 h (min–max), and the min–max values for p
parameters were 0.64 and 8.30. However, at 25 ◦C, it is shown that the δ parameters of the
strains were between 3.22–140.79, and the p parameters were between 0.71–2.20.
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Figure 2. Death kinetics of Campylobacter spp. in different conditions (For graph 2(A); T = 20 ◦C,
pH = 6.7, aw = 0.997 and for graph 2(B); T = 4 ◦C, pH = 6.8, aw = 0.997). Data were collected from
Microbial Response Viewer, while the line represents the best fit through Weibull equation.

The lowest correlation coefficient values of the Weibull equation in the culture me-
dia were 0.12416 and 0.61198, while the rest were above 0.85 (Supplementary Table S1),
thus suggesting that the Weibull model could satisfactorily describe the death kinetics of
this microorganism.

In poultry, while the min δ was 4.09 h, the max was 401.65 h, and the p parameters
were in the range of 0.68–2.13. Therefore, it was observed that survival kinetics exhibited
upward and downward curves similar to the culture media. It has been shown in Poul-
try’s data that the correlation coefficients of the Weibull equation were 0.92 and above
(Supplementary Table S2).

3.2. Effects of pH, Temperature and aw

As a first step, box–whisker plots for the effects of pH, temperature and aw on the first
reduction time and shape parameter were built. Temperature profiles for the first reduction
time highlighted two groups (Figure 3A): the first one comprised the death kinetic at 0,
4, 8 and 12 ◦C with higher values of δ, although at 10 ◦C a statistical artifact was found
due probably to a lower number of cases and datasets available in MRV. This first group
was characterized by a δ-value up to 1000 h. The second group for the temperature profile
(p < 0.05) was composed of the datasets at 15, 20 and 25 ◦C with a lower δ-value (<200 h).
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The box plot also suggests a strong variability for each temperature due to at least two
different reasons: the experiments were conducted at different conditions of pH and aw
and with different strains.

The pH profile of δ points out a possible effect of pH with the same limitations
reported for the temperature (variability) (Figure 3B). The Kruskal–Wallis test pointed out
two groups: the first one was composed of the death kinetics up to pH 6, which showed a
first reduction time < 200 h, and the second one was at pH 7.0–7.5 (median value of δ at
780 h). Moreover, an intermediate group with a trend similar to pH 3.5–6.0 and 7.0–7.5 was
found at pH 6.0–6.5: this transition group had a median value of δ of 80 h, similar to the
group at pH 3.5–6.0, but the third quartile (500 h) and the maximum of the distribution
(1000 h) suggests the existence of some strains with a trend similar to the second group
(pH 7.0–7.5).

The effect of aw was less pronounced and less significant (Figure 3C), similar to
the effect of the factors on the shape parameter (Figure 4). For this second parameter, a
significant effect was recorded only for pH because in the range 3.5–4.0, the shape parameter
was always <1, thus suggesting an upward death kinetic and the lack of a shoulder phase
(or resistance period) (Figure 4B).
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3.3. Secondary Models

In the second step of this research, a regression approach was used to assess the
statistical weight of each factor (temperature, pH and aw) on the first reduction time and
on the shape parameter; the methodology used was the general regression model.

For the first reduction time, the model highlighted the significance of all factors (pH,
temperature and aw), although the existence of several outliers and the strong variability in
some combinations pointed out only a partial correlation and a qualitative trend, rather
than a quantitative function.

Figure 5 shows the Pareto chart of standardized effect (bars); a longer bar denotes a
more significant effect. Thus, the most significant term was temperature, followed by pH
and aw. In addition, the mathematical term of the temperature was negative, while pH and
aw had a positive term; that is, the model predicts a decrease of the first reduction time
when temperature increases, while an increase of pH and aw determines an increase of
this parameter.
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The quantitative correlation of the shape parameter with the factors could be better
highlighted by the desirability profiles. Desirability is a dimensionless parameter, ranging
from 0 to 1 and is the answer to following question: how much desired is an output?
The reply is 0 for the worst result (or the minimum value) and 1 for the best one (or the
maximum value). Moreover, a desirability profile is often completed by a prediction profile,
which shows the predicted values of the dependent variable as a function of the coded
values of the factors of the design.

Figure 6 shows the desirability (A, C and E) and the prediction profiles (B, D and F)
for the effects of the factors on the first reduction time. The model predicted a negative
correlation of the temperature with a decrease of δ from 255 h at 0 ◦C (desirability at 0.64)
to 0.81 h at 25 ◦C (desirability at 0.35) (Figure 6A,B), thus stressing the strong survival of
C. jejuni under refrigeration.
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As reported for the Pareto chart, the correlation of δ with pH and aw was positive, as
it increased from 0 at pH 4 to 290 h at pH 8 (Figure 6C,D) and from 47 (aw 0.96) to 207 h
(aw, 0.99) (Figure 6E,F).

The general regression approach was also used to model the shape parameter; however,
this parameter was less affected by the factors of the design (data not shown).

4. Discussion

A model for predictive purposes could be a useful tool to increase safety and to prevent
foodborne illnesses; however, to the best of our knowledge, few attempts have been made
for Campylobacter spp. mainly to model thermal inactivation [24,25] or for a qualitative risk
assessment for Campylobacter prevalence and diffusion in the food chain [19,26–28].

The first steps for a robust risk assessment are hazard characterization and exposure
assessment, which rely on the definition on the growth/inactivation rate of the pathogens
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and on the role of intrinsic and extrinsic factors. This research was aimed at contributing to
this step, focusing on both the exact definition of C. jejuni kinetic and the evaluation of the
statistical weight of three main parameters for food preservation (pH, aw and temperature).

The first question was on the shape of the survival kinetic. MRV uses the log-linear
model, but the pathogen experienced a different kinetic, and the Weibull model was
generally able to describe it, as also reported by González et al. [29]. A non-linear kinetic is
a challenge for food preservation because it could be associated to two different phenomena:
a shoulder length and a tail phase.

The shoulder is the initial phase of the death kinetic and denotes a period when a
pathogen does not decrease; in the Weibull model, it is associated to a p > 1 and a high
first reduction time, as found in most datasets. The tail (associated to p < 1) is also a
challenge because the pathogen could experience a strong reduction in the first phases of
the death kinetic and then a prolonged survival, with a residual sub-population [30]. The
shape parameter and the first reduction values of C. jejuni found after primary modelling
suggests the existence of both scenarios, depending on the strain and on the combination
of pH/temperature/aw.

The second step to build a predictive function is secondary modelling, performed in
this study through a multiple regression approach.

Some studies have shown that Campylobacter has a high survival capacity at low tem-
peratures [31]. In a culture medium study, conducted with Müller Hinton agar including
2% horse blood (at +2 ◦C), Campylobacter strains were viable for at least one month under
atmospheric conditions [32]. The data of this research confirmed the high viability of
C. jejuni; the δ parameter was observed at nearly 41.9 days (1006.1 h) at +4 ◦C and 5.9 days
(140.8 h) at 25 ◦C. In poultry meat, the maximum value was 11.6 days (278.9 h) at +4 ◦C.

Concerning the p-parameter (shape parameter), in a study examining the survival
of different C. jejuni strains in high- and low-mineral drinking water at +4 ◦C using the
Weibull model, p parameters ranged between 1.80 ± 0.20 and 3.00 ± 0.39 [33]. We reported
in our study at +4 ◦C that p parameters were in the range of 0.00–2.08. In addition, in
poultry at +4 ◦C, p parameters ranged between 0.94 and 2.13.

Besides the high survival capacity in low temperatures, the food matrices are another
important parameter for survival. In a study, the influence of retail liver and meat juices
on the survival of Campylobacter strains at +4 ◦C was investigated for five weeks. Strains
showed higher survival in beef liver juice and chicken liver juice than beef juice, chicken
juice and Müller Hinton broth [31]. Particularly, a cryoprotective effect of the liver composi-
tion is mentioned, which promotes survival at low temperatures. In terms of cold tolerance,
different responses between Campylobacter strains were observed [34].

Campylobacter is known to be sensitive to acid stress, as well as to drying and low
aw [35]. In our study, the δ value is affected by pH and to a lesser extent by aw. The
increase of pH extends the time of death of the bacterial cell in poultry meat. In the study of
Askoura et al. [36], it was observed that the acid resistance of the microorganism increased
with the change of the cell membrane composition in the presence of iron. It is known that
Campylobacter species transform their shape from a motile spiral form to coccoid under
adverse conditions and become viable but non-culturable [37].

Apart from temperature, pH and aw, there are other factors influencing Campylobacter
survival, such biofilm formation and oxygen. These variables were not considered in this
study because they were not described in MRV; however, they should be added in the
future to a comprehensive model for Campylobacter along with other variables such strain
difference, nutrient or antimicrobial content and structure of food matrix.

The last issue raised by this research was the strong strain variability, which
should be carefully considered when building a comprehensive model to avoid fail-
dangerous scenarios.
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5. Conclusions

This study aimed to develop a predictive model on the factors affecting the survival
conditions of C. jejuni, i.e., culture media, food type (poultry), strain variability. The Weibull
model was successfully used to model C. jejuni survival in culture medium and poultry
because the pathogen had generally a non-linear death kinetic varying from a downward
to an upward shape.

In addition, the not-parametric test and the box–whisker plots pointed out the exis-
tence of two classes of the first reduction time for both the temperature and pH, that is,
0–12 ◦C vs. 15–25 ◦C and 4–6.5 vs. 7–7.5, which could qualitatively describe a longer or a
shorter survival of the pathogen.

Finally, the general regression model pointed out the quantitative correlation of the
first reduction time with temperature, pH and aw as a prodromal step to build a compre-
hensive model.

Several variables affected modelling and function building:

(a) The strong variability amongst the different datasets due to the different strains and
experimental conditions.

(b) The lack of a unifying design (for example a Design of Experiments) to describe the
interactive factors. Model building was based on several randomized combinations
available on MRV, but the lack of a geometrical or factorial scheme in the combinations
did not allow an estimation of interactive effects (additive or synergistic variables).
It is reasonable to imagine that the factors assessed in this research acted synergis-
tically; thus, for a comprehensive model building, the preliminary details found in
this research should be validated through a DoE able to focus also on interactive
factors because mutual dependence of factors is probably more important than their
liner effects.

(c) The prediction of Campylobacter is a challenge because it is a pathogen very difficult to
study (slow growth in lab, fastidious requirements for growth, etc.). In addition, MRV
does not consider several variables (among others, food structure, food components,
effects of natural microbiota, oxygen and carbon dioxide in the headspace), which
could strongly and significantly affect the growth/survival of this pathogen.

These issues should be taken into account to design and to develop a robust model
for C. jejuni with practical implications; moreover, other variables should be added to the
model. Nevertheless, this research could be the background for future studies because it
highlighted some crucial factors to consider (kind of death kinetic, strain dependence and
the role of the three main factors).

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/foods11050637/s1: File S1: Supplementary Figure S1: A screenshot
example of Campylobacter data from Microbial Responses Viewer; Supplementary Figure S2: Details
from Microbial Responses Viewer’s time-dependent survival graphs (A and B) of Campylobacter spp.;
Table S1: Wild and collection isolates of Campylobacter jejuni strains and their death kinetics, Weibull
parameters and R-values in culture media; Table S2: Wild and collection isolates of Campylobacter
jejuni strains and their death kinetics, Weibull parameters and R-values in poultry and File S2: Viable
found in MRV (Excel Sheet).
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