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Abstract: In the present study, four new compounds including a pair of 2-benzoyl tetrahydrofuran
enantiomers, namely, (−)-1S-myrothecol (1a) and (+)-1R-myrothecol (1b), a methoxy-myrothecol
racemate (2), and an azaphilone derivative, myrothin (3), were isolated along with four known
compounds (4–7) from cultures of the deep-sea fungus Myrothecium sp. BZO-L062. Enantiomeric
compounds 1a and 1b were separated through normal-phase chiral high-performance liquid
chromatography. The absolute configurations of 1a, 1b, and 3 were assigned by ECD spectra.
Among them, the new compound 1a and its enantiomer 1b exhibited anti-inflammatory activity,
inhibited nitric oxide formation in lipopolysaccharide-treated RAW264.7 cells, and exhibited
antioxidant activity in the 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) and oxygen radical
absorbance capacity assays.

Keywords: deep sea marine-derived fungus; Myrothecium sp.; myrothecol; nitric oxide (NO);
antioxidant activity

1. Introduction

Natural products are a rich source of new drugs and they are frequently used for the discovery
and development of new drugs [1]. Natural marine products with unique architectures and distinct
biological activities are treasure troves for natural product chemists [2,3]. Among marine organisms,
fungi produce a diverse range of biologically active metabolites [3], including polyketides [4–6],
terpenoids [7–9], polypeptides [10], and alkaloids [11–13].

Microorganisms of the deep-sea are an attractive source of candidate drugs. While screening
inhibitors of lipopolysaccharide (LPS)-induced nitric oxide (NO) production, we recently isolated
cyclopenol and cyclopenin from the extract of the fungal strain Aspergillus sp. SCSIOW2 collected
from a depth of approximately 2000 m in the sea [14]. At non-toxic concentrations, these compounds
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inhibited LPS-induced NO production and IL-6 secretion in RAW264.7 cells. This inhibitory effect
of cyclopenol and cyclopenin was attributed to the suppression of the upstream signal of NF-B
activation. These compounds also suppressed the expression of IL-1β, IL-6, and iNOS in microglia
cells (macrophages in the mouse brain) [14]. In Alzheimer’s disease, amyloid β-peptide induces
inflammation in the brain. Between the two compounds, cyclopenin showed ameliorative effects in an
in vivo Alzheimer’s model using flies [14].

To explore new bioactive secondary metabolites from deep marine-derived fungi [15–17],
a fungal strain, Myrothecium sp. BZO-L062, isolated from sediment samples collected from the
sea bottom near Yongxing Island, was used for chemical investigation. Seven pure components,
including four new compounds (1a, 1b, 2, and 3), were isolated and identified from the ethyl acetate
extract of the fungus (Figure 1). The absolute configurations of the new compounds (1a, 1b, and 3)
were assigned by comparison of their experimental CD spectra with the theoretically calculated spectra.
The NO production inhibitory activity and antioxidant activity of the new compounds were also
evaluated. Known compounds 4–7 were identified as terreinol (4) [18], 3,5-dihydroxy-4-methylbenzoic
acid methyl ester (5), 5-hydroxymethyl-2-furoic acid (6) [19], and 5-hydroxymethyl-2-furancarboxylic
acid methyl ester (7) [20] by comparing their spectroscopic data with those previously reported.

Figure 1. Compounds 1–7 isolated from Myrothecium sp. BZO-L062, including (−)-(1S)-
myrotheciol (1a), (+)-(1R)-myrotheciol (1b), 1-methoxy-myrotheciol (2), myrothin (3), terreinol (4),
3,5-dihydroxy-4-methylbenzoic acid methyl ester (5), 5-hydroxymethyl-2-furoic acid (6),
and 5-hydroxymethyl-2-furancarboxylic acid methyl ester (7).

2. Results and Discussion

The molecular formula of 1 was determined as C12H14O4 by high-resolution electrospray ionization
mass spectrometry (HRESIMS) at m/z 223.0958 [M + H]+ and 245.0780 [M + Na]+ (calculated for
C12H15O4

+, 223.0965; C12H14O4Na+, 245.0784) (Figure S1). 1H NMR, 13C NMR, and 2D-NMR data
of 1 (Table 1, Figures S2–S8) revealed the presence of 12 resonance signals, including those for
one sp3 methyl, one sp3 oxygenated methine, three sp3 methylenes, two symmetric sp2 methines,
two symmetric sp2 oxygenated quaternary carbons, two sp2 quaternary carbons, and one ketone
carbonyl carbon. The 1H-1H correlation spectroscopy (COSY) data from H-1 to H2-4 and the 1H-13C
heteronuclear multiple bond correlations (HMBC) from H-1 to oxygenated C-4 and from H2-4 to C-1
suggested the presence of a tetrahydro-2-furanyl moiety (Table 1 and Figure 2). The four aromatic
carbon signals indicated the presence of one symmetrically substituted benzene ring. The HMBC
experiment correlations confirmed the presence of a 3,5-dihydroxy-4-methyl benzoyl moiety (Table 1
and Figure 2). Finally, the key HMBC correlations from H2-2 to C-1 and from H-1 to C-2 allowed the
linkage of the 3,5-dihydroxy-4-methyl benzoyl and tetrahydro-2-furanyl groups (Table 1 and Figure 2).
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Accordingly, 1 was established as (3,5-dihydroxy-4-methylphenyl)-(tetrahydro-2-furanyl)methanone
and denoted as a myrotheciol.

Table 1. 1H NMR (600 MHz) and 13C NMR (150 MHz) spectral data of 1.

No. δC δH, Mult. (J in Hz) 1H-1H COSY HMBC

1 79.1 5.09, dd (8.4, 5.6) 2 C-2,3,4
2 29.0 2.17, m; 1.92, m 1,3 C-1,3,4,1′

3 25.2 1.84, m 2,4 C-1,2,4
4 68.4 3.81, t (6.7) 3 C-1,2,3
1′ 198.0 -
2′ 132.7 -

3′,7′ 106.1 6.92, s C-1′,2′,4′(6′),5′

4′,6′ 156.1 -
5′ 116.7 -

4′−OH/6′−OH - 9.51, s C-3′,4′,5′/C-5′,6′,7′

5′−CH3 8.9 1.99, s C-4′,5′,6′

Figure 2. Key 2D NMR correlations of 1–3.

The absence of the Cotton effect in the CD spectrum and zero specific rotation indicated that 1
was a racemate. Generally, enantiomers are more advantageous than racemates for drug development.
To detect the enantiomers of 1, chiral HPLC was performed using a Chiralpak IC column; the HPLC
results showed two separate peaks (Figure S9). The two enantiomers, (−)-1a and (+)-1b, were obtained
in a ratio of 1:1. (−)-1a and (+)-1b showed mirror image-like CD curves (Figure 3) and opposite specific
rotations (1a: [α]20

D − 25.3; 1b: [α]20
D + 26.3). The experimental CD spectra of 1a were consistent with

the theoretically calculated ECD spectrum of the 1-S enantiomer with four Cotton effects observed at
237 nm (positive), 270 nm (positive), 310 nm (negative), and 348 nm (positive) (Figure 3). In contrast,
the CD spectrum of 1b was consistent with the ECD spectrum of the 1-R enantiomer but different from
that of 1-S with three negative Cotton effects at 237 nm, 270 nm, and 348 nm, and one positive Cotton
effect at 310 nm. Thus, the absolute configurations of 1a and 1b were assigned as (−)-(1S)-myrotheciol
and (+)-(1R)-myrotheciol, respectively (Figure 1).

The molecular formula of 2 was determined as C13H16O5 through HRESIMS at m/z 275.0896
[M + Na]+ (calculated for C13H16O5Na+, 275.0890), which was 30 mass units larger than 1 (Figure S10).
The 1H and 13C NMR data of 2 (Table 2, Figures S11–S16) closely resembled those of 1, except for
three major differences: the presence of an additional methoxy group (δH 3.09, δC 50.2), the absence
of a methine proton (δH 5.09), and the chemical shift of C-1 (from δC 79.1 to 109.5); these differences
indicated the substitution of the methine proton at C-1 by a methoxy group. The position of the
new methoxy group was confirmed by HMBC correlation from 1-OMe to C-1 (Table 2 and Figure 2).
Thus, 2 was established as 1-methoxy-myrotheciol. The structure of 2 was validated through a detailed
analysis of 2D NMR data (Table 2 and Figure 2).
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Figure 3. ECD spectra of compounds 1a and 1b (A), and 3(B).

Table 2. 1H NMR (600 MHz) and 13C NMR (150 MHz) spectral data of 2.

No. δC δH, Mult. (J in Hz) 1H-1H COSY HMBC

1 109.5 -
2 34.6 2.13, m 3 C-1,3,4,1′

3 24.0 1.88, m; 2.01, m 2,4 C-1,2,4
4 68.1 3.96, m 3 C-1,2,3
1′ 194.8 -
2′ 131.7 -

3′,7′ 107.3 7.09, s C-1′,2′,4′(6′),5′

4′,6′ 155.9 -
5′ 116.7 -

1−OCH3 50.2 3.09, s C-1
4′−OH/6′−OH - 9.47, s C-3′,4′,5′/ C-5′,6′,7′

5′−CH3 8.9 1.98, s C-4′,5′,6′

Compound 2 was also considered as a racemic mixture based on the zero specific rotation and
absence of the Cotton effect in its CD spectrum. The chiral HPLC performed using the same condition as
that used for 1 revealed two peaks, attributable to 2a and 2b, at a ratio of approximately 1:1 (Figure S17).
However, due to the limited sample size, further isolation was not carried out.

(+)-HRESIMS at m/z 353.1599 [M + H]+ and 375.1418 [M + Na]+ (calculated for C18H25O7
+,

353.1595; C18H24O7Na+, 375.1414) revealed the molecular formula of 3 as C18H24O7 (Figure S18).
The 1D- and 2DNMR results revealed the presence of one sp3 oxygenated quaternary carbon, one sp3

oxygenated methine, two sp2 aromatic methines, four sp2 quaternary carbons, one ketone carbonyl
carbon, one methoxy group, and one angular methyl group (Table 3 and Figures S19–25). Other than
these signals, the 1H-1H COSY correlations from H-2” to H-4”, along with the HMBC correlations from
H-2” and 3” to C-1” (Table 3 and Figure 2) indicated the presence of the butyl ester fragment. The 1H-1H
COSY correlations from H-1 to 3-OH corresponded to the hydroxypropyl fragment (Table 3, Figure 2).
The NMR data of the core structure of 3 closely resembled those of C-8 dihydro-azaphilone [21,22].
Careful HMBC analysis confirmed this structure (Table 3 and Figure 2). Finally, the key HMBC
correlation from H-8 to C-1”connected the butyl ester side chain to C-8, that from H-1 and H-2 to
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C-3 connected the hydroxypropyl group moiety to C-3, and that from 4-OCH3 to C-4 connected the
methoxy group to C-4 (Table 3 and Figure 2). Accordingly, 3 was established as myrothin (Figure 1).

Table 3. 1H NMR (600 MHz) and 13C NMR (150 MHz) data of 3.

No. δC δH, Mult. (J in Hz) 1H-1H COSY HMBC

1 146.9 7.66, d (1.2) C-3,4a,8,8a
3 154.7 -
4 138.3 -
4a 139.6 -
5 99.7 5.28, d (1.2) C-4,7,8a
6 196.5 -
7 73.29 -
8 73.30 5.54, s C-1,4a,6,7,8a,1”
8a 116.5 -
1′ 24.2 2.58, m 2′ C-3,4,2′,3′

2′ 29.6 1.68, m 1′,3′ C-3,1′,3′

3′ 59.88 3.44, m 2′,3′-OH C-1′,2′

3′-OH - 4.58, t (5.1) 3′ C-2′,3′

4-OCH3 59.94 3.62, s C-4
7-CH3 23.4 1.16, s C-6,7
7-OH - 5.07, s C-6,7,7-CH3

1” 172.2 -
2” 35.4 2.26, t (7.2) 3” C-1”,3”,4”
3” 17.9 1.49, m 2”, 4” C-1”,2”,4”
4” 13.2 0.82, t (7.4) 3” C-2”,3”

The relative configuration of 3 at C-7 and C-8 was assigned by nuclear overhauser effect
spectroscopy (NOESY) correlations. The strong NOESY correlation between 7-CH3 and H-8
indicated that 7-CH3 and H-8 occupied the same side of the ring (Figure 2 and Figure S25).
Thus, the stereo-configurations of C-7 and C-8 are either S,S or R,R. The experimental ECD curve of 3
was consistent with that of the 7S, 8S epimer (Figure 3). The chiral carbons C-7 and C-8 were thus
determined as 7S and 8S.

LPS-induced NO production in RAW264.7 cells was used to evaluate the anti-inflammatory
activity of different compounds [14]. NO is produced by NF-κB-dependent inducible NO synthase.
All the isolated compounds were evaluated for cytotoxicity and for their effects on LPS-induced NO
production. Among all the tested compounds, only two new compounds (1a and 1b) significantly
inhibited LPS-induced NO production at non-toxic concentrations (Figure 4).

Antioxidant activities were measured through 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)
(ABTS) scavenging activity, 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging capacity, and the
oxygen radical absorbance capacity (ORAC) assay. As shown in Table 4, new compounds 1a and 1b
exhibited antioxidant activity in the ABTS assay with EC50 of 1.20 and 1.41 µgmL−1, respectively, which
were comparable with EC50 values of the positive controls L-ascorbic acid (1.55 µgmL−1) and trolox
(1.61 µgmL−1). In the ORAC assay, the antioxidant ability was expressed as µmol trolox equivalents per
µmol of sample solution. Compounds 1a and 1b showed high antioxidant activity (1.41 µM trolox/µM
for 1a and 1.19 µM trolox/µM for 1b). Generally, the scavenging activities of ABTS are significantly
higher than the scavenging activities of DPPH in phenolic compounds [23]. Compounds 1a and 1b did
not show antioxidant activity in the DPPH assay, even at the highest concentration of 10 µgmL−1.

In the present research, we isolated several compounds including new structures from a deep-sea
fungus. We found cellular anti-inflammatory activity in 1a and 1b. Microorganisms often produce
useful compounds for therapy. However, the role of these compounds on producing organisms is
not clear. At the beginning of antibiotic research, antibiotics are considered to protect the producing
organisms by killing their enemy microorganisms. But later, many enzyme inhibitors such as pepstatin
and leupeptin were discovered from the secondary metabolites of Streptomyces, and they showed
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no antibiotic activity. Therefore, it is unlikely that these secondary metabolites are useful for the
producers. From this point of view, new compounds, 1a and 1b, may be remnants of microorganisms
in their evolution.

Figure 4. NO production inhibitory activity of 1a and 1b in RAW264.7 cells. Effect of 1a (A) or 1b (C)
on the viability of RAW264.7 cells. Inhibition of LPS-induced NO production by 1a (B) or 1b (D).
Values represent the means ± SEM of three independent experiments. *, p < 0.05; **, p < 0.001 vs. control.

Table 4. Antioxidant activities of 1a and 1b.

Compounds
ABTS ORAC

EC50, µg/mL µM Trolox Equivalent/µM

1a 1.20 ± 0.18 1.41 ± 0.27
1b 1.41 ± 0.19 1.19 ± 0.19

L-Ascorbic acid 1.55 ± 0.15 0.35 ± 0.14
Trolox 1.61 ± 0.09 NA

3. Materials and Methods

3.1. General Experimental Procedures

Optical rotations were recorded on an Anton Paar MCP-100 polarimeter (Anton Paar GmbH,
Graz, Austria). ECD spectra were measured on a JASCO-810 spectropolarimeter (JASCO Corporation,
Tokyo, Japan). UV spectra were obtained on a UV-1800 spectrophotometer (Shimadzu Corporation,
Tokyo, Japan). IR spectra were recorded on a Nicolet Avatar 330 FT-IR spectrometer (Thermo
Scientific, Waltham, MA, USA) using KBr disks. NMR spectra were acquired on a Bruker ASCEND
500 MHz or 600 MHz NMR magnet system (Bruker, Ettlingen, Germany) using tetramethylsilane
(TMS) as the internal standard. HRESIMS was performed using a Triple TOF 6600 (AB SCIEX LLC,
Framingham, MA, USA). Column chromatography (CC) was conducted using silica gel (200–300 mesh,
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Qingdao Marine Chemical Factory, Qingdao, China) and Sephadex LH-20 (Amersham Pharmacia
Biotech, Piscataway, NJ, USA). Thin-layer chromatography (TLC) was performed on Merck TLC plates
silica gel 60 F254 and silica gel 60 RP-18 F254S (Merck Millipore Corporation, Darmstadt, Germany).
HPLC was carried out on a Shimadzu LC-16P HPLC system (Shimadzu Corporation, Tokyo, Japan)
using YMC-pack Pro C18 Column (4.6 × 250 mm, 5 µm; 10 × 250 mm, 5 µm; YMC Co., Ltd., Kyoto,
Japan) for analysis and semi-preparation. Optical pure compounds were prepared using a DAICEL
Chiralpak IC column (250 mm × 4.6 mm, 5 µm; YMC Co., Ltd., Kyoto, Japan). All the chemical
reagents for isolation were either of analytical (Damao Chemical Factory, Tianjin, China) or HPLC
grade (Kermel Chemical Co., Ltd., Tianjin, China).

3.2. Fungal Material

The fungus Myrothecium sp. BZO-L062 used in this study was isolated from a deep-sea
(2130 m depth) sediment sample collected from an area close to Yongxing Island, China. The strain
was identified as Myrothecium sp. based on the morphological features and internal transcribed
spacer sequence analysis. This strain was deposited at the Marine Natural Products Laboratory,
College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.

3.3. Fermentation and Extraction

The fungus Myrothecium sp. BZO-L062 was activated on petri dishes containing potato dextrose
agar supplemented with 3% sea salt at 28 ◦C for three days [24]. Agar plugs were inoculated in a 500 mL
Erlenmeyer flask containing 150 mL of liquid potato dextrose culture medium [24] supplemented with
3% sea salt as seed cultures and were incubated at 28 ◦C on a rotary shaker at 180 rpm for three days.
Large-scale fermentation (70 L) was conducted using the same medium as that for seed cultures at
28 ◦C and 180 rpm for seven days. After seven days, the fermentation broth was filtered through
cheesecloth to separate the supernatant from the mycelia. The supernatant was then concentrated to
8 L and successively extracted three times with EtOAc (3 × 8 L), yielding a crude extract (40.0 g).

3.4. Isolation and Purification

The crude extract was separated using silica gel CC through CH2Cl2/MeOH gradient elution
(100:0, 100:1, 100:5, 100:10, 100:20, 100:50, and 0:100; 600 mL each) and was grouped into nine
fractions (Fr.) based on the TLC analysis (Fr.1 to Fr.9). Fr.3 was purified by semi-preparative HPLC
(28% MeCN/H2O, flow rate 3 mLmin−1) to yield 4 (tR 16.2 min, 10.1 mg). Fr.4 was subjected to HPLC
using a medium-pressure octadecyl-silica (ODS) column and separated with MeOH/H2O (20–100%)
into five fractions (Fr.4.1–Fr.4.5). Fr.4.1 was further fractionated by HPLC (5% MeOH/H2O, a flow
rate of 3 mLmin−1) to obtain 6 (tR 15.0 min, 5.0 mg) and 7 (tR 24.0 min, 5.0 mg). Fr.4.2 was purified
by HPLC (25% MeOH/H2O, a flow rate of 3 mLmin−1) to obtain 3 (tR 21.0 min, 1.0 mg). Fr.4.3 was
refined by HPLC (25% MeCN/H2O, a flow rate of 3 mLmin−1) to obtain 2 (tR 20.0 min, 1.4 mg). Finally,
Fr.5 was subjected to HPLC (17% MeCN/H2O, flow rate 3 mLmin−1) to obtain 1 (tR 20.0 min, 14.2 mg)
and 5 (tR 21.2 min, 10.2 mg).

The racemic compound 1 was resolved into enantiomers (−)-1a (3.0 mg, tR 10.2 min) and (+)-1b
(3.6 mg, tR 18.1 min) using a chiral HPLC equipped with a DAICEL® Cellulose Chiralpak IC column
(5 µm, 4.6 × 250 mm) using n-hexane-ethanol (89:11) as mobile phase at a flow rate of 1 mLmin−1.

3.5. Spectral Data of the Compounds

3.5.1. (±)-Myrothecol (1)

Myrothecol (1) is a colorless oil; [α]20
D 0◦(c 0.1, MeOH); UV (MeOH) λmax (log ε) 280 nm (7.18) and

218 nm (7.46); IR (KBr) νmax 3325, 2956, 1678, 1591, 1423, 1325, 1198, 1088, 1040, 934, and 851; HRESIMS
m/z 223.0958 [M+H]+, 245.0780 [M+Na]+ (calculated for C12H15O4, 223.0965; C12H14O4Na, 245.0784);
for 1H NMR (DMSO-d6, 600 MHz) and 13C NMR (DMSO-d6, 150 MHz) spectral data, see Table 1.
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(−)-1a: [α]20
D —25.3◦ (c 0.3, MeOH); ECD (2.3 mM, MeOH) λmax (∆ε) 237 nm (+0.49), 262 nm (+0.54),

307 nm (−1.27), 341 nm (+0.48). (+)-1b: [α]20
D + 26.3◦ (c 0.27, MeOH); ECD (2.3 mM, MeOH) λmax (∆ε)

237 nm (−0.38), 262 nm (−0.39), 307 nm (+0.88), and 341 nm (−0.37).

3.5.2. Methoxy-myrothecol (2)

Methoxy-myrothecol (2) is a colorless oil; [α]20
D 0◦ (c 0.1, MeCN); UV (MeOH) λmax(log ε)

285 nm (6.99) and 218 nm (7.24); HRESIMS m/z 275.0896 [M+Na]+ (calculated for C13H16O5Na,
275.0890); HRESIMS m/z 353.1599 [M+H]+, 375.1418 [M+Na]+ (calculated for C18H25O7, 353.1595;
C18H24O7Na, 375.1414); for ¬1H NMR (DMSO-d6, 600 MHz) and 13C NMR (DMSO-d6, 150 MHz)
spectral data, see Table 2.

3.5.3. Myrothin (3)

Myrothin (3) is a light-yellow colored oil; UV (MeOH) λmax (log ε) 246 nm (3.13) and 350 nm (3.56);
IR (KBr) νmax 3405, 2925, 2376, 2316, 1621, 1385, 1036, 910, 790, 731, and 635 cm−1; HRESIMS
m/z 353.1599 [M+H]+, 375.1418 [M+Na]+, 727.2948 [2M+Na]+ (calculated for C18H25O7, 353.1595;
C18H24O7Na, 375.1414; C36H48O14Na, 727.2936); for ¬1H NMR (DMSO-d6, 600 MHz) and 13C NMR
(DMSO-d6, 150 MHz) spectral data, see Table 3. [α]20

D + 15.7◦; ECD (2.8 mM, MeOH) λmax (∆ε)
224 nm (+0.7), 243 nm (−0.11), 271 nm (+0.34), 319 nm (+1.96), and 359 nm (+2.59).

3.6. ECD Calculation

The conformational distribution search was conducted with the MMFF94 molecular mechanics
force field in Spartan 12 software (Wavefunction Inc., Irvine, CA, USA). The lowest energy conformers
within the 5-kcalmol−1 energy window were optimized using the Gaussian 09 program [25].
TDDFT calculations for all optimized conformers were performed at the B3LYP/6-31G (d, p) level.
The ECD spectra were generated using the software SpecDis [26].

3.7. MTT and NO Production Assay

MTT and NO production inhibitory activities of the isolated compounds in RAW264.7 cells were
determined as reported previously [14].

3.8. Antioxidant Activity

The ABTS and DPPH scavenging assays were carried out as reported earlier [23]. L-ascorbic
acid and trolox were used as positive controls. The ORAC assay was conducted according to a
previously reported protocol [27]. The results were expressed as µmol Trolox equivalents per µmol of
sample solution.

4. Conclusions

In this study, four new components, (−)-1S-myrothecol (1a), (+)-1R-myrothecol (1b),
methoxy-myrothecol (2), and myrothin (3), along with four known compounds (4–7), were isolated
from the deep-sea fungus Myrothecium sp. BZO-L062. The enantiomers 1a and 1b were purified by
chiral HPLC. The absolute configurations of 1a, 1b, and 3 were determined by the calculated ECD.

Among these compounds, new compounds 1a and 1b showed anti-inflammatory and antioxidant
activities at non-toxic concentrations. Derivatives of these compounds could be potent and safe and
may be useful for the development of new anti-inflammatory agents.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-3397/18/12/597/s1,
Figure S1: HR-ESI MS spectrum of compound 1, Figure S2–S8: 1D and 2D NMR spectra of compound 1, Figure S9:
Chiral separation of racemic 1, Figure S10: HR-ESI MS spectrum of compound 2, Figure S11–16: 1D and 2D NMR
spectra of compound 2, Figure S17: Chiral separation of racemic 2, Figure S18: HR-ESI MS spectrum of compound 3,
Figure S19–S25: 1D and 2D NMR spectra of compound 3.

http://www.mdpi.com/1660-3397/18/12/597/s1
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