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Abstract: Melanoma is the most malignant form of skin cancer, which seriously threatens human life
and health. Anti-PD-1 immunotherapy has shown clinical benefits in improving patients’ overall
survival, but some melanoma patients failed to respond. Effective therapeutic biomarkers are
vital to evaluate and optimize benefits from anti-PD-1 treatment. Although the establishment of
immunotherapy biomarkers is well underway, studies that identify predictors by gene network-based
approaches are lacking. Here, we retrieved the existing datasets (GSE91061, GSE78220 and GSE93157,
79 samples in total) on anti-PD-1 therapy to explore potential therapeutic biomarkers in melanoma
using weighted correlation network analysis (WGCNA), function validation and clinical corroboration.
As a result, 13 hub genes as critical nodes were traced from the key module associated with clinical
features. After receiver operating characteristic (ROC) curve validation by an independent dataset
(GSE78220), six hub genes with diagnostic significance were further recovered. Moreover, these six
genes were revealed to be closely associated not only with the immune system regulation, immune
infiltration, and validated immunotherapy biomarkers, but also with excellent prognostic value
and significant expression level in melanoma. The random forest prediction model constructed
using these six genes presented a great diagnostic ability for anti-PD-1 immunotherapy response.
Taken together, IRF1, JAK2, CD8A, IRF8, STAT5B, and SELL may serve as predictive therapeutic
biomarkers for melanoma and could facilitate future anti-PD-1 therapy.

Keywords: melanoma; anti-PD-1 therapy; WGCNA; biomarker

1. Introduction

Melanoma, as a form of highly aggressive skin cancer, is easy to metastasize and thus difficult
to treat [1]. Recent clinical studies with anti-PD-1 immunotherapy have shown superior clinical
efficacy and significant survival benefits for melanoma patients [2]. However, only a portion of the
patients have an objective response to PD-1 blocking immunotherapy [3], and the remaining ones
show little or no response, even involving in a high-grade immune-related adverse event [2,4,5].
Moreover, the use of immunotherapy would greatly increase the medical cost for an individual
patient [6,7]. Regarding the clinical response, costs and side effects, it is urgent that predictive
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biomarkers are needed for assistance in identifying which patients are more prone to benefit from
checkpoint inhibitor-based immunotherapy.

To date, it has been noticed that the clinical efficacy of anti-PD-1 therapy is relevant to the intrinsic
features of tumor cells and tumor microenvironment (TME) or gene signatures. Some characteristics
such as tumor mutational burden, deficiency of mismatch repair, host expression of PD-1/PD-L1 and the
density of tumor-infiltrating lymphocytes have been reported as promising biomarkers for anti-PD-1
therapy [8]. Of which, the expression of PD-L1 typifies the most well-focused potential biomarker
for the anti-PD-1 immune checkpoint blockade therapy response [9]. Several studies have revealed
that PD-L1 expression played a crucial role in enriching the anti-tumor response for pre-treatment
melanoma specimens, and 30–40% of melanoma patients with high expression levels of PD-L1 had
durable and objective responses [10]. The clinical research by Cottrell, T.R. et al. addressed a similar
result [11].

However, PD-L1 expression is dynamic and varies over time, which leads to poor anti-PD-1
efficacy [8]. For instance, Patel, S.P. et al. proposed that during melanoma, lung, kidney, and other
cancers, over 36% of patients with positive PD-L1 IHC expression responded to the PD-1/L1 axis-directed
therapy, but approximately 17% of patients with a negative expression were also responded [12].
Johnson, D.B. et al. found that PD-L1 expression had no predictive power for survival, but the
interaction of PD-1/PD-L1 and IDO-1/HLA-DR co-expression may improve outcomes of anti-PD-1
therapy in melanoma [13].

Previous studies indicated that exploring tumor type-specific gene expression, dynamic omics
profiles in intratumoral heterogeneity, the tumor cell infiltrate, and the tumor–host microenvironment
was probably helpful for the establishment of anti-PD-1 therapeutic biomarkers [14–16]. For example,
with genomic arrays from 14,492 distinct solid tumors, Messina, J.L. et al. discovered a novel
expression signature of 12 chemokine genes that lead to a potentially suitable selection for improving
immunotherapy in melanoma [17]. Ayers, M. et al. quantified T cell-inflamed gene-expression profiles
in the microenvironment, and it was developed for pembrolizumab trials in melanoma [18]. Ribas,
A. et al. confirmed that the expression signatures of interferon-inflammatory immune genes were
related to the overall response rate in patients treated with pembrolizumab [19]. By evaluating the
gene signatures of six immune cells, Varn, F.S. et al. found that the B cell-derived expression signature
could predict the checkpoint inhibitor-based immunotherapy response for patients [20].

Although several studies have a start on biomarkers for anti-PD-1 benefits in melanoma, few of
them focused on the functional correlation between the genes as well as the relationship between gene
expressions and therapeutic response. The above studies limited the development and exploration of
biomarkers and the molecular mechanisms to a systems biology perspective [21,22]. Therefore, a robust
analysis based on omics data and gene co-expression network was applied in this study to provide
an insight into the correlation among genes as well as between the genes and therapeutic response,
which lead to the identification of potential therapeutic biomarkers of anti-PD-1 immunotherapy
in melanoma.

In this study, all the existing RNA-seq datasets on anti-PD-1 immunotherapy of melanoma were
reanalyzed using a bioinformatics approach, including GSE91061, GSE78220 and GSE93157 (79 samples
in total). With the weighted correlation network analysis, the dataset of GSE91061 was adopted to
construct gene co-expression network across the different samples, followed by the identification of key
modules with therapeutic response. Functional enrichment analysis was further used to investigate
the biological function of the key module genes. From this, the hub genes were identified based on
the co-expression network, protein–protein interaction (PPI) network and gene topological network.
GSE78220, as an independent dataset, was utilized to investigate the potential diagnostic genes for
anti-PD-1 therapy from hub genes, which were plotted by receiver operating characteristic (ROC)
analysis. Afterward, function enrichment, immune infiltration level, gene expression level, overall
survival, and gene correlation of potential diagnostic genes were validated by Gene Set Variation
Analysis (GSVA), Tumor Immune Estimation Resource (TIMER), and Gene Expression Profiling
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Interactive Analysis (GEPIA). A prediction model of immunotherapy was constructed by the hub
genes based on random forest classifier. The accuracy of the prediction model was verified based
on GSE93157.

2. Materials and Methods

The workflow used in the study is shown in Figure 1, which included three main steps, hub gene
identification, diagnostic efficiency analysis and validation of potential therapeutic biomarkers.

Genes 2020, 11, x FOR PEER REVIEW 3 of 22 

 

constructed by the hub genes based on random forest classifier. The accuracy of the prediction model 
was verified based on GSE93157. 

2. Materials and Methods   

The workflow used in the study is shown in Figure 1, which included three main steps, hub gene 
identification, diagnostic efficiency analysis and validation of potential therapeutic biomarkers. 
 

     
Figure 1. The flowchart of study design. Flow diagram of analysis procedure including discovery, analysis and 
validation of potential therapeutic biomarkers in this study. GEO: Gene Expression Omnibus; WGCNA: 
Weighted correlation network analysis; PPI: Protein–protein interaction; ROC: Receiver operating characteristic; 
GSVA: Gene set variation analysis; GEPIA: Gene expression profiling interactive analysis; TIMER: Tumor 
immune estimation resource. 

2.1. Data Acquisition of Gene Expression Datasets 

Using the keywords such as “PD-1”, “immunotherapy”, “therapy”, “treatment”, and 
“melanoma”, datasets were investigated from the main transcriptomics database, including Gene 
Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo) [23], ArrayExpress 
(https://www.ebi.ac.uk/arrayexpress) [24] and Expression Atlas (https://www.ebi.ac.uk/gxa/home) 
[25]. By manually checking, the raw datasets meeting the following standards were retained in 
subsequent analyses: i) inclusion of gene expression data of responders (complete response or 
particle response) or non-responders (progress disease) to anti-PD-1 therapy in melanoma. The 
responders and non-responders to immunotherapy were defined according to iRECIST guidelines 
[26], and the stable disease was not included due to the controversial role in response to therapy 
[27,28]; ii) at least 15 accessible samples in the datasets; and iii) availability of raw sequence or 
microarray data.  

2.2. Construction of Gene Co-Expression Network 

The Dataset GSE91061 [27] (10 complete response or particle response samples and 23 non-
response samples) was normalized with DESeq2 [29], and the genes were ranked by median absolute 
deviation (MAD). The top 5,000 genes with the highest MADs were extracted for gene co-expression 
network construction via the weighted correlation network analysis (WGCNA) package [30]. 
Pearson's correlation coefficients were calculated between each pair of the extracted genes to generate 
the adjacency matrix. Then, the function “tomlikeity” was used to transform the adjacency matrix 
into the topological overlap measure (TOM). The TOM reflected the correlative interconnectivity 
between two genes according to their degree of shared adjacency for the whole network [30]. The 

Figure 1. The flowchart of study design. Flow diagram of analysis procedure including discovery,
analysis and validation of potential therapeutic biomarkers in this study. GEO: Gene Expression
Omnibus; WGCNA: Weighted correlation network analysis; PPI: Protein–protein interaction; ROC:
Receiver operating characteristic; GSVA: Gene set variation analysis; GEPIA: Gene expression profiling
interactive analysis; TIMER: Tumor immune estimation resource.

2.1. Data Acquisition of Gene Expression Datasets

Using the keywords such as “PD-1”, “immunotherapy”, “therapy”, “treatment”, and “melanoma”,
datasets were investigated from the main transcriptomics database, including Gene Expression Omnibus
(GEO) (http://www.ncbi.nlm.nih.gov/geo) [23], ArrayExpress (https://www.ebi.ac.uk/arrayexpress) [24]
and Expression Atlas (https://www.ebi.ac.uk/gxa/home) [25]. By manually checking, the raw datasets
meeting the following standards were retained in subsequent analyses: (i) inclusion of gene expression
data of responders (complete response or particle response) or non-responders (progress disease) to
anti-PD-1 therapy in melanoma. The responders and non-responders to immunotherapy were defined
according to iRECIST guidelines [26], and the stable disease was not included due to the controversial
role in response to therapy [27,28]; (ii) at least 15 accessible samples in the datasets; and (iii) availability
of raw sequence or microarray data.

2.2. Construction of Gene Co-Expression Network

The Dataset GSE91061 [27] (10 complete response or particle response samples and 23 non-response
samples) was normalized with DESeq2 [29], and the genes were ranked by median absolute deviation
(MAD). The top 5000 genes with the highest MADs were extracted for gene co-expression network
construction via the weighted correlation network analysis (WGCNA) package [30]. Pearson’s
correlation coefficients were calculated between each pair of the extracted genes to generate the
adjacency matrix. Then, the function “tomlikeity” was used to transform the adjacency matrix into the
topological overlap measure (TOM). The TOM reflected the correlative interconnectivity between two

http://www.ncbi.nlm.nih.gov/geo
https://www.ebi.ac.uk/arrayexpress
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genes according to their degree of shared adjacency for the whole network [30]. The genes with similar
expression patterns were clustered into the same module utilizing the average linkage hierarchical
clustering based on the TOM-based dissimilarity measure.

2.3. Identification of Clinically Significant Modules

Two approaches were utilized to obtain the modules significantly associated with clinical traits.
Pearson’s correlation analysis was adopted to calculate the correlation between clinical features and
the module eigengenes (MEs). MEs were the major component for each gene module and the most
representative expression patterns of the module [30]. Then, the gene significance (GS) and module
significance (MS) were calculated. GS represented the correlation between gene expression and clinical
features. MS was the average GS across all genes in the module [30]. Generally, the module with the
first-ranked MS was considered as the clinically significant modules.

2.4. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway Enrichment Analysis

To investigate the function of the genes in clinically significant modules, enrichment analysis
of Gene Ontology (GO) was performed by NetworkAnalyst (https://www.networkanalyst.ca) [31].
GO terms were regarded as the significant ones when the adjusted p-value < 5 × 10−3 and minimum
gene counts > 20. NetworkAnalyst was also applied for performing Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis. Adjusted p-value < 2 × 10−4 and the minimum gene
counts > 10 were regarded as the cut-off criteria.

2.5. Identification of Hub Genes Based on Protein–Protein Interaction (PPI) and Topological Network

The PPI network of key module genes was constructed by the STRING database (http://string-db.
org) [32]. The plug-in CytoHubba [33] of Cytoscape software [34] was applied to explore key nodes
in the PPI network via 11 topological algorithms including Degree, Edge Percolated Component,
Maximum Neighborhood Component, Density of Maximum Neighborhood Component, Maximal
Clique Centrality, Bottleneck, EcCentricity, Closeness, Radiality, Stress, and Betweenness [33]. The top
50 nodes were defined as core genes for each algorithm in the topological network. The intersected core
genes derived from the 11 topological algorithms were considered as the hub genes with important
biological regulatory functions.

2.6. Receiver Operating Characteristic (ROC) Curve Analysis

To verify the diagnostic ability of hub genes in another dataset, the RNA-sequencing dataset
GSE78220 [28] was utilized, which included 28 melanoma patient samples (five complete response
samples, 10 partial response samples and 13 non-response samples) treated with anti-PD-1 therapy.
Using pROC package [35], the area under the ROC curve (AUC) was calculated on the expression data
of each hub gene. In addition, to obtain test results with high specificity, we focused on the partial
area under the curve (pAUC) between 90% and 100% specificity [36], which was also calculated by the
pROC package [35]. In the present study, the larger AUC or pAUC value for a gene indicated that
this gene can better distinguish responders from non-responders for anti-PD-1 immunotherapy [37].
Based on the AUC or pAUC values, the diagnosis effect of hub genes was further investigated.

2.7. Gene Set Variation Analysis of Hub Genes

GSVA is a reliable approach to evaluate the variation of function activity across different
samples via an unsupervised manner [38]. To explore the functions most associated with hub genes,
“GSVA” R package was applied based on the GSE78220 [28]. The gene set “c5.all.v2.5.symbols.gmt”
was downloaded from the Molecular Signature Database (MSigDB) accessed on 5 December 2019
(http://software.broadinstitute.org/gsea/msigdb/index.jsp) as the reference gene set, and p-value < 0.05
was used as the cut-off point.

https://www.networkanalyst.ca
http://string-db.org
http://string-db.org
http://software.broadinstitute.org/gsea/msigdb/index.jsp
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2.8. Correlation Analysis of Hub Genes and Immune Infiltration Level

The online tool TIMER (https://cistrome.shinyapps.io/timer) database [39] was used to explore
the association between the hub gene expression and immune infiltration levels in melanoma.
Based on deconvolution of the previously published statistical methods [40], the TIMER database is a
comprehensive resource to evaluate the abundance of tumor-infiltrating immune cells (TIICs) across
diverse cancer types from The Cancer Genome Atlas (TCGA) database (https://cancergenome.nih.gov).

2.9. Validation and Survival Analysis of Hub Genes

GEPIA database (http://gepia.cancer-pku.cn/index.html) provides comprehensive expression
analyses for RNA sequencing data, including 9,736 tumors and 8,587 normal samples from TCGA and
the GTEx projects [41]. To reveal the expression level and prognostic value of hub genes in melanoma,
differential expression analysis (p-value < 0.05 and log2FC > 1) and survival analysis (p-value < 0.05)
were performed via GEPIA. In addition, the Cox proportional hazard regression model of the screened
hub genes was constructed via the survival package in R software to evaluate the overall survival
of the melanoma patients. The Cox proportional hazard regression model is a very useful tool to
access the impact of lifetime-related factors on the hazard function [42]. The skin cutaneous melanoma
(SKCM) and uveal tract melanoma (UVM) datasets from TCGA as well as normal samples from GTEx
projects were used for analysis.

2.10. Correlation Analysis of Hub Genes and Biomarkers of Anti-PD-1 Therapy

GEPIA was also utilized to identify the relationship of hub genes and biomarkers of anti-PD-1
immunotherapy. The SKCM and UVM datasets from TCGA were used for analysis. The Spearman
method was adopted to calculate the correlation coefficient between genes. The terms with p-value < 0.05
were regarded as statistically significant.

2.11. Random Forest

A prediction model of anti-PD-1 immunotherapy response was constructed via the random forest
classifier. The hub genes were the covariates of the prediction model. The random forest is a popular
tool for classification and regression, which shows a powerful ability to construct a predictive model
for new biomarkers. The random forest is less prone to over-fitting problems and can handle a large
amount of noise. A random forest-based classifier was built via the randomForest package in R
software based on the algorithm of Breiman and Cutler [43]. The samples of GSE78220 (n = 28) [28]
were randomly divided into the training set and test set via the caret package, each of which contained
14 samples. Then, the decision tree model of the training set was established to obtain the classification.
Next, the classification results of each time were averaged to calculate the final classification. The model
built by the training set would be tested by the test set. Each result would calculate the error rate
through Out-of-bag (OOB) to evaluate the correct rate of the combined classification. OOB was the
data not sampled when the training set was randomly sampled. The OOB samples were used to
estimate the prediction error and variable importance [44]. Finally, the melanoma samples treated
with anti-PD-1 therapy of GSE93157 [45] (seven complete response or particle response samples and
11 non-response samples) were used as the validation set to verify the accuracy of the random forest
model. AUC index was utilized to evaluate the efficiency of the prediction model.

3. Result

3.1. Construction of Weighted Co-Expression Network and Identification of Key Modules

According to the strict standards described above, GSE91061 (n = 33) [27], GSE78220 (n = 28) [28]
and GSE93157 (n = 18) [45] were retained for further analysis. To determine the key modules connected
with clinical features (therapeutic response), the weighted co-expression network was constructed by

https://cistrome.shinyapps.io/timer
https://cancergenome.nih.gov
http://gepia.cancer-pku.cn/index.html
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WGCNA based on the GSE91061 (n = 33). The power of β = 5 (scale free R2 = 0.89) was selected as the
soft-thresholding parameter to ensure a scale-free network (Figure 2A). A total of 27 modules, ranging
in size from 30 to 525 genes, was found by the average linkage hierarchical clustering (Figure 2B–C).
Based on the calculation of Pearson’s correlation coefficient, the pink module was considered as the
highest correlation one with the clinical traits (cor = 0.38, p-value = 0.03) (Figure 2D). Moreover, the pink
module showed the highest MS in Figure 2E. Modules with a greater MS were relevant to the clinical
traits. According to the results of the two methods, the pink module was selected as a key module to
be studied in subsequent analyses.
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Figure 2. Identification of key modules connected with clinical features through WGCNA. (A) The left
and right panel showed the scale-free fit index and the mean connectivity for various soft-thresholding
powers, respectively. When the soft-thresholding powers (β) equaled five, the average degree of
connectivity was close to zero. (B) The cluster dendrogram of module eigengenes. (C) The cluster
dendrogram of 5,000 module eigengenes from the GSE91061 dataset. Each branch in the figure
represented one gene, and every color below represented one co-expression module. (D) Heatmap
of the correlation between module eigengenes and clinical traits of anti-PD-1 immunotherapy
responsiveness. The color of cells in the heatmap represented the correlation coefficients of different
sizes. Specifically, red colors represented the positive correlations and green colors stood for the
negative correlations. The figure without brackets in each cell indicated the clinical feature correlation
coefficients. The corresponding p-value was shown below in parentheses. The pink module was
significantly correlated with response to anti-PD-1 therapy. (E) Distribution of average gene significance
and errors in the modules associated with the response to anti-PD-1 therapy.
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3.2. Potential Functional Roles of Genes in the Pink Module

The results showed 19 GO terms were enriched with adjusted p-value < 5 × 10-3 and minimum
gene counts > 20 (Figure 3A). The pink module genes were mainly enriched in immune function
(e.g., immune response, immune progress, and immune cell activation), hemopoiesis and signal
transduction. Activating the immune system via blocking the immune checkpoint was a crucial factor
for anti-PD-1 immunotherapy to attack the tumor cells [46], which indicated that genes involved the
immune function may be relevant to the efficacy of anti-PD-1 immunotherapy.

Based on KEGG pathway mapping, the pink module genes were significantly involved in
12 pathways (adjusted p-value < 2 × 10-4, minimum gene counts > 10) such as Epstein–Barr virus
infection, chemokine signaling pathway, natural killer cell-mediated cytotoxicity, Th1 and Th2 cell
differentiation, Jak-STAT signaling pathway, and so on (Figure 3B). Natural killer cell-mediated
cytotoxicity was the fourth most significant pathway (adjusted p-value = 4.33 × 10-5). Ardolino, M. et al.
found that the natural killer cell response elicited by the PD-1/PD-L1 blockade played vital roles in
the therapeutic effect of immunotherapy [47]. The results also demonstrated that many genes were
significantly involved in the chemokine signaling pathway. Chemokine gene expression signatures
including CCL5, CXCL9, CXCL10, and CXCL11 were reported that could accurately predict anti-PD-1
immunotherapy response for patients with head and neck squamous cell carcinoma and gastric
cancer [18]. Furthermore, Herbst, R.S. et al. found that the expression of CXCL9 had a significant,
positive correlation with the therapeutic response in melanoma [48]. Comparing melanoma samples
with normal controls, Boots, A.M. et al. indicated that PD-1 checkpoint blockades enhanced the
inflammatory responses of Th1 and Th17 as well as inhibited Th2 responses [49]. Genes involved
in Th1 and Th2 cell differentiation may indirectly reflect the response of blockades. Additionally,
the Jak-STAT signaling pathway was also enriched. Lu, C. et al. demonstrated that Jak-STAT signaling
inhibited cytotoxic T lymphocyte activation to weaken the effect of anti-PD-1 immunotherapy [50].
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Figure 3. Enrichment analysis of gene ontology and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway for genes in the pink module. (A) Enrichment analysis of gene ontology. Annotation
terms in the biological process, cellular component and molecular function were marked in red, yellow,
and green, respectively. Bubble size represented the value of –log10-adjusted p-value of enrichment
significance. (B) Enrichment analysis of KEGG pathway. Different colors represent the value of
–log10-adjusted p-value of enrichment significance.

3.3. Identification of Hub Genes

A total of 232 genes in the pink module were analyzed by STRING database. A PPI network
containing 100 nodes and 134 interactions was built with the medium confidence score (> 0.4).
After importing the data into Cytoscape and running the CytoHubba program, the top 50 node genes
were calculated as the core genes by 11 topological algorithms, respectively (Table S1). As a result,
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a total of 13 genes including BTK, CD3E, CD48, IL2RG, IL2RB, LCP1, TRIM21, IRF1, JAK2, CD8A, IRF8,
STAT5B, and SELL were calculated as the intersection of the core genes in 11 algorithms, which were
considered to be hub genes.

3.4. ROC Curve Analysis of Hub Genes

To validate the predictive power of 13 hub genes for anti-PD-1 therapy in melanoma, ROC curve
analysis was enabled utilizing GSE78220. Finally, the results suggested that the expression of six
genes including IRF1, JAK2, CD8A, IRF8, STAT5B, and SELL had a significant ability to distinguish the
responders from non-responders to anti-PD-1 therapy in melanoma with AUC > 0.6 and pAUC > 0.7
(Figure 4).
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Figure 4. Receiver operating characteristic (ROC) curve analysis of six hub genes based on GSE78220.
(A) IRF1, (B) JAK2, (C) CD8A, (D) IRF8, (E) STAT5B, and (F) SELL. The area under the ROC curve
(AUC) and partial area under the curve (pAUC) are shown in each subgraph, and the pAUC is on the
bottom right of the subgraph. The AUCs of IRF1, JAK2, CD8A, IRF8, STAT5B, and SELL were 0.75, 0.65,
0.63, 0.69, 0.72, and 0.68, respectively. The pAUCs of IRF1, JAK2, CD8A, IRF8, STAT5B, and SELL were
0.76, 0.72, 0.76, 0.72, 0.80, and 0.80, respectively.
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3.5. Gene Expression of Hub Genes

The expression of the six genes in responders or non-responders to anti-PD-1 therapy (GSE91061)
was shown in Figure 5. The expressions of IRF1, JAK2, CD8A, IRF8, and SELL were down-regulated
in the responders compared with non-responders (p-value < 0.05 and log2FC > 0.5). However,
the expression of STAT5B had no significant changes between the responders and non-responders.
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Figure 5. The expression of the six hub genes in responders or non-responders to anti-PD-1 therapy.
(A) IRF1, (B) JAK2, (C) CD8A, (D) IRF8, (E) STAT5B, and (F) SELL gene expression differences between
melanoma and normal tissues. The blue column represented the samples of non-responders, and the
yellow column represented the samples of responders.

3.6. Functional Enrichment Analysis by Gene Set Variation Analysis (GSVA)

To further investigate the correlation between anti-PD-1 immune checkpoint blockade therapy
and functional features of IRF1, JAK2, CD8A, IRF8, STAT5B, and SELL in melanoma, differential
signature enrichment analysis was performed via GSVA based on the GSE78220 datasets (n = 28).
A group of 27 functional signatures was enriched in RNA-seq data of 13 non-responding versus
15 responding pre-anti-PD-1 melanoma patients. The enrichment functions included regulation
of transcription factor and promoter, lymphocyte proliferation and differentiation, regulation of
hematopoiesis and the immune system, and so on (Figure 6). Most of the functions were up-regulated
in the group with positive responses to immunotherapy and down-regulated in the group with negative
responses to immunotherapy. This demonstrated that the functional signatures of IRF1, JAK2, CD8A,
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IRF8, STAT5B, and SELL could provide several suggestions for distinguishing the clinical effects of
anti-PD-1 immunotherapy.
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Figure 6. Gene set variation analysis of hub genes in the GSE78220 dataset. The functional analysis
clustered gene ontology terms with p-value < 0.05 for six hub genes. The x-axis represents melanoma
samples treated with anti-PD-1 therapy, including responders (green) and non-responders (red). The
y-axis shows the enriched GO terms, and the orange ones indicate the up-regulation of the function,
while the blue ones indicate the downregulation.

3.7. Analysis of Association Between Hub Genes and Immune Infiltration Level

Recent studies confirmed that immune infiltrating lymphocytes, as a crucial factor in regulating
the immune system, had vast potential to predict the effect of checkpoint inhibitor therapy [7]. In this
study, the TIMER database was applied to analyze the relationship between the hub gene expressions
and immune infiltration levels in melanoma. As a whole, the expressions of six hub genes in SKCM
were associated with B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages, and dendritic cells
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(p-value < 0.05) (Figure 7A–F). The overall trend of these six genes was negatively related to tumor
purity, which demonstrated that these genes may be highly expressed in TME. The expressions of IRF1,
CD8A and IRF8, especially IRF8, were significantly correlated with the infiltration of CD8+ T cells,
neutrophils and dendritic cells (cor > 0.5, p-value < 1 × 10-5). Several studies revealed that CD8+ T
cells, neutrophils and dendritic cells were related to better outcomes and longer survival for patients
under immunotherapy [51–53], which implied IRF1, CD8A and IRF8 were probably connected with
the prognostics of immune treatment. However, the correlation between the hub genes expression and
immune infiltrating levels was not obvious in UVM.
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Figure 7. Correlation of six hub genes with immune infiltration in melanoma. (A) IRF1, (B) JAK2,
(C) CD8A, (D) IRF8, (E) STAT5B, and (F) SELL. The x-axis demonstrates the immune infiltration levels.
Spearman’s correlation coefficient and p-value are shown in the upper right corner.
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3.8. Validation of Hub Genes in The Cancer Genome Atlas (TCGA) Datasets

The prognostic value and expression level of the six hub genes were validated by TCGA datasets
on melanoma. The results indicated that CD8A and SELL were up-regulated as well as JAK2 was
down-regulated in melanoma samples compared with normal controls (p-value < 0.05) (Figure 8A).
Furthermore, the results of the survival analysis suggested that high expressions of IRF1, JAK2, CD8A,
IRF8, and SELL correlated significantly with improved clinical outcomes (p-value < 0.01) (Figure 8B).
In addition, the multivariate Cox regression analyses for the six genes including IRF1, JAK2, CD8A,
IRF8, STAT5B, and SELL were performed. The Cox proportional hazard regression model equation is
as follows:

Riska = −0.127546 · IRF1 − 0.138979 · JAK2 − 0.098595 · CD8A + 0.132417 · IRF8 −

0.070296 · STAT5B − 0.009357 · SELL
(1)

The risk score was calculated for each sample, and the samples were grouped according to the
median risk score (cutoff = –3.376457). The results showed that the prognoses of the high-risk and
low-risk groups significantly differed (Figure 8C). High expression of IRF8 was related to a high
risk of death. The high expression of IRF1, JAK2, CD8A, STAT5B, and SELL was connected with
a low risk of death and was a protective factor of melanoma. The results were roughly consistent
with the survival analysis of a single gene. In previous studies, anti-PD-1 immunotherapy usually
showed a remarkable ability to effectively improve the survival benefits of patients across several
cancers [54]. Patients with favorable prognosis frequently showed a positive response to anti-PD-1
therapy [55]. Hence, combining with the results of survival and Cox regression analyses, it implied
that the high expressions of IRF1, JAK2, CD8A, and SELL may predict a positive response to anti-PD-1
immunotherapy for melanoma patients.
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3.9. Relationships between Hub Genes and Biomarkers of Anti-PD-1 Therapy 

The relevance of gene expression between the six hub genes and the reported biomarkers (PD-
L1/CD274, CXCR3 and IFN-γ/IFNG) with significant predictive power for immunotherapy were 
analyzed by the GEPIA database. The expression level of PD-L1 IHC in tumor cells has been indicated 

Figure 8. Validation of the expression level and prognostics in melanoma for six hub genes. (A) IRF1,
JAK2, CD8A, IRF8, STAT5B, and SELL gene expression differences between melanoma and normal
tissues. The red column represents the melanoma samples, and the black column represents the normal
samples. (B) Survival analysis of IRF1, JAK2, CD8A, IRF8, STAT5B, and SELL in melanoma. The red
line designates the samples with highly expressed genes, and the blue line indicates the samples with
lowly expressed genes. (C) The multivariate Cox regression analysis of the six screened hub genes
in overall survival. The horizontal axis (x-axis) represents time in days, and the vertical axis (y-axis)
shows the probability of survival or the proportion of people surviving. The lines represented the
survival curves of the two groups. ns, p-value > 0.05; *, p-value < 0.05.

3.9. Relationships between Hub Genes and Biomarkers of Anti-PD-1 Therapy

The relevance of gene expression between the six hub genes and the reported biomarkers
(PD-L1/CD274, CXCR3 and IFN-γ/IFNG) with significant predictive power for immunotherapy were
analyzed by the GEPIA database. The expression level of PD-L1 IHC in tumor cells has been indicated
as a unique biomarker of the immune checkpoint blockade response in the clinical [56]. CXCR3 and
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IFN-γ have been confirmed by more than one article as biomarkers for sensitivity to the PD-1 blockade
based on clinical experiments and mouse models [18,57–59]. The results of correlation analysis showed
a significant, positive correlation (cor > 0.6, p-value < 0.05) between the expression of four hub genes
(IRF1, CD8A, IRF8, and SELL) and three biomarkers in melanoma (Figure 9A–C). Genes with strong
correlation may have similar regulatory capacities or biological functions [60]. Thus, we speculated
that the four genes closely related to PD-L1, IFN-γ and CXCR3 may be connected with the efficacy
evaluation of anti-PD-1 immunotherapy.
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the efficiency of the model. The results showed that the prediction model had a good predictive 
ability for anti-PD-1 immunotherapy response (AUC = 0.75) (Figure 10D). Compared with the single 
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Figure 9. Expression association analyses between six hub genes and reported biomarkers for anti-PD-1
therapy in melanoma. (A) The relevance of PD-L1 (CD274) and six hub genes. (B) The relevance
of CXCR3 and six hub genes. (C) The relevance of IFN-γ (IFNG) and six hub genes. Six hub genes
including IRF1, JAK2, CD8A, IRF8, STAT5B, and SELL. The x-axis and y-axis represent the expression
level (log2TPM) of hub genes and reported melanoma biomarkers of anti-PD-1 therapy, respectively.
The upper left corner of the picture shows the p-value and correlation coefficient calculated by the
Spearman method. TPM: Transcripts per million.

3.10. The Random Forest Model of Hub Genes

We constructed a random forest classification model of anti-PD-1 immunotherapy response based
on the screened six hub genes (File S1). During the process of building the random forest model,
when mtry = 3, the false positive rate of the model was the lowest (Figure 10A). The optimal model
can be achieved when the number of decision trees was about 2,000 (Figure 10B). In addition, the
randomForest package provides two indexes to calculate the importance of variables. The one is
the index to calculate the prediction error rate based on OOB and is named mean decrease accuracy
(%IncMSE). The other is to calculate the Gini coefficient based on the sample fitting model and is
named Mean Decrease Gini (IncNodePurity). The results showed that IRF1 and JAK2 were the more
important variables in the prediction model (Figure 10C). Then, the AUC index was used to evaluate
the efficiency of the model. The results showed that the prediction model had a good predictive ability
for anti-PD-1 immunotherapy response (AUC = 0.75) (Figure 10D). Compared with the single gene,
the random forest model had a better value of AUC except for IRF1. Additionally, the samples of an
independent dataset GSE93157 (n = 18) were used as the validation set to verify the accuracy of the
random model. The results also indicated that the random forest model could significantly distinguish
the response to anti-PD-1 therapy for melanoma patients (AUC = 0.71) (Figure 10E).



Genes 2020, 11, 435 16 of 22
Genes 2020, 11, x FOR PEER REVIEW 16 of 22 

 

 
Figure 10. The correlation results of the random forest model. (A) The scatter plot of the false-positive rate. The 
vertical axis represents the false positive rate, and the horizontal axis represents mtry index. (B) Relationship 
between the related errors and the number of decision trees in random forests. The vertical axis represents the 
related errors, and the horizontal axis represents the number of decision trees. (C) The scatter plot of the random 
forest variable importance measure. The left and right panel were calculated based on the index of mean decrease 
accuracy and mean decrease Gini, respectively. (D) Evaluation of the prediction efficiency of the random forest 
model in immunotherapy response (GSE78220). (E) The validation set (GSE93157) verified the accuracy of the 
random forest model in immunotherapy response. 

4. Discussion 

Despite the significant survival benefits of applying PD-1 checkpoint blockades in patients with 
melanoma, the response is only observed in a small group, and a massive economic burden comes to 
the individual patient [51]. Currently, the PD-L1 expression upon IHC is the unique biomarker 
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Figure 10. The correlation results of the random forest model. (A) The scatter plot of the false-positive
rate. The vertical axis represents the false positive rate, and the horizontal axis represents mtry
index. (B) Relationship between the related errors and the number of decision trees in random forests.
The vertical axis represents the related errors, and the horizontal axis represents the number of decision
trees. (C) The scatter plot of the random forest variable importance measure. The left and right panel
were calculated based on the index of mean decrease accuracy and mean decrease Gini, respectively.
(D) Evaluation of the prediction efficiency of the random forest model in immunotherapy response
(GSE78220). (E) The validation set (GSE93157) verified the accuracy of the random forest model in
immunotherapy response.

4. Discussion

Despite the significant survival benefits of applying PD-1 checkpoint blockades in patients with
melanoma, the response is only observed in a small group, and a massive economic burden comes
to the individual patient [51]. Currently, the PD-L1 expression upon IHC is the unique biomarker
approved in clinical practice, while its role is still controversial [61]. Therefore, the establishment of
predictive biomarkers for immunotherapy response has become a priority.

To investigate potential biomarkers for anti-PD-1 immune checkpoint blockade therapy in
melanoma, omics data and network-based approaches were applied in the study. Utilizing gene
expression data, a gene co-expression network was built via the WGCNA algorithm to identify
key modules related to the clinical features (therapeutic response) [30]. The core genes of the
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clinically significant modules were supposed to be crucial genes in the occurrence and development
of disease [62]. Eventually, the pink module was screened, and 13 hub genes were derived from the
module. Furthermore, ROC curve analysis showed that six of 13 hub genes including IRF1, JAK2, CD8A,
IRF8, STAT5B, and SELL can specifically and accurately distinguish responders from non-responders
to anti-PD-1 therapy, which implied the six genes appeared as potential predictors.

To further explore the biological functions of the six hub genes, functional enrichment analysis,
survival analysis, immune infiltration level analysis, correlation analysis, and prediction model
analysis were enabled. Our results demonstrated that the six hub genes were enriched in lymphocyte
proliferation and differentiation as well as immune system regulation. These enriched biological
functions contributed to the positive regulation of the immune system and the promotion of anti-tumor
immune response [63]. Moreover, the results of survival analysis indicated that the high expression of
six hub genes except STAT5B was connected with improved outcomes in melanoma. The multivariate
Cox regression analysis implied that high expression of IRF8 was associated with a high risk of death,
and high expressions of IRF1, JAK2, CD8A, STAT5B, and SELL were associated with low risk of death.
Patients with excellent prognosis frequently revealed positive reactiveness to anti-PD-1 therapy [54].
Thus, we speculated that the high expressions of IRF1, JAK2, CD8A, and SELL might be related to the
favorable response of immunotherapy. Besides, our results showed that the expression level of the six
hub genes was relevant to TIICs. As a valued factor of anti-tumor immunity, the TIICs can impact
the prognosis of patients under immunotherapy [56]. Finally, four genes (IRF1, CD8A, IRF8, and
SELL) were found that closely related to biomarkers of anti-PD-1 therapy (PD-L1, IFN-γ and CXCR3).
The strong correlation between genes implied that genes may have similar biological functions or
regulatory effects [60]. This suggested that the four genes may have a similar ability to predict the
anti-PD-1 immunotherapy response. Besides, the random forest prediction model constructed based
on the six hub genes showed significant prediction ability of anti-PD-1 therapy. Together with the
above findings, there is a strong support of these six hub genes playing pivotal roles in the prognosis
and response of checkpoint blockade immunotherapy.

Notably, previous studies provided a large amount of evidence to support the reliability of the
results in this study. Rimm, D.L. et al. found that IRF-1 expression was higher in melanoma patients
with partial or complete response to anti-PD-1 therapy based on the clinical experiments [64]. Shin,
D.S. et al. proposed that JAK2 loss-of-function mutations lead to resistance to PD-1 blockade therapy
due to the lack of reactive PD-L1 expression and response to interferon-gamma [65]. Moreover, IRF1
and JAK2 had been reported as biomarkers of the anti-PD-1 immunotherapy response in melanoma
via clinical sample validation [64,66]. The CD8A is a cell surface glycoprotein on most cytotoxic T
lymphocytes, which can mediate efficient cell–cell interactions within the immune system [67]. Wherry,
E.J. et al. demonstrated an association between CD8A expression in tumors and response to immune
checkpoint inhibitors in melanoma [68]. Meanwhile, CD8A was conformed as a biomarker to predict
the clinical effects of nivolumab in lung cancer [69]. The remaining three hub genes were considered to
be closely related to immunotherapy or the immune response. The expression of IRF8 can selectively
induce and maintain the production of soluble factors to regulate the immune response [70]. IRF8
contributed to antitumor immunity due to promoting the differentiation of CD4+ cells and CD8+ cells
as well as activation of natural killer cells [71]. STAT5 belongs to the T-cell transcription factor family,
which contains two highly related proteins, STAT5A and STAT5B [72]. Auphan-Anezin, N. et al. found
targeting STAT5 in tumor-associated immune cells increased the clinical benefits of immunotherapy [73].
Finotto, S. et al. demonstrated that the function of STAT5 can help to improve the effect of lung
cancer immunotherapy via detecting the gene expression of STAT5 in CD4+ T lymphocytes [72].
Majri, S.S. et al. described STAT5B was a crucial regulator of restimulation-induced T cell death in
humans and mice [74]. SELL is a cell adhesion molecule on leukocytes and the preimplantation embryo,
which plays crucial roles in lymphocyte–endothelial cell interactions [75]. It was confirmed that SELL
can improve the efficacy of cancer immunotherapy via enhancing the activity of T cells [76].
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Although the expression of STAT5B showed no significant changes between the responders and
non-responders to anti-PD-1 therapy based on GSE91061, the gene should not be ignored. STAT5B
was the hub gene identified by WGCNA, which may play an important role in the gene network
of immunotherapy. ROC analysis indicated that it had significant diagnostic value in the anti-PD-1
therapy response (AUC = 0.72, pAUC = 0.80). STAT5B can combine with the other five screened
hub genes to construct a random forest prediction model of immunotherapy response with excellent
diagnostic efficiency. The results of functional enrichment analysis, immune infection level analysis,
correlation analysis and literature validation demonstrated STAT5B was closely associated with the
evaluation of response to anti-PD-1 therapy. Therefore, STAT5B was worthy to regard as a potential
therapeutic biomarker.

Based on the random forest tool, a prediction model of six genes was constructed to detect the
diagnostic efficacy of anti-PD-1 immunotherapy. The results showed that the random forest model of
the six genes can distinguish patients that have a response to immunotherapy. However, it is worth
noting that not too many samples were used to train the prediction model at present. If the model was
directly applied to other datasets, the prediction efficiency may not be satisfactory enough. Therefore,
in the future, we will collect more datasets associated with anti-PD-1 therapy in melanoma and
continue to retrain our prediction model so that it can be directly extended to other studies. In addition,
other limitations of the study were that the six hub genes identified by WGCNA lacked experimental
verification. In particular, the results in the present study need to be verified by clinical trials.

In conclusion, six hub genes (IRF1, JAK2, CD8A, IRF8, STAT5B, and SELL) were discovered to
distinguish the response of melanoma patients under anti-PD-1 immunotherapy via WGCNA and
integrated bioinformatics. These genes may serve as potential biomarkers to guide immunotherapy in
the future.
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