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Controlling wave fronts 
with tunable disordered 
non‑Hermitian multilayers
Denis V. Novitsky1*, Dmitry Lyakhov2, Dominik Michels2, Dmitrii Redka3, 
Alexander A. Pavlov4 & Alexander S. Shalin4,5

Unique and flexible properties of non‑Hermitian photonic systems attract ever‑increasing attention 
via delivering a whole bunch of novel optical effects and allowing for efficient tuning light‑matter 
interactions on nano‑ and microscales. Together with an increasing demand for the fast and spatially 
compact methods of light governing, this peculiar approach paves a broad avenue to novel optical 
applications. Here, unifying the approaches of disordered metamaterials and non‑Hermitian 
photonics, we propose a conceptually new and simple architecture driven by disordered loss‑gain 
multilayers and, therefore, providing a powerful tool to control both the passage time and the wave‑
front shape of incident light with different switching times. For the first time we show the possibility 
to switch on and off kink formation by changing the level of disorder in the case of adiabatically raising 
wave fronts. At the same time, we deliver flexible tuning of the output intensity by using the nonlinear 
effect of loss and gain saturation. Since the disorder strength in our system can be conveniently 
controlled with the power of the external pump, our approach can be considered as a basis for 
different active photonic devices.

Recently, the studies of open optical systems containing loss and gain attract increased attention. Although such 
systems are well-known for many years, the recent trend of non-Hermitian photonics provides the second breath 
to the investigations of lasers, waveguides, resonators, etc. This is not only due to a different language borrowed 
from quantum mechanics, but also because of a number of novel phenomena found in loss-gain structures. We 
name here only a few examples, such as the effects of P T  symmetry1–3 and exceptional  points4,5. These effects 
include unidirectional  invisibility6,7,  sensors8,9 and  gyroscopes10,11 with enhanced sensitivity, loss-induced12 and 
 asymmetric13 lasing, novel single-mode14–16 and  vortex17 lasers, coherent perfect  absorbers18–21, and topological 
bulk-boundary  correspondence22–25.

Disordered photonics is another spotlight of modern  research26. It deals with light propagation in the pres-
ence of random fluctuations of the medium parameters such as refractive index or unit cell dimensions. The 
rich physics of such systems rooted in multiple scattering allows to realize a number of unusual features; the 
scattering properties of single particles and complex structures are well-studied in  literature27–29. The most 
prominent feature of disordered systems is the Anderson localization of  light30–32 appearing as a result of multi-
path interference of waves scattering on random inclusions. Multiple scattering can also lead to the peculiar 
statistical properties of light violating usual diffusion (sub- and superdiffusion) like in optical Levy  flights33–35. 
The situation becomes even more complicated when the interplay between disorder and nonlinearity occurs 
with the subsequent suppression of Anderson localization or promotion of  diffusion36–38.

There is a recent trend combining together disorder and non-Hermiticity in the random systems with loss 
and gain. One of the main aims of such combinations is the enhancement of transmission which is usually 
strongly suppressed due to multiple  scattering39. For example, this problem can be solved with the help of the 
concept of so-called constant-intensity waves in specially designed loss-gain  profiles39–43. The non-Hermitian 
disorder due to random fluctuations of loss and gain can be a source of novel-type localized  states44–46. Another 
interesting direction is the effects of asymmetric hopping on many-body localization predicted for dynamics 
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of the quantum  particles44,47. Such effects can have an optical analogue realized, e.g., due to nonreciprocity via 
utilization of magnetic or nonlinear materials. There is also a very active subfield of random lasing obtained in 
disordered amplifying  media48–51. However, the dynamics of light interaction with structures containing both 
loss/gain and disorder are still poorly studied.

In this paper, we analyze the propagation of wave fronts through the disordered loss-gain non-Hermitian 
multilayer structures. The problem is aimed to be as realistic as possible: The fronts are the monochromatic 
waveforms having finite switching time, the loss and gain are due to resonant media and not merely a phenom-
enological imaginary part of permittivity, and the disorder can be controlled with external pump and change in 
time due to gain depletion and loss saturation. We have previously reported the study of short pulse propagation 
and localization in such  media52 with the possibility to slow down or even stop the pulse. Here, we deal with the 
opposite case of continuous radiation with the emphasis on the transient process of steady-state establishment 
for the light intensities large enough to saturate the medium and give substantial transmission. This process can 
have different dynamics depending on the sharpness of the incident wave switching. In particular, we distin-
guish two regimes, when switching is slow (adiabatic) and fast (non-adiabatic). For these switching regimes, 
we show that the introduction of disorder changes the characteristic time of the transient process, whereas the 
resulting intensity of the signal is governed by saturation-limited input intensity. In particular, for the first time 
we demonstrate how the disorder can be used to switch on and off kinks at the output of the system. Thus, the 
non-Hermitian approach to disorder-induced control of propagation time, wave-front shape and transmitted 
intensity proposed in this paper opens new possibilities for ultrafast (picosecond or subnanosecond) multifunc-
tional manipulation of optical signals.

Results
Problem statement. Hereinafter, we consider a host dielectric doped with two-level atoms. Light propaga-
tion in such a medium is described by the well-known semiclassical Maxwell-Bloch equations for the dimen-
sionless electric-field amplitude � = (µ/�ω)E (normalized Rabi frequency), complex amplitude of the atomic 
polarization ρ , and population difference between the ground and excited states w53–55:

where τ = ωt and ξ = kz are the dimensionless time and distance, µ is the dipole moment of the quantum 
transition, � is the reduced Planck constant, δ = �ω/ω = (ω0 − ω)/ω is the normalized frequency detun-
ing, ω is the carrier frequency, ω0 is the frequency of the quantum transition, γ1 = 1/(ωT1) and γ2 = 1/(ωT2) 
are the normalized relaxation rates of population and polarization respectively, and T1 ( T2 ) is the longitudinal 
(transverse) relaxation time; ǫ = ωL/ω = 4πµ2C/3�ω is the light-matter coupling strength with C the density 
of two-level atoms and ωL the Lorentz frequency; l = (n2d + 2)/3 is the local-field enhancement factor due to the 
polarization of the host dielectric with refractive index nd by the embedded two-level particles. We numerically 
solve Eqs. (1)–(3) using the finite-difference approach described in Refs.56,57 well-proven in solving such tasks.

The parameters used for calculations are characteristic, e.g., for semiconductor quantum dots as the active 
particles. We suppose the exact resonance ( δ = 0 ). The host refractive index is nd = 1.5 . Incident monotonically 
switching cw field has the central wavelength � = 0.8 µ m and the envelope as follows,

where �0 is the amplitude of the resulting cw field (plateau), tp is the switching time, t0 = 5tp is the offset time.
The disorder is introduced to the system through the periodical random variations of the initial population 

difference w0 = w(t = 0) along the light propagation direction. One can say that the population difference 
shows which part of two-level atoms in the medium are excited. We use here the two-valued quadratic model 
of disorder described in Ref.52. In fact, we have the multilayer structure with the initial population difference in 
the jth layer of the medium corresponding to the distance (j − 1)δL < z ≤ jδL given by

where ζj is the random number uniformly distributed in the range [0; 1], r is the parameter of the disorder 
strength, sgn is the sign function, and δL = �/4 is the layer thickness. When r = 0 , we have the trivial case of 
purely absorbing medium (all w(j)

0 = 1 , Fig. 1a). For r � 0.3 , the gain layers with w(j)
0 = −1 become possible 

(Fig. 1b,c). The case of the maximal disorder, r = 1 , corresponds to the purely amplifying medium (all w(j)
0 = −1 , 

Fig. 1d). Thus, the parameter r not only governs deviation from the ordered case of pure loss, but also takes on 
the role of pumping strength resulting in appearance of gain. In general, the different layers of the structure are 
under different, randomly distributed pumping and can be lossy or gainy with a certain probability. This can be 
realized in a side-pumping scheme similar to that utilized in Ref.20 or with the adaptive-pumping  approach58. 

(1)
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Note that the quadratic model of disorder (Eq. 5) gives essentially the same results as the linear  one52, but is more 
convenient for symmetric representation of gain and loss. The similar linear model was experimentally realized 
recently in the context of random  lasing59.

Non‑adiabatic fronts. In this section, we consider the case of non-adiabatically switching field (Eq. 4), 
when tp ≪ T2 . In particular, we take the relaxation times T1 = 1 ns and T2 = 0.1 ns and the switching time 
tp = 5 ps. The Lorentz frequency is ω0

L = 1010 s −1 . The full thickness of the medium is L = 100� . The final 
amplitude is �0 = 10γ2.

Figure 2 shows the results of transmitted and reflected intensities calculations for different values of the 
disorder strength r. The initial population difference used in calculations is the same as in Fig. 1. Note that we 
consider here a single realization of disorder, since the observed features of interest for us are the same for differ-
ent realizations at a certain level of disorder r: the specific oscillations of output intensity can differ, but the time 
needed for steady-state establishment and the final intensity are essentially the same for every realization. In the 
ordered system ( r = 0 , see Fig. 2a), which is the uniform resonantly absorbing medium, the time needed for the 
front to pass through ( ∼ 150tp ) is much longer due to dispersion than the free propagation time ( Lnd/c ∼ 0.08tp ) 
and, in fact, is governed by the relaxation time T2 = 20tp . The stationary response of the medium is established 
after its saturation and is seen from ∼ 300tp on.

Figure 1.  The example of initial population difference distributions for different disorder strengths r.

Figure 2.  Intensity profiles for the transmitted and reflected light in the case of incident non-adiabatic front. 
Different panels show the results for different disorder strengths r.
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Increasing disorder strength r results in larger number of gain layers. As a result of stimulated emission in 
these layers, saturation needs less time and the stationary level is established faster. This is especially obvious 
for r = 0.5 (Fig. 2c). For even larger r, the number of gain layers becomes so large that amplified emission in the 
form of powerful bursts happens in the very first instants of time effectively returning most two-level particles 
to the ground level. Therefore, the propagation time of the front through the highly-amplifying system is similar 
to that in the case of purely absorbing medium (compare Fig. 2d and a).

The difference in the response time can be illustrated with the dynamics of population difference at the 
entrance of the structure shown in Fig. 3. This figure demonstrates the initial stage of medium saturation with 
the oscillations converging to the very low (almost zero) value. These are the well-known Rabi oscillations with 
the frequency given by the so-called Rabi frequency and, hence, dependent on the incident radiation amplitude. 
Note that for these oscillations to appear, the Rabi frequency should be larger than the medium relaxation rate 
that is easily satisfied in our calculations ( �0 = 10γ2 ). It is seen that although the dynamics for the amplifying 
( r = 1 ) and the absorbing medium ( r = 0 ) start from absolutely different levels ( w = −1 and w = 1 , respec-
tively), the oscillations of population difference very closely follow each other. On the contrary, for r = 0.5 , we 
also start from w = −1 (the first layer with gain), but the subsequent dynamics strongly differs from those for 
r = 0 and r = 1 . This confirms that similarity of the transmitted intensity profiles in Fig. 2d,a is not accidental.

An additional corroboration of this conclusion is given in Fig. 4, which shows the distribution of popula-
tion difference for different disorder strengths r at the time instant t = 20tp corresponding to the initial stage of 
radiation interaction with the medium (before the steady-state is established). It is seen that we have the random 
variations at r = 0.4 (Fig. 4b) and r = 0.5 (Fig. 4c) which can be treated as the variations of population differ-
ence around zero value. In other words, the medium can be considered as saturated on average. The light-matter 
interaction is comparatively weak in this case (there is no loss and gain on average) resulting in the increased 
speed of signal propagation, especially for r = 0.5 . On the contrary, the distributions for the purely absorbing (r 
= 0, Fig. 4a) and purely amplifying media (r = 1, Fig. 4d) are very similar, except for some local excitation due 
to random wanderings of light inside the medium. This confirms the rapid relaxation of amplifying medium 
due to spontaneous emission, so that the incident wave front propagates further in such effectively de-inverted 
medium giving the response analogous to that for r = 0.

We see from Fig. 2 that the stationary level of transmission is around 51.5% and reflection is only about 1.5% . 
The rest (almost half the energy of the wave) is absorbed by the saturated medium. How realistic is it? Let us 
estimate the level of stationary population difference necessary for this value of absorption. In the steady-state 
approximation, the two-level medium can be described with the effective dielectric permittivity as  follows62

where �2
sat = γ1(γ

2
2 + δ2)/4l2γ2 is the saturation intensity, K = 3ωLl

2/ω(γ 2
2 + δ2) . In the exact resonance 

( δ = 0 ), we have ε′eff = n2d and ε′′eff = 3ωLT2weff  , where weff = (1+ |�|2/�2
sat)

−1 is the sought-for effective 
population difference. Since εeff = (n+ iκ)2 , we can easily connect weff  with the effective absorption coefficient 
κ , which, in turn, can be linked to the transmission as T = exp(−4πκL/�) . For the parameters used in our 
calculations, one should take weff ≈ 5.5 · 10−4 to reach the transmission of 50% . This value of effective popula-
tion difference is close to zero (i.e. the medium is indeed saturated) and has the same order of magnitude as the 
stationary population difference obtained in our numerical calculations.

(6)εeff = ε′eff + ε′′eff = n2d +
K(−δ + iγ2)

1+ |�|2/�2
sat

,

Figure 3.  Dynamics of population difference at the entrance of non-adiabatic front in the medium with 
different disorder strengths r.
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Note that in our estimation, we have neglected reflection which is indeed very low as seen in Fig. 2. This can 
be easily explained with a simple calculation of transmittion and reflection of light from a uniform layer with the 
effective permittivity having small imaginary part. Finally, we see from the expression weff = (1+ |�|2/�2

sat)
−1 

that it should depend on the incident wave intensity: increasing intensity, we can make absorption smaller due 
to saturation. In other words, the low-intensity waves are almost entirely absorbed, whereas the high-intensity 
ones are mostly transmitted. The effect of disorder on the propagation time can be conveniently observed at the 
intermediate intensities, not very low and not very high (e.g., �0 = 10γ2 as in Fig. 2).

The features discussed in this section are also valid for two interacting wave fronts as shown in Supplementary 
Information.

Adiabatic fronts. In this section, we consider the case of adiabatically switching field (Eq. 4), when tp ≫ T2 . 
In particular, we take the relaxation times T1 = 1 ns and T2 = 0.1 ps and the switching time tp = 30T2 . The Lor-
entz frequency is ω0

L = 1011 s −1 . The full thickness of the medium is L = 200� , which is long enough for a kink 
to form and can be traversed after Lnd/c ∼ 0.27tp in the case of dispersion-free medium. The final amplitude 
is �0 = 0.3γ2 , so that there are no Rabi oscillations and the light-matter interaction is quasi-stationary in this 
 case60.

It is known that the adiabatically switching waveform (Eq. 4) undergoes self-steepening resulting in the kink 
(shock wave) formation after some distance passed through the resonantly absorbing  medium6163. Such a kink is 
seen in Fig. 5a for the disorder strength r = 0 , when all the layers are the same absorbing medium. For increased 
disorder, we still obtain the kink at the exit (Fig. 5b at r = 0.4 ), although the system is now non-uniform and 
contains both loss and gain layers. Note the increased speed of this kink. For r = 0.5 , when both loss and gain 
are equally probable, the kink formation is totally suppressed as shown in Fig. 5c. Moreover, the transmitted 
intensity grows ahead of the incident intensity (at early times t < 4tp ). These features are due to the large number 
of gain layers providing the proper amplification of the signal and fast saturation of the medium, so that the wave 
can almost freely propagate through the structure in later times. For even stronger disorders, the portion of gain 
layers becomes so large that even tiny impinging radiation rapidly stimulates a powerful burst of energy as seen 
in Fig. 5d for r = 1 (uniform gain medium). After this burst, the most part of the particles return to the ground 
state, so that the medium remains only weakly excited and gets saturated by the incident wave front. Although 
the kink is not formed in this case, the transmitted profile is closer to a kink than for r = 0.5 , manifesting a 
characteristic offset time between input and output signals.

Thus, disorder gives us an opportunity to control the shape of the output wave switching on and off kink 
formation. As shown in Supplementary Information, a similar effect disorder has on a pair of interacting adi-
abatic fronts.

Conclusion
In summary, we have proposed a novel approach for wave-front velocity and shape governing in the multi-
layer structure with disorderly distributed resonant loss and gain. This concept involves functionalities of both 
non-Hermitian system and disordered multilayer providing several new optical effects. The two types of fronts 
were considered—the adiabatic (slowly switching) and non-adiabatic (rapidly switching) ones. These two cases 
have different dynamic features—kinks and Rabi oscillations, respectively,—which condition the propagation 
characteristics of the wave fronts. Introduction of disorder governed by external pumping results in a number 
of easily noticeable novel features, such as kink suppression and propagation time shortening. These disorder-
induced effects together with the transmitted intensity determined by the medium saturation give us a tool to 

Figure 4.  Distributions of population difference along the medium with different disorder strengths r at the 
time instant t = 20tp . The medium is excited by the non-adiabatic wave front.
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control transmission, shape and propagation time of the waves with the finite switching time. Such possibilities 
are extremely important for manipulation of light produced by realistic laser sources and can be used in optical 
switching and data processing among other applications.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.

Received: 13 October 2020; Accepted: 15 February 2021
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