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Many central synapses are highly sensitive to alcohol, and it is now accepted that
short-term alterations in synaptic function may lead to longer-term changes in circuit
function. The regulation of postsynaptic receptors by alcohol has been well studied,
but the mechanisms underlying the effects of alcohol on the presynaptic terminal are
relatively unexplored. To identify a pathway by which alcohol regulates neurotransmitter
release, we recently investigated the mechanism by which ethanol induces Vamp2, but
not Vamp1, in mouse primary cortical cultures. These two genes encode isoforms of
synaptobrevin, a vesicular soluble N-ethylmaleimide-sensitive factor attachment protein
receptor (SNARE) protein required for synaptic vesicle fusion. We found that alcohol
activates the transcription factor heat shock factor 1 (HSF1) to induce Vamp2 expression,
while Vamp1 mRNA levels remain unaffected. As the Vamp2 gene encodes a SNARE
protein, we then investigated whether ethanol exposure and HSF1 transcriptional
activity alter neurotransmitter release using electrophysiology. We found that alcohol
increased the frequency of γ-aminobutyric acid (GABA)-mediated miniature IPSCs via
HSF1, but had no effect on mEPSCs. Overall, these data indicate that alcohol induces
HSF1 transcriptional activity to trigger a specific coordinated adaptation in GABAergic
presynaptic terminals. This mechanism could explain some of the changes in synaptic
function that occur soon after alcohol exposure, and may underlie some of the more
enduring effects of chronic alcohol intake on local circuit function.
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INTRODUCTION
Alcohol abuse and dependence is a major global health problem,
but little is understood about the neuroadaptations that underlie
the development of this disease. Considerable evidence suggests
that transient molecular changes can occur during a single alcohol
exposure, and that these can persist over time, as individual neu-
rons respond to each and every alcohol exposure in a systematic
and coordinated manner (Nestler, 2001; Koob, 2006). In partic-
ular, many central synapses are highly responsive to alcohol, and
alterations in synaptic function may lead to long lasting changes
in local circuitry.

While the mechanisms underlying the postsynaptic effects
of alcohol on a variety of neurotransmitter receptors are well
studied (Lovinger, 1997; Harris, 1999), only in the last decade

Abbreviations: ANOVA, analysis of variance; CRF, corticotrophin-releasing fac-
tor; DIV, days in vitro; GABA, γ-aminobutyric acid; Hsf1, HSF1, heat shock
factor 1; Hsp, HSP, heat shock protein; mPSC, miniature postsynaptic current;
mEPSC, miniature excitatory postsynaptic current; mIPSC, miniature inhibitory
postsynaptic current; qPCR, quantitative polymerase chain reaction; SEM, stan-
dard error of the mean; siRNA, small interfering RNA; SNAP-25, Snap-25,
synaptosomal-associated protein 25; SNARE, soluble N-ethylmaleimide-sensitive
factor attachment protein receptor; Stx1, syntaxin-1; Syt1, synaptotagmin 1;
Syp1, synaptophysin 1; TTX, tetrodotoxin; VAMP, Vamp, synaptobrevin/vesicle-
associated membrane protein; VTA, ventral tegmental area.

have researchers begun to investigate the effects of acute and
chronic ethanol treatment on neurotransmitter release (Criswell
and Breese, 2005; Siggins et al., 2005; Weiner and Valenzuela,
2006). Acute application of ethanol increases γ-aminobutyric
acid (GABA) release in the central amygdala (CeA; Roberto et al.,
2003), cerebellum (Carta et al., 2004) and ventral tegmental area
(VTA; Theile et al., 2008), as revealed by increased miniature
inhibitory postsynaptic current (mIPSC) frequency and paired-
pulse depression. In addition, mIPSC frequency is increased in
the VTA of mice administered a single ethanol dose one day prior
to recording (Melis et al., 2002) and in the CeA of chronically
ethanol-treated rats (Roberto et al., 2004). Despite these find-
ings that alcohol increases GABA release, the effects of alcohol on
synaptic vesicle fusion machinery are not well understood.

Soluble N-ethylmaleimide-sensitive factor attachment protein
receptors (SNARE) proteins play a critical role in neurotrans-
mitter release. During synaptic vesicle fusion, synaptotagmin 1
binds to the vesicular SNARE (v-SNARE) synaptobrevin/vesicle-
associated membrane protein (VAMP) and plasma mem-
brane phospholipids (Martens et al., 2007). This pulls the
two membranes into closer proximity and promotes zipper-
ing of synaptobrevin and plasma membrane target SNAREs
(t-SNAREs: SNAP-25, syntaxin-1), triggering vesicle fusion and
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neurotransmitter release. We have found that a subset of genes
encoding SNAREs and SNARE-associated proteins are induced
by acute alcohol exposure, including synaptotagmin 1 (Syt1),
Vamp2, and Snap25 (Varodayan et al., 2011).

In particular, our laboratory showed that alcohol expo-
sure rapidly induced Vamp2 gene expression, but not Vamp1
(Varodayan et al., 2011). These two genes encode distinct iso-
forms of synaptobrevin, but are not strictly redundant as VAMP2-
deficient mice die shortly after birth (Schoch et al., 2001) and
mice with a VAMP1 null mutation develop a neuromuscular
wasting disease and die within 2 weeks (Nystuen et al., 2007).
It is possible that these outcomes are linked to differential pat-
terns of Vamp gene expression throughout the body and in
particular, the central nervous system. Vamp2 gene expression
is high throughout the rodent forebrain, including across the
entire cortex (Gene Expression Nervous System Atlas [GENSAT;
Gong et al., 2007] Project. NINDS Contracts N01NS02331 &
HHSN271200723701C to The Rockefeller University, New York,
NY), whereas Vamp1 mRNA levels predominate in the dien-
cephalon, midbrain, brainstem, and spinal cord (Trimble et al.,
1990; Nystuen et al., 2007). Closer analysis of synaptobrevin
expression in the cerebral cortex, however, found that VAMP1
and VAMP2 are co-expressed at different rates in GABAergic and
glutamatergic axon terminals, suggesting that there are underly-
ing cell type specific differences in their patterns of expression
(Morgenthaler et al., 2003; Bragina et al., 2010).

As synaptobrevin is intimately involved in synaptic vesicle
fusion, changes in its expression levels may alter neurotransmitter
release. We reasoned that a careful study of the effects of alcohol
on Vamp2 gene expression might reveal a molecular mechanism
by which alcohol can alter neurotransmitter release.

MATERIALS AND METHODS
The Columbia University Institutional Animal Care and Use
Committee approved all protocols involving the use of experi-
mental animals in this study.

CORTICAL NEURONAL CELL CULTURE AND ETHANOL EXPOSURE
Cortical neurons were cultured from mixed gender embryonic
day 17–18 C57BL/6 mice (Harlan Laboratories, Indianapolis,
IN; Charles River Laboratories, Wilmington, MA) as previously
described (Huettner and Baughman, 1986) with modifications
(Ma et al., 2004; Varodayan et al., 2011).

Cortical neurons were cultured for 14–21 days in vitro (DIV)
and then exposed to ethanol (final concentrations 10–150 mM;
Sigma-Aldrich, St. Louis, MO) or vehicle Dulbecco’s phosphate-
buffered saline control (Invitrogen, Carlsbad, CA) for specific
time periods (15 min–24 h), by addition directly to the culture
medium. All transfection protocols and electrophysiology record-
ings were performed after 16 DIV.

QUANTITATIVE REAL-TIME POLYMERASE CHAIN REACTION (qPCR)
ANALYSES OF mRNA LEVELS
qPCR was carried out as previously described (Ma et al., 2004;
Pignataro et al., 2007; Varodayan et al., 2011). Briefly, total RNA
was isolated from the neurons using TRIzol (Invitrogen) and
cDNA was prepared with the iScript cDNA synthesis kit (Bio-Rad,

Hercules, CA). The first-strand reverse transcribed cDNA was
then used as a template for PCR amplification with the appropri-
ate specific primer pairs listed below. qPCR reactions were carried
out with iQ SYBR Green Supermix (Bio-Rad) using a Chromo4
Real-Time PCR machine (Bio-Rad).

In preliminary experiments, the Vamp2 cDNA concentration
was normalized against Actb, Gapdh and 18S [gene encoding ribo-
somal protein 18S] (QuantumRNA Internal Standards, Ambion,
Austin, TX) cDNA within the same sample. As the results were
not significantly different among the three internal standards,
for all subsequent experiments the cDNA concentration for the
gene of interest was normalized against the concentration of Actb
cDNA within the same sample. The final results were expressed as
percentage of increase vs. the control.

The following primers (and acquisition temperatures) were
used for qPCR: Actb (82◦C) forward (5′-TCATGAAGTGTG
ACGTTGACATCCGT-3′), reverse (5′-CCTAGAAGCATTTGC
GGTGCACGATG-3′); Gapdh (77◦C) forward (5′-AACTTTG
GCATTGTGGAAGG-3′), reverse (5′-ACACATTGGGGGTAGGA
ACA-3′); Vamp1 (72◦C) forward (5′-AGCATCACAATTTGA
GAGCAGT-3′), reverse (5′-GATGGCACAGATAGCTCCCAG-
3′); Vamp2 (76◦C) forward (5′-GCTGGATGACCGTGCAGAT-
3′), reverse (5′-GATGGCGCAGATCACTCCC-3′).

RNA INTERFERENCE EXPERIMENTS
RNA interference experiments were performed with 20–25
nucleotide small interference RNA (siRNA), as previously
described (Pignataro et al., 2007; Varodayan et al., 2011). Briefly,
cultured cortical neurons were transfected with Hsf1 or control
scrambled siRNAs (Santa Cruz Biotechnology, Santa Cruz, CA)
for 1 h at 37◦C. Cells were washed once and the transfection
medium was replaced with conditioned medium for another 24 h
prior to ethanol or vehicle treatment.

CONSTITUTIVELY ACTIVE AND INACTIVE HEAT SHOCK FACTOR 1 (Hsf1)
CONSTRUCTS
We made use of a constitutively transcriptionally active form of
HSF1 (Hsf1-act, BH-S), as well as a dominant negative mutant
form of HSF1 that suppresses HSF1 transcriptional activity (Hsf1-
inact, AV-ST), as previously described (Pignataro et al., 2007;
Varodayan et al., 2011). Hsf1-act has amino acids 203–315 deleted
in the regulatory domain of HSF1 (Zuo et al., 1995), while Hsf1-
inact has a deletion in the transcription activation domain of
amino acids 453–523 (Zuo et al., 1995). Both constructs were
generated by Dr. Richard Voellmy (University of Miami) and
cloned into pcDNA3.1+ (Invitrogen). Transfections were per-
formed with 1 μg of DNA and 9 μL of nupherin (Enzo Life
Sciences, Farmingdale, NY), and sister cultures were transfected
with the empty pcDNA3.1+ vector as sham controls, as described
previously (Pignataro et al., 2007; Varodayan et al., 2011).

ELECTROPHYSIOLOGY RECORDINGS
Whole-cell voltage clamp patch recordings were used to
determine the effects of ethanol on excitatory and inhibitory
miniature postsynaptic currents (mPSCs). After ethanol expo-
sure for 5–15 min or 4–8 h, cells were washed once with fresh
media to remove ethanol before being incubated in an exter-
nal solution containing: 124 mM NaCl, 2.5 mM KCl, 2 mM
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MgSO4, 1.25 mM NaH2PO4, 2 mM CaCl2, 26 mM NaHCO3 and
10 mM glucose (all Sigma), at 310 mOsm, and pH 7.4. mPSCs
were recorded in the presence of tetrodotoxin (TTX; 100 nM;
Tocris, Bristol, UK), with excitatory events (mEPSCs) isolated
using SR 95531 hydrobromide (gabazine; 20 μM; Tocris) and
inhibitory events (mIPSCs) isolated using 2,3-Dioxo-6-nitro-
1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX;
10 μM; Tocris) and D-(-)-2-Amino-5-phosphonopentanoic
acid (D-APV; 30 μM; Tocris). Patch pipettes were pulled on
a Flaming/Browning micropipette puller (Sutter Instrument
Company, Novato, CA) from thinwall glass (World Precision
Instruments, Sarasota, FL) with a resistance of 3–6 M�. The
pipettes were filled with an internal solution containing: 140 mM
CsCl, 4 mM NaCl, 1 mM MgCl2, 0.05 mM EGTA, 2 mM ATP-
Mg2+, 0.3 mM GTP-Na+ and 10 mM HEPES (all Sigma), at 290
mOsm, and pH 7.25. It should be noted that using cesium in the
internal solution can increase protein kinase A (PKA) activity
within the recording neuron (Vargas et al., 1999); however, this
effect should be purely postsynaptic and of minor concern in
this study. Membrane potentials were clamped at −70 mV and
currents were recorded with an Axopatch 200B patch-clamp
amplifier (Molecular Devices, Sunnyvale, CA).

Data were acquired with pClamp 10.3 software (Molecular
Devices), filtered at 2 kHz and digitized at 20 kHz. Each recording
was a minimum of 6 min long, with the final minute of data ana-
lyzed to identify mPSCs. The mPSCs were detected using the Mini
Analysis Program 6.0.7 (Synaptosoft, Fort Lee, NJ) with thresh-
old criteria of 5 pA. To assess mPSC frequency and kinetics, the
recording trace was visually inspected and only the automatically
detected events with a stable baseline, sharp rising phase, and
single peak were used.

STATISTICAL ANALYSES
The qPCR data were analyzed by one-way ANOVA followed by
Dunnett’s multiple-comparison post-hoc tests. In these experi-
ments, n represents the total number of triplicate sample values
averaged into each data point, and each data point contains
at least three biological replicates. Electrophysiology numerical
data were analyzed using a two-tailed unpaired t-test or by one-
way ANOVA followed by Dunnett’s multiple comparison post-hoc
tests. In these experiments, n represents the number of cells tested
from at least three biological replicates. All data are presented
as mean ± s.e.m and the details of the statistical analyses are
included in the appropriate figure legends.

RESULTS
ALCOHOL INCREASES Vamp2 GENE EXPRESSION
Our initial experiments confirmed our previous finding that
Vamp2 is an alcohol-responsive gene (Varodayan et al., 2011).
We found that ethanol induction of Vamp2 mRNA levels was
concentration-dependent (Figure 1A), with the Vamp2 gene
responding modestly to ethanol concentrations more relevant
to social intoxication (10–30 mM) and strongly to the high
ethanol concentrations similar to those measured in blood sam-
ples of chronic alcoholics (80–100 mM) (Urso et al., 1981).
The ethanol effect on Vamp2 gene expression showed a half-
maximal activation at 40 ± 6 mM (33 ± 4% increase compared

FIGURE 1 | Ethanol increases Vamp2 gene expression. (A) Vamp2
mRNA levels increase after 1 h treatment with different concentrations of
ethanol, as measured by qPCR. The half-maximal activation of Vamp2 was
calculated as 40 ± 6 mM [n ≥ 6; F(9, 72) = 20.45; p < 0.0001]. (B) Vamp2
mRNA levels increase after 60 mM ethanol exposure over time [n ≥ 6;
F(10, 195) = 39.58; p < 0.0001; ∗P < 0.05, ∗∗∗P < 0.001].

with ethanol-naïve control) and saturated at 80 mM (57 ± 5%
increase). These brief exposures to high ethanol concentrations
were not toxic to the neurons, as treatment with 100 mM ethanol
caused little, if any, apoptosis, as previously reported (Pignataro
et al., 2007). The time course of the activation of Vamp2 transcrip-
tion by 60 mM ethanol was rapid, with Vamp2 gene expression
significantly increased at 30 min of exposure (22 ± 4% increase;
Figure 1B). Vamp2 mRNA levels continued to rise during 8 h of
60 mM ethanol exposure (87 ± 10% increase) and were further
increased at 24 h of continuous exposure (103 ± 9% increase).

HSF1 TRANSCRIPTIONAL ACTIVATION MEDIATES ALCOHOL
INDUCTION OF Vamp2 GENE EXPRESSION
A subset of alcohol-responsive genes are known to be up-
regulated via activation of the transcription factor, heat shock
factor 1 (HSF1; Pignataro et al., 2007, 2013; Varodayan et al.,
2011). To investigate whether HSF1 mediates Vamp2 gene induc-
tion by ethanol, we altered HSF1 protein expression and assessed
changes in Vamp2 mRNA levels after ethanol treatment. We found
that knock-down of HSF1 protein, using neuronal transfection
with Hsf1 siRNA, decreased Vamp2 gene induction after ethanol
exposure (from 61 ± 10% increase to 20 ± 7%; Figure 2A).
Transfection with control siRNA had no effect on basal Vamp2
mRNA levels (Figure 2A).

Previous work from our laboratory demonstrated that the
Vamp1 gene was not induced when primary cortical culture was
exposed to 60 mM ethanol for 1 h (Varodayan et al., 2011). Here
we found that the knock-down of HSF1 protein, using neuronal
transfection of Hsf1 siRNA, had no effect on Vamp1 mRNA levels.

To confirm the role of HSF1 in mediating Vamp2 gene induc-
tion, we used a constitutively active Hsf1 construct (Hsf1-act).
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This construct encodes a transcriptionally active HSF1 protein
that can directly induce heat shock protein (Hsp) gene transcrip-
tion in the absence of heat stress (Zuo et al., 1995; Xia et al.,
1999). Neuronal transfection of this construct increased Vamp2
gene expression to a level similar to that seen after 1 h of 60 mM
ethanol exposure (42 ± 6% increase; Figure 2B). Conversely, a
dominant-negative Hsf1 construct (Hsf1-inact), which encodes
a transcriptionally inactive HSF1 protein that suppresses stress-
induced Hsp gene expression (Zuo et al., 1995; Xia et al., 1999),
abolished the effect of ethanol exposure on Vamp2 mRNA lev-
els (from a 62 ± 7% increase to 11 ± 4%; Figure 2B). Hsf1-inact
transfection alone had no effect on basal Vamp2 gene expression
(Figure 2B). These experiments reveal that HSF1 transcriptional
activity stimulates Vamp2 mRNA levels and mediates ethanol
induction of the Vamp2 gene. In the case of the Vamp1 gene, alter-
ing HSF1 transcriptional activity by neuronal transfection with
either Hsf1-act or Hsf1-inact and ethanol treatment had no effect
on mRNA levels.

ALCOHOL INCREASES mIPSC FREQUENCY
As Vamp2 is one of several alcohol-responsive genes that encode
proteins intimately involved in synaptic vesicle fusion (Varodayan

FIGURE 2 | Ethanol induction of the Vamp2 gene requires

transcriptionally activated HSF1. (A) HSF1 knock-down inhibits Vamp2
gene induction by ethanol. Overnight pretreatment of neurons with Hsf1
siRNA reduced the effects of 60 mM ethanol exposure for 1 h (E) on Vamp2
mRNA levels, while pretreatment with control siRNA had no effect [n ≥ 6;
F(3, 44) = 13.55; p < 0.001]. (B) Stimulation of the Vamp2 gene by ethanol
is mediated by transcriptionally activated HSF1. Cortical neurons
transfected with Hsf1-act showed increased Vamp2 mRNA expression,
similar to the gene’s induction by 60 mM ethanol for 1 h (E). Hsf1-inact
transfection reduced ethanol induction of the Vamp2 gene, while Hsf1-inact
transfection alone had no effect on basal Vamp2 mRNA levels. Control
cultures were sham transfected with an empty pcDNA3.1+ construct [n ≥
6; F(4, 73) = 27.53; p < 0.001; ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001, or n.s.
denotes no significance].

et al., 2011), we explored whether ethanol alters neurotransmitter
release. To investigate this potential mechanism, we used whole-
cell voltage clamp electrophysiology to record mPSCs in ethanol
exposed cultured cortical neurons treated with 100 nM TTX to
block action potential-dependent neurotransmitter release. In
these experiments, increased mPSC frequency indicates alter-
ations in the presynaptic terminal leading to an increased prob-
ability of synaptic vesicle fusion and neurotransmitter release,
while increased mPSC amplitude reflects an increase in post-
synaptic receptor sensitivity to the released neurotransmitter,
possibly due to changes in receptor subunit composition or the
number of receptors present (De Koninck and Mody, 1994; Otis
et al., 1994).

We first evaluated the effects of 60 mM ethanol exposure
for 4–8 h on inhibitory currents (mIPSCs) by recording in the
presence of 30 μM D-APV and 10 μM NBQX to block glu-
tamatergic events. Notably, we found that ethanol increased
the frequency of mIPSCs compared to control neurons, as
seen in the representative traces and bar graph (fC = 0.42 ±
0.08 Hz, fE = 1.11 ± 0.23 Hz; Figure 3A upper panel, B). Ethanol
had no effect on mIPSC amplitude (AC = 10.68 ± 0.93 pA,
AE = 10.98 ± 0.74 pA; Figure 3A lower panel, C) or the rise
time constant (trC = 3.21 ± 0.22 ms, trE = 3.24 ± 0.16 ms), but
shortened the decay time constant (tdC = 12.59 ± 2.05 ms, tdE =
8.19 ± 0.78 ms; Table 1). The mIPSCs were totally blocked by

FIGURE 3 | Ethanol increases mIPSC frequency. (A) Whole-cell voltage
clamp electrophysiology recordings demonstrate that ethanol increases the
probability of GABA release. The representative current traces in the upper
panel were recorded in neurons exposed to 60 mM ethanol for 4–8 h (E) or
a vehicle control (C). Magnified representative mIPSC events from control
and ethanol-treated neurons are shown in the lower panel. (B) Ethanol
increases the mean frequency of mIPSCs in neurons treated with ethanol
(E) compared to vehicle control [C; nC = 19, nE = 22; t(39) = 2.51;
p < 0.05]. (C) Ethanol does not alter the mean amplitude of mIPSCs in
neurons exposed to ethanol (E) or vehicle control [C; nC = 19, nE = 22;
t(39) = 0.24; p = 0.81; ∗P < 0.05].
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Table 1 | A single ethanol exposure alters mPSC kinetics.

Treatment Frequency (Hz) Amplitude (pA) Rise time (ms) Decay time (ms)

mIPSC C (n = 22) 0.42 ± 0.08 10.68 ± 0.93 3.21 ± 0.22 12.59 ± 2.05
E (n = 19) 1.11 ± 0.23* 10.98 ± 0.74 3.24 ± 0.16 8.19 ± 0.78*

mEPSC C (n = 22) 0.44 ± 0.13 6.10 ± 0.13 1.94 ± 0.16 0.79 ± 0.15
E (n = 22) 0.40 ± 0.07 6.79 ± 0.38 2.67 ± 0.22* 1.02 ± 0.15

*P < 0.05.

Data are obtained from neurons exposed to 60 mM ethanol for 4–8 h and control neurons.

the perfusion of 20 μM gabazine and partially recovered upon
washout in all 5 cells tested, indicating that these events are
GABAergic. Similar experiments conducted after 5–15 min of
60 mM ethanol exposure revealed no change in mIPSC frequency
(fC = 0.47 ± 0.08 Hz, fE = 0.55 ± 0.13 Hz; nC = 13, nE = 17)
or amplitude (AC = 9.40 ± 0.95 pA, AE = 8.03 ± 0.78 pA; nC =
13, nE = 17), suggesting that this mechanism of ethanol-
induced GABA release may require the prolonged processes of
transcription and translation.

To study the effects of ethanol on excitatory currents (mEP-
SCs), we used 20 μM gabazine to block GABAA receptor-
mediated events. We found no change in mEPSC frequency
(fC = 0.44 ± 0.13 Hz, fE = 0.40 ± 0.07 Hz; nC = 22, nE = 22)
or amplitude (AC = 6.10 ± 0.13 pA, AE = 6.79 ± 0.38 pA; nC =
22, nE = 22) after 60 mM ethanol exposure for 4–8 h. Details of
mEPSC kinetics are displayed in Table 1.

HSF1 TRANSCRIPTIONAL ACTIVITY MEDIATES ALCOHOL INDUCTION
OF mIPSC FREQUENCY
To investigate whether HSF1 transcriptional activity mediates
the increased mIPSC frequency observed after ethanol expo-
sure, we altered HSF1 protein expression and assessed mIPSC
kinetics. Neuronal transfection of Hsf1-act increased mIPSC
frequency similar to the frequency observed after ethanol
exposure (fC = 0.18 ± 0.01 Hz, fE = 0.61 ± 0.19 Hz, fHsf 1act =
0.63 ± 0.11 Hz; Figure 4A). Conversely, the dominant-negative
Hsf1-inact construct abolished the effect of ethanol exposure
on mIPSC frequency (fC = 0.34 ± 0.05 Hz, fE = 0.88 ± 0.25 Hz,
fHsf 1inact = 0.37 ± 0.04 Hz, fHsf 1inact+E = 0.51 ± 0.19 Hz), while
Hsf1-inact transfection alone had no effect on mIPSC fre-
quency (Figure 4C). No changes were observed in amplitudes
(Figures 4B,D), rise times or decay times after transfection with
either the Hsf1-act or Hsf1-inact constructs. These experiments
reveal that HSF1 transcriptional activity increases GABA release
and mediates ethanol induction of mIPSC frequency. In sum-
mary, in this study we have shown that ethanol acts via HSF1
to increase the gene expression of a specific subset of proteins
involved in synaptic vesicle fusion and stimulate GABA release.

DISCUSSION
Ethanol alters GABA release throughout the central nervous sys-
tem (Criswell and Breese, 2005; Siggins et al., 2005; Weiner and
Valenzuela, 2006), but the underlying mechanisms are largely
unknown. We recently showed that a subset of genes encoding
SNARE complex proteins is induced by alcohol exposure. In par-
ticular, we found that alcohol differentially regulates two genes

FIGURE 4 | Increased GABA release after ethanol exposure requires

HSF1 transcriptional activity. (A) HSF1 transcriptional activity increases
the probability of GABA release. Hsf1-act transfection increased mIPSC
frequency, similar to the level seen with 60 mM ethanol exposure for 4–8 h
(E). Control cultures were sham transfected with an empty pcDNA3.1+
construct [C; nC = 15, nE = 17, nHsf1act = 19; F(2, 48) = 3.46; p < 0.05]. (B)

HSF1 activity does not alter the mean mIPSC amplitude in neurons
transfected with an Hsf1-act construct, exposed to ethanol (E) or control
sham transfected [C; nC = 15, nE = 17, nHsf1act = 19; F(2, 48) = 0.32;
p = 0.73]. (C) Ethanol stimulation of mIPSC frequency is mediated by
activated HSF1. Hsf1-inact transfection reduced the effects of ethanol (E)
on mIPSC frequency. Hsf1-inact transfection alone had no effect on mIPSC
frequency compared to control cultures sham transfected with empty
pcDNA3.1+ construct [C; nC = 16, nE = 10, nHsf1inact = 12,
nHsf1inact+E = 14; F(3, 48) = 2.56; p = 0.07]. (D) HSF1 activity does not alter
the mean amplitude of mIPSCs in neurons transfected with an Hsf1-inact
construct, exposed to ethanol (E) or vehicle control [C; nC = 16, nE = 10,
nHsf1inact = 12, nHsf1inact+E = 14; F(3, 48) = 0.0639; p = 0.60; ∗P < 0.05,
∗∗P < 0.01, ∗∗∗P < 0.001, or n.s. denotes no significance].

encoding synaptobrevin isoforms, rapidly inducing the Vamp2
gene, but not Vamp1, and were therefore interested in the mecha-
nism underlying this difference (Varodayan et al., 2011). Here, we
show that HSF1 transcriptional activity mediates ethanol induc-
tion of Vamp2 gene expression in cortical neurons. Since VAMP2
is intimately involved in synaptic vesicle fusion, we then inves-
tigated whether alcohol acts via HSF1 to alter neurotransmitter
release. We found that HSF1 transcriptional activity mediates
ethanol-induced GABA release, but has no effect on glutamatergic
synaptic vesicle fusion.
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A SINGLE ALCOHOL EXPOSURE INDUCES SNARE GENE EXPRESSION
We have previously shown that acute alcohol exposure rapidly
induces transcription of some SNARE complex proteins, includ-
ing the Vamp2, Syt1 and Snap25 genes, but not the Vamp1,
Stx1a, and Syp genes (Varodayan et al., 2011). In this study we
investigated the mechanism underlying Vamp2 gene induction by
alcohol. There are few, if any, comparable studies on the effects
of alcohol on Vamp2 gene expression. Interestingly, a recent tran-
scriptome profiling study used tissue from alcoholic human brain
cortices to identify Vamp2 as a hub gene that is likely to have high
functional significance in biological processes associated with
alcohol dependence (Ponomarev et al., 2012).

A MOLECULAR MECHANISM UNDERLYING THE EFFECTS OF A SINGLE
ALCOHOL EXPOSURE ON SNARE GENE EXPRESSION
We found that ethanol induction of the Vamp2 gene is mediated
by HSF1 activity. Transcriptional activation of HSF1 is a multistep
process that involves: HSF1 translocation from the cytoplasm,
where it is sequestered by chaperone proteins, to the nucleus;
HSF1 trimerization and inducible hyperphosphorylation; and
HSF1 binding to a DNA element to stimulate transcription (Cotto
et al., 1997). We have previously shown that 60 mM ethanol
exposure of primary cortical culture induces HSF1 transloca-
tion into the nucleus (Pignataro et al., 2007), phosphorylates
HSF1(Varodayan et al., 2011) and stimulates Hsp gene expres-
sion (Pignataro et al., 2007), indicating that ethanol promotes
HSF1 transcriptional activity. Several other laboratories have also
reported an association between alcohol exposure and HSF1-
dependent gene induction, including microarray studies where
alcohol treatment increased Hsp gene expression (Lewohl et al.,
2000; Gutala et al., 2004; Worst et al., 2005). In addition, we have
previously reported that ethanol acts via HSF1 to induce the Syt1
gene and the gene encoding the α4 subunit of the GABAA recep-
tor (Pignataro et al., 2007; Varodayan et al., 2011). As a whole, our
current studies strongly suggest that HSF1 transcriptional activity
mediates the effects of alcohol on a subset of alcohol-responsive
genes, including some SNARE proteins. As the SNARE proteins
are intimately involved in synaptic vesicle fusion, this raises the
interesting question of whether the neuronal response to alcohol
includes alterations in neurotransmitter release.

A SINGLE ALCOHOL EXPOSURE CAUSES A WAVE OF TRANSIENT
PRESYNAPTIC ADAPTATIONS LEADING TO CHANGES IN GABA
RELEASE
Changes in GABA release after ethanol exposure have been
reported in the last decade (Criswell and Breese, 2005; Siggins
et al., 2005; Weiner and Valenzuela, 2006). We found that
mIPSC frequency increased in cortical neurons exposed to
60 mM ethanol for 4–8 h, but not 5–15 min, suggesting that
this mechanism of ethanol-induced GABA release may require
the prolonged processes of transcription and translation. Similar
experiments by the Morrow laboratory found an unchanged
mIPSC frequency in cultured cortical rat neurons exposed to
50 mM ethanol for either 4 h or 1–7 days (Fleming et al., 2009;
Werner et al., 2011). As a whole, these results suggest that the
increase in mIPSC frequency after a single ethanol exposure may
be a transient neuronal adaptation. Studies conducted in vivo also

showed changes in mIPSC frequency across the rodent brain, with
Melis et al. (2002) observing an increase in mIPSC frequency in
the VTA of mice injected intraperitoneally with ethanol one day
prior to recording. Chronic ethanol-treated rats showed a simi-
lar increase in mIPSC frequency in the CeA and this frequency
was further increased by the bath application of ethanol, indi-
cating that the acute, and chronic effects of ethanol on GABA
release are differentially mediated (Roberto et al., 2004). Overall,
these data define a model of transient presynaptic adaptation,
where ethanol promotes HSF1 transcriptional activity to induce
a temporary increase in GABA release. This transient change in
neurotransmitter release may lead to more permanent synaptic
modifications, especially as the cycle is repeated with multiple
exposures to alcohol.

A MOLECULAR MECHANISM UNDERLYING SOME OF THE EFFECTS OF
A SINGLE ALCOHOL EXPOSURE ON GABA RELEASE
The mechanisms underlying the effects of ethanol exposure on
GABA release have been largely unstudied. Our detailed anal-
ysis revealed that ethanol treatment of cultured cortical neu-
rons increases GABA release via HSF1 transcriptional activity,
although it is likely that a variety of alternate and overlapping
mechanisms underlie the similar changes observed after dif-
ferent ethanol exposure models and across brain regions. For
example, ethanol application in the cerebellum rapidly increases
the number of mIPSC events in interneurons via activation of
both AC/PKA and PLC/PKC pathways and internal calcium store
release (Kelm et al., 2007, 2008, 2010). The effects of alcohol
administration on these kinase pathways provide for a relatively
fast GABAergic neuronal response, while the enhanced GABA
release that occurs after chronic ethanol exposure is likely to be
regulated by longer-lasting changes in gene expression that are
triggered by HSF1 and other transcription factors.

A SINGLE ALCOHOL EXPOSURE CAUSES A WAVE OF TRANSIENT
POSTSYNAPTIC ADAPTATIONS LEADING TO CHANGES IN GABA
RECEPTOR SENSITIVITY
The synapse is a highly responsive structure and perturbations in
presynaptic activity are typically met with an adaptive postsynap-
tic response, and vice versa. We found that treatment of cortical
neurons with ethanol for 4–8 h shortened mIPSC decay time,
an indication of changes in postsynaptic GABAA receptor sub-
unit composition or number. mIPSC decay time also decreased
in cultured rat cortical neurons exposed to ethanol for 4 h and
1 day, and recovered after 2–7 days (Fleming et al., 2009; Werner
et al., 2011). A similar decrease in mIPSC decay time was observed
in hippocampal neurons of rats administered a single dose of
ethanol and withdrawn 12 h to 7 days, with recovery by day 14
(Liang et al., 2007). Liang et al. (2007) found that these changes
in mIPSC kinetics coincided with changes in the surface expres-
sion of GABAA receptor subunits. In particular, an increase in
α4 expression could cause α4βγ2 GABAA receptors to “crowd”
α1βγ2 GABAA receptors out of the synapse, leading to changes
in GABAA receptor sensitivity to ethanol. We previously found
increased α4 expression in cultured cortical neurons exposed to
60 mM ethanol for 4–8 h (Pignataro et al., 2007), indicating that
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similar changes in GABAA receptor subunit composition and sen-
sitivity may be occurring in our current study. Overall these data
define a model of postsynaptic adaptation to a single dose of
ethanol in which there may be a temporary increase in the expres-
sion of α4-containing GABAA receptors. This transient change
in subunit composition could lead to more permanent synap-
tic modifications, especially as the cycle is repeated with multiple
exposures to alcohol.

MULTIPLE ETHANOL EXPOSURES COULD LEAD TO PERSISTENT
ADAPTATION AT THE GABA SYNAPSE
The data presented here show that a single ethanol exposure
induces Vamp2 gene expression and stimulates GABA release via
HSF1 transcriptional activity. Repeated ethanol exposure could
result in a persistent adaptation at the GABAergic synapse and
lead to enduring changes in the local circuitry that may play a
role in the development of alcohol abuse and dependence. It is
interesting to note that ethanol’s effects on HSF1 appear to alter
neurotransmitter release in GABAergic, and not glutamatergic,
neurons, and the apparent specificity of this effect among a variety
of synapses merits further study.
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