
sensors

Article

Software-Defined NB-IoT Uplink Framework—The Design,
Implementation and Use Cases

Alicja Olejniczak , Olga Błaszkiewicz, Krzysztof K. Cwalina * , Piotr Rajchowski and Jarosław Sadowski

����������
�������

Citation: Olejniczak, A.;

Błaszkiewicz, O.; Cwalina, K.K.;

Rajchowski, P.; Sadowski, J. Software

Defined NB-IoT Uplink

Framework—The Design,

Implementation and Use Cases.

Sensors 2021, 21, 8234. https://

doi.org/10.3390/s21248234

Academic Editor: Reza Malekian

Received: 10 November 2021

Accepted: 3 December 2021

Published: 9 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology,
80-233 Gdańsk, Poland; alicja.olejniczak@pg.edu.pl (A.O.); olga.blaszkiewicz@pg.edu.pl (O.B.);
piorajch@eti.pg.edu.pl (P.R.); jaroslaw.sadowski@eti.pg.edu.pl (J.S.)
* Correspondence: kkcwalina@eti.pg.edu.pl

Abstract: In the radiocommunication area, we may observe a rapid growth of new technology, such
as 5G. Moreover, all the newly introduced radio interfaces, e.g., narrowband Internet of Things (NB-
IoT), are strongly dependent on the software. Hence, the radiocommunication software development
and optimization, as well as the 3GPP technical specification, should be introduced at the academic
level of education. In this paper, a software-defined NB-IoT uplink framework in the field of design
is presented, as well as its realization and potential use cases. The framework may be used as
an academic tool for developing, investigating, and optimizing the digital transmitter paths. The
proposed realization is focused on the key elements in the physical layer of the NB-IoT interface
used in the sensor devices. Furthermore, the paper also highlights the need of the data processing
optimization to minimize the power consumption and usage of the resources of the NB-IoT node
during transmitting gathered telemetric data.

Keywords: framework; NB-IoT; academic testbed; simulations

1. Introduction

Sensors and sensor networks are nowadays identified as a ubiquitous solution present
in everyday life. The development of the Internet of Things (IoT) is rapid, mainly due to
the demand for automation and constant monitoring. The large amount of data generated
by the IoT devices determines the need for network and data processing optimization and
further designing a global solution for large business entities. In general, the scientific
research papers involving the IoT networks may be divided into various academic branches
of knowledge, such as radiocommunication, informatics, or electronics.

The new technology introduced in the 5G networks, where the narrowband Internet of
Things (NB-IoT) interface is assumed to be present [1], is mostly based on the digital signal
processing. The elements of the core network are designed to be the virtual components,
and some parts of the terminals may be realized digitally. It seems natural to propose a
software-defined framework that will provide the functionality of the NB-IoT terminal
with the internal operations split into functional modules, which is the main goal of the
conducted research. Decomposition of the uplink or downlink path gives an ability to dis-
tinguish educational and potential research and development possibilities. The proposed
framework may also play the role of a novel laboratory testbed (even totally virtual), as a
part of the software-defined radio (SDR) laboratory stand, including the radio frequency
(RF) measurement equipment or over the air (OTA). The NB-IoT signals generated based
on proposed framework may be verified regarding reference vectors, software base stations
(BSs) simulators, or measurement devices.

In the presented framework, the signal processing path for the the NB-IoT uplink
interface is implemented. The proposed modular structure of the software may support the
learning process, including both advanced aspects of radiocommunication and program-
ming in general. Additionally, such a framework is a fine tool to teach students how to

Sensors 2021, 21, 8234. https://doi.org/10.3390/s21248234 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-8904-4787
https://orcid.org/0000-0002-1900-8825
https://orcid.org/0000-0002-7736-3526
https://orcid.org/0000-0002-0082-1701
https://doi.org/10.3390/s21248234
https://doi.org/10.3390/s21248234
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21248234
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21248234?type=check_update&version=2


Sensors 2021, 21, 8234 2 of 20

extract theoretical assumptions based on the technical specification (e.g., the 3GPP technical
documents) and further implement them. The advantage of the framework is its operation
in the physical (PHY) layer of the NB-IoT interface, with low-level decomposition, which
gives the ability of using simple and flexible tools for evaluation of the student implementa-
tions, without any auxiliary advanced protocol analyzers, interpreters, or even commercial
licensed software.

The rest of the paper is structured as follows. The general overview of the NB-IoT
interface is provided in Section 2. In Section 3, the related works and similar approaches are
described. In Section 4, the proposed software-defined framework structure is presented.
In Section 5, the uplink physical layer modular implementation in accordance with 3GPP
standardization is proposed, while in Section 6, the analysis of the obtained results is
presented. The paper is concluded briefly in Section 7.

2. The NB-IoT Interface

The NB-IoT standard [2] is directly connected with 4G technology, especially the
physical layer. The number of signal processing operations of the uplink and downlink
Orthogonal Frequency Division Multiple Access/Single Carrier Frequency Division Mul-
tiple Access (OFDMA/SC-FDMA) techniques is definitely challenging, bearing in mind
the signal formation computational cost and the low complexity of the nodes. The NB-
IoT device lifespan should reach at least 10 years [3], and because of that, the software
design, especially considering repetitive operations, should be computationally effective.
Unfortunately, the obligatory compliance with the 3GPP standard dismisses the ability to
omit the most complicated operations (by simplifying the radio interface) as per in the
typical industrial, scientific, and medical (ISM) sensor networks. The NB-IoT is a cellular
network standard developed by the 3rd Generation Partnership Project (3GPP) organiza-
tion in 2016 [4]. The physical layer mostly inherits from the long-term evolution (LTE),
e.g., the OFDMA technique for downlink, the SC-FDMA technique for uplink, the channel
coding, the interleaving operation, and functioning in the licensed spectrum [2,3]. All the
assumptions regarding the NB-IoT interface were published for the first time in Release 13
of the 3GPP standard. The fact that the NB-IoT interface is based on LTE allows reducing
the final cost of the device as well as the system deployment time [5]. The main goal of
the NB-IoT is to provide the communication between devices in harsh radio conditions,
e.g., underground or in basement environments [6–8].

Coverage enhancement defined in the NB-IoT specification gives 20 dB higher max-
imal coupling loss with respect to the Global System for Mobile Communication (GSM)
packet data service [9,10]. Nevertheless, apart from abovementioned features, there are
other advantages of the NB-IoT usage, e.g., energy efficiency or an easy integration with
the preexisting cellular networks. NB-IoT provides two types of energy saving modes,
i.e., power-saving mode (PSM) and extended/enhanced discontinuous reception mode
(eDRX) [11], that may increase user equipment (UE) battery lifetime up to 10 years. Con-
sidering coexistence with other cellular systems, it is worth mentioning that the NB-IoT
system may operate in three different modes, determining the NB-IoT physical resource
blocks (PRBs) deployment within the current spectrum, i.e., standalone, in-band, and
guard-band [12]. According to the in-band and guard-band modes, the NB-IoT PRBs (each
occupying 180 kHz of spectrum—12 subcarriers with 15 kHz spacing or 48 subcarriers
with 3.75 kHz spacing) are allocated inside the LTE resource grid. To be more precise,
the NB-IoT signal may occupy the unused PRB of LTE bandwidth (in-band) or PRB of LTE
guard bands (guard-band). Alternatively, regarding standalone mode, NB-IoT PRBs may
utilize the GSM channel as well [13]. Considering its bandwidth of 200 kHz, it is possible
to allocate 180 kHz NB-IoT PRB with two additional guard buffers, 10 kHz each. The key
differences of the NB-IoT interface with respect to LTE may be identified in the protocol
stack, like the Hybrid Automatic Repeat Request (HARQ) and terminal modes of operation.
By definition, the NB-IoT devices are dedicated for controlling or monitoring applications.
Therefore, due to the assumed lack of nodes mobility, it not only reduces the amount of



Sensors 2021, 21, 8234 3 of 20

radio resources utilized in control channels but also eliminates the problem of handover
between the evolved NodeBs (eNBs). It is worth mentioning that the maximal throughput
reaches 200 kbps or 160–250 kbps [14,15] for uplink and downlink, respectively, and it is
allocated only for the data transfer services.

3. Related Work

The SDR-based concept of modern radiocommunication systems is widely presented
in the literature. Available powerful simulation environments, such as Matlab [16],
Simulink [17], or Labview [18], provide toolkits for developing sample testbeds or an-
alyzing the real radio signals. Each of the mentioned tools and methods may be used
for didactic purposes, especially if the goal is to analyze the LTE protocol stack and the
physical layer. Nevertheless, conducting the didactic or research activities, when the sig-
nals generated in the simulation environment must be processed in real time, e.g., for the
SDR platform, is problematic. Furthermore, except for scientific and educational benefits
that may be derived from simulation software usage, such tools may be questionable
in the context of industry, where every part of software must meet the requirements of
real hardware platforms and cannot contain licensed code from the third parties with
licensing restrictions.

At the academic stage of education, the low-level programming and implementation
should be definitely used to demonstrate the principles of basic radiocommunication
operations and signal processing methods. In the state-of-the-art research studies, many
examples of the IoT and NB-IoT networks may be found. Nevertheless, none of the
presented examples allow decomposition of the basic operations within NB-IoT uplink
and downlink enabling thorough study concerning low-level programming of signal
processing procedures. According to the publications review, a few trends may be observed,
where the main goal was to make the development of the NB-IoT networks simple and
well investigated.

In [19], authors presented the scope of IoT simulators, e.g., the OMNeT++ and IOTSim,
underlining the increase in the popularity of the IoT networks and the need for testing the
proof-of-concept during the research studies. Although the paper [19] presents an extensive
study of the simulators, they cannot be used for the NB-IoT interface decomposition due
to the incompatibility with the standards. In [3,14], authors investigated the operation of
the entire NB-IoT networks deployed on a wide area. Naturally, these frameworks are
advanced in the scope of protocol layers analysis or even considering the energy efficiency
of the NB-IoT nodes [3]; nonetheless, they are directed at scientific research rather than
educational purposes, and cover neither the issue of the physical layer analysis nor NB-IoT
software development.

In other research [20], authors presented a realization of a protocol simulator for
the NB-IoT communication. The content of the paper is focused on the uplink physical
layer, channel, and transmission scheduling. In the paper, authors presented the definition
and organization of the Narrowband Physical Uplink Shared (NPUSCH) channel, as well
as the transmission operation chain. Mentioned operations are compliant with [2,21]
3GPP standards and correspond to the framework described in the given paper, yet the
final realization is different. The developed software [20], based on Matlab and Python
languages, should be treated as a high-level programmed black box or the model for
partial NB-IoT simulations, e.g., without the extensive studies of the SC-FDMA scheme or
execution on several platforms.

In [16,22], the authors proposed a software-defined tool suitable for generating the
NB-IoT downlink signal or complete uplink frames. Software described in [22] is based on
the open-source LTE-Sim simulator [23]. It provides extensive LTE network simulations,
including the physical layer functionalities, protocols development, and architecture opti-
mization. Despite following Release 9 of the 3GPP standard, authors introduced additional
functionalities dedicated to the NB-IoT interface that were included in Release 13. Never-
theless, the proposed tool was designed to simulate the entire network operation rather



Sensors 2021, 21, 8234 4 of 20

than analyze the particular communication layers. The paper [16] contains a description of
a tool for generating the basic downlink synchronization signals only, excluding broadcast
channel. Hence, this concept may be treated as the NB-IoT vector signal generator instead
of integrated framework.

In [1], authors described the process and issues involving development of the NB-IoT
network simulator. The paper identified the key differences between the NB-IoT and LTE
as well as the presence of NB-IoT in the 5G network. Moreover, authors also indicated
the need for differentiating the analytical model and the network evaluation solutions.
The evaluation solutions, understood as the network simulators, must be based on two
parts: the main simulator and the testbed or emulator. In [1], the network simulator was
developed, based on the ns-3 LENA and following a modular programming paradigm. This
approach allowed authors to adapt existing software to realize new simulation features.
Nevertheless, the presented research refers to an ongoing project and, thus, does not
cover all the NB-IoT-related procedures. It is important to mention that, apart from a few
similarities between [1] and the approach presented in this paper, the proposed framework
supports low-level programming abilities based on extracted and block-structured physical
layer procedures with an auxiliary set of reference vectors to provide the proper testing
tools for every stage of NB-IoT implementation.

Apart from the studies analyzing NB-IoT particularly, the didactic trends regarding
programming education in general should be examined as well. The rapid expansion of
the software itself into various branches of science determines the necessity of introducing
the programming context within the academic courses. Furthermore, many researchers
emphasize that this issue should concern the whole way of thinking rather than focus
on specific syntax teaching [24,25]. Multiple papers indicate the importance of block-
structured programming teaching, involving real projects and active learning techniques to
effectively encourage students to acquire knowledge and to provide them with the wider
perspective of the given topic [24–27]. The commercial market demands determine the
additional aspects of the academic programming education, especially in the context of
digital signal processing. Hence, more complex implementation issues should be also taken
into account, e.g., testing or optimization and parallel computing [28–31].

The literature review shows that the decomposition of the NB-IoT framework into
separate and independent modules is desired, from both scientific and educational points
of view. Since each functional module may be investigated separately, students may
focus more precisely on the logical operations, which may improve the whole didactic
process [32]. Such methodology is widely spread due to the growing popularity of infor-
mation and communications technology (ICT) and technology in general. The mentioned
didactic approach gives the possibility of adjusting the academic process with regard to
students’ capabilities and dynamic changes in technology [33,34]. It allows students to
implement their own functional modules, also as the Hardware Description Language
(HDL) Intellectual Property (IP) cores for the Field-Programmable Gate Arra (FPGA) chips,
and further test and optimize them. In the literature, the power consumption minimization
directly related to optimal software implementation is stressed as well. Unfortunately,
in the publications such as [35], authors were focused on investigating the modes of op-
erations described in the standard, not the NB-IoT software implementation itself, due
to the usage of the commercially available NB-IoT modems. As a consequence, no ex-
tensive modifications of the modem operation were allowed and possible. The provided
framework eliminates this limitation and ensures a fully adjustable implementation of the
transmitter path. Furthermore, incorporating NB-IoT systems, currently and widely used
in the real world, may be an incentive for students to learn more willingly, as the main
project goal is practical and explicitly defined [27]. Finally, placing a project on the 3GPP
standardization grounds allows introducing work with technical documentation to the
academic environment, and the reference open-access dataset containing the radio signals
recorded during other experiments [36] may gain usability.



Sensors 2021, 21, 8234 5 of 20

4. Framework Design

The proposed software-defined NB-IoT framework should be understood as an eval-
uational platform, where the signal processing functional blocks of the NB-IoT Rel. 13
and Rel. 14 standards are represented as a set of modules. It means that the design of
the radio interface is completely modular, thus the adaptive form makes it possible to
implement, execute, and test each part independently of the target platforms, testbeds,
OTA stands, simulation environments, hardware–software stands with the FPGA support,
or even distributed laboratory environments.

To achieve such versatility, software implementation of all modules must be inde-
pendent, bearing in mind the specificity of the processor architecture and the method of
random-access memory (RAM) addressing on the target platform. Thanks to this, it is
possible to run these modules on the so-called embedded systems based on a microproces-
sor with the Advanced RISC Machine (ARM) architecture, as well as on computers with
the x86-64 processors. Thus, it can be realized on almost any available hardware, even on
the low-computational-power ones—dependent on the stands available in the laboratory.
Therefore, framework is developed mostly in the procedural C (with elements of the C++,
e.g., for the logging handling) language which also allows achieving the compatibility with
the standard by means of the timing constraints. This element is crucial in the educational
process—however, very often neglected during the studies and learning progress, where
low-level programming knowledge is a key in designing, developing, and optimizing the
radiocommunication systems and networks. This knowledge is extremely desirable by the
industry from the specialists.

It is known that in order to implement an efficient and effective radiocommunication
system, it is crucial to distinguish and potentially optimize (e.g., by parallelization ap-
proach) the calculations of the individual program modules. The mathematical calculations
that will be performed for the longest time, compared to the other NB-IoT protocol stack
modules, may be one of the examples. Such elements potentially include, e.g., channel
encoding and decoding, time and frequency synchronization, channel estimation, or the
Orthogonal Frequency-Division Multiplexing (OFDM) signal formulation. Evaluation
of the efficiency of the signal processing in the individual section of the radio interface
through measurements of the time stamps and determination of the execution time of the
individual elements of the transceiver is an important parameter during developing of the
radio interface—especially when it will be used in the sensor device.

The mentioned parallel processing of the radio signals requires the implementation
of the multithreaded environment determining, e.g., the scope of parallelization in the
radio interface structure. Thus, description and implementation of the modules should
include not only the technical requirements resulting from the 3GPP standard, but also the
possibilities of process optimization manner. As an example, the proper decomposition of
the NB-IoT stack, which is proposed for the uplink in Section 5, can be given. This creates a
wide set of potential use cases of the proposed framework, in almost all academic stages
and several study courses. In addition, the proposed framework design can be transformed
from the centralized software manner to the hybrid architecture, where modules (separately
or as a bundle) are developed as the hardware intellectual property (IP) cores or the
hardware coprocessors. Even a distributed architecture can be proposed, where modules
will be implemented independently, e.g., as the separate laboratory stands, or even remotely,
where the generated samples will be sent to the SDR platform via the laboratory network.
The remote availability and distributed architecture may especially be very useful during
the remote teaching [37].

The radioinformatics term should be used in that case. Such an approach also requires
the specific educational methodology in which the proposed framework architecture fits
completely. It enables the development, optimization (single-thread and multithreaded
software), and verification (by using provided test vectors or compatible radio receiver) of
the particular PHY layer radio signal processing blocks. In addition, it can be also used as



Sensors 2021, 21, 8234 6 of 20

a tool for the electronic courses where the FPGA evaluation boards may be efficiently used
for NB-IoT interface purposes.

Therefore, the concept of separating the entire section in the NB-IoT radio interface
architecture (the set of connected modules), individual modules, or individual functions
inside these modules needs to be provided to improve the efficiency of the learning process
and adjust the flexibility of the framework for the different courses. In Figure 1, the
proposed structures of the software components and the relationships between them
are shown.

Figure 1. Proposed structures of the software components and their dependencies.

According to the proposed structure of the framework, the module can be both the set
of functions which process the datasets and a single function that will be further identified
as the functional module. Each module obligatorily includes the input and the output
vectors, the set of parameters, and references to the 3GPP or other publications with
detailed signal processing description compliant with the NB-IoT stack protocol.

5. Uplink Implementation

The following section presents consecutive modules that cover all the vital operations
within the whole NB-IoT uplink framework, including both NPUSCH channel procedures
and demodulation reference signal (DMRS) signals generation, in accordance with the
3GPP standards. Since the main concept is chunk-based, it is assumed that all transmitter
blocks should be implemented and analyzed separately. However, holistic transmitter
evaluation is inevitable as well. The modular architecture of the NB-IoT uplink procedures
that fulfills the previously proposed approach is presented in Figure 2.

It is important to note that an uplink transmission may be processed based on the
two different variants, i.e., format 1 or format 2, corresponding to the data and control
information transmission, respectively. Each format determines applied channel coding
procedures, whereas the further modules are uniform for both variants. All blocks pre-
sented in Figure 2, including the NPUSCH and DMRS paths, are described within the
next subsections.

5.1. Channel Coding

The first section of the given framework provides the channel coding procedures. As
the two possible NPUSCH formats are encoded differently, each processing module is
described in the separate subsection. It is worth mentioning that the concept proposed
by the authors allows treating the channel coding part twofold—as a single integrated
instance or as a decomposed set of functions, depending on the educational goal.

5.1.1. Cyclic Redundancy Check

Considering the fact that the DMRS symbols generation based on the initial parameters
of the given transmission and one uplink control information (UCI) data packet in the
NPUSCH format 2 contains one bit of control data only, the NPUSCH format 1 is crucial



Sensors 2021, 21, 8234 7 of 20

in the context of the sensor data acquisition and transmission. The forwarded data is
divided and allocated to the transport blocks, for which transport block size (TBS) size is
predetermined [38]. The given transport blocks are further conveyed consecutively to the
first processing module of the channel coding section, i.e., cyclic redundancy check (CRC),
providing error detection at the receiver side.

Figure 2. NB-IoT uplink modular procedures [2,21].

The CRC block extends an input vector for the 24 additional parity bits. The CRC
polynomial is the following [21]:

gCRC24A = [D24 + D23 + D18 + D17 + D14 + D11 + D10 + D7 + D6 + D5 + D4 + D3 + D + 1]. (1)



Sensors 2021, 21, 8234 8 of 20

5.1.2. Turbo Encoder

Thereafter, the output of the CRC module is transferred to the turboencoder with the
1/3 coding rate that is presented in Figure 3:

Figure 3. Turbo encoder with a rate of 1/3.

It is a combination of the two parallel shift registers (with D indicating consecutive
delay blocks) that may be derived from the following transfer function:

G(D) =

[
1,

g1(D)

g0(D)

]
, (2)

where g0(D) = 1 + D2 + D3 and g1(D) = 1 + D + D3.
The original input data stream is shifted through the first register, whilst interleaved

input bits are passed along the second one. The interleaving procedure is specified in [21].
The given encoder produces three bits for each bit of the transmitted codeword through xk,
zk, z′k streams and an additional 12 bits due to register reset, including also x′k stream.

5.1.3. Rate Matching

The three output bit streams of the turbo encoder are further forwarded to the rate-
matching block. The applied procedures are presented in Figure 4:

Figure 4. Rate-matching procedures.

Initially, the parallel data streams are interleaved according to [21], resulting in product
v(0)k , v(1)k , v(2)k vectors, where k = 0, ...KΠ − 1 and KΠ = (RTC

subblock × CTC
subblock). The number



Sensors 2021, 21, 8234 9 of 20

of columns CTC
subblock = 32 and number of rows RTC

subblock may be defined as the minimum
integer fulfilling the formula

Din ≤ (RTC
subblock × CTC

subblock), (3)

where Din represents the number of sub-block interleaver’s input bits. Subsequently,
the vk streams are distributed within an (RTC

subblock × CTC
subblock) matrix, and an intercolumn

permutation is applied. The permutation pattern is presented in Table 1.

Table 1. Intercolumn permutation pattern for sub-block interleaver.

Number of Columns Intercolumn Permutation Pattern

CTC
subblock <P(0), P(1), ..., P(CTC

subblock − 1)>

32 <0, 16, 8, 24, 4, 20, 12, 28, 2, 18, 10, 26, 6, 22, 14, 30, 1, 17, 9,
25, 5, 21, 13, 29, 3, 19, 11, 27, 7, 23, 15, 31>

Finally, the virtual circular buffer of length Kw = 3KΠ is formulated as follows:

wk = v(0)k (4)

wKΠ+2k = v(1)k (5)

wKΠ+2k+1 = v(2)k . (6)

The length of the output vector ek equals E = Qm · G′, where Qm denotes the mod-
ulation order and G′ = G/Qm depends on the total number of bits available for the
transmission G. The procedure of arranging bits within output vector ek is specified in
detail in [21].

5.1.4. Multiplexing and Interleaving

The last module of the channel coding section includes multiplexing and interleav-
ing procedures. It should be noted that information data UCI is not processed within
the given block. Hence, a multiplexing algorithm (Algorithm 1) may be reduced to the
following form:

Algorithm 1: Reduced multiplexing algorithm.
i, k = 0
while i < G

gk = [ei...eQm−1]
T

i = i + Qm
k = k + 1
end while

Furthermore, the interleaver is applied in accordance with the 3GPP standard [21]. It
is worth mentioning that at this stage of processing, the initial parameters of the NPUSCH
transmission, e.g., the number of slots NUL

slots, are taken into account. Hence, there are plenty
of parameters and transmission variants to be tested, which determines the great number
of the possible input/output vector sets to be verified. This may be a good opportunity to
present the practical use of the unit testing to the students.

5.1.5. NPUSCH Format 2—Block Encoder

The channel coding section for the NPUSCH format 2 includes the bit mapping only.
Since the UCI data is transmitted via 1 bit, after the block coding module, it is represented
by 16 identical bits. The procedure is presented in Table 2.



Sensors 2021, 21, 8234 10 of 20

Table 2. Block encoder 1/16.

NPUSCH Format 2 Bit Output Codeword

0 <0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>
1 <1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>

5.2. NPUSCH Parameters

At this stage of the uplink implementation description, it is important to introduce
the basic transmission parameters that are predetermined by the higher stack layers before
starting the NPUSCH communication. However, they should be already considered within
channel coding calculations (e.g., estimation of the total number of the bits available for
the transmission); from now, the context of the frame-based transmission is included in
the performance of all modules. More explicitly, the channel coding section belonging to
the uplink shared channel (UL-SCH) operates on the transport block concept, whereas the
further NPUSCH procedures involve additional time-related factors with reference to the
physical resources background.

As mentioned in Section 1, there are two possible variants of the NB-IoT subcar-
rier spacing: 15 kHz and 3.75 kHz. The number of available subcarriers and the time
dependencies regarding those two parameters are presented in Table 3.

Table 3. NB-IoT parameters [2].

Subcarrier Spacing NUL
sc Tslot CP (Cyclic Prefix) Length

∆ f = 3.75 kHz 48 2 ms 8.33 µs

∆ f = 15 kHz 12 0.5 ms symbol #0: 5.2 µs
symbols #1–6: 4.7 µs

It is important to mention that Tslot represents the time duration of a single slot,
containing seven symbols (#0–6). To properly understand the slot term in the context of
the transmitted bits, or more precisely, symbols and subcarriers, the exemplary NB-IoT
resource grid is presented in Figure 5.

Figure 5. NB-IoT resource grid [2].



Sensors 2021, 21, 8234 11 of 20

The 3GPP technical specification [2] defines possible combinations of the number of
active subcarriers and slots as well, which are summarized in Table 4.

Table 4. NPUSCH parameters [2].

NPUSCH Format ∆ f NRU
sc NUL

slots

1

3.75 kHz 1 16

15 kHz

1 16
3 8
6 4

12 2

2 3.75 kHz 1 4
15 kHz 1 4

It should be noted that multitone mode is available only for the NPUSCH format 1
with 15 kHz subcarrier spacing, and NRU

sc indicates number of the active subcarriers for the
resource uni (RU), i.e., all slots in the given transmission.

5.3. Scrambling

The first module of the NPUSCH, following the channel coding section, is scrambling.
Apart from the fact that it is a separate module, it is also used within the other sections,
e.g., during the DMRS pilots generation. In general, scrambling is based on the pseudo-
random Gold sequence to provide the randomness within transmitted information [4].
The scrambling sequence generator shall be initialized with the following cinit:

cinit = nRNTI · 214 + n f mod 2 · 213 + bns/2c · 29 + NNcell
ID , (7)

where nRNTI denotes predetermined radio network temporary identifier, NNcell
ID represents

narrowband physical layer cell identity, n f constitutes system frame number, and ns
indicates slot number within a radio frame. Furthermore, cinit should be reinitialized after
every MNPUSCH

identical that may be defined as follows:

MNPUSCH
identical =

{
min

(
dMNPUSCH

rep /2e, 4
)

NRU
sc > 1

1 NRU
sc = 1,

(8)

where MNPUSCH
rep denotes scheduled number of repetitions of the NPUSCH transmission [2].

The output vector of the scrambling module is the product of the XOR operation between
the input bits and the calculated pseudorandom sequence. It is important to mention
that the scrambling module operation is time-dependent in the context of continuous
transmission, as the initialization factor cinit is based on, e.g., the frame number that varies
over time.

5.4. Modulation

The next module fulfills the function of mapping transmitted bits to the binary phase
shift keying (BPSK) or the quadrature phase shift keying (QPSK) symbols. The mapping
patterns for each modulation type are presented in Tables 5 and 6.

Table 5. BPSK modulation [2].

b(i) I Q

0 1/
√

2 1/
√

2

1 −1/
√

2 −1/
√

2



Sensors 2021, 21, 8234 12 of 20

Table 6. QPSK modulation [2].

b(i), b(i+1) I Q

00 1/
√

2 1/
√

2

01 1/
√

2 −1/
√

2

10 −1/
√

2 1/
√

2

11 −1/
√

2 −1/
√

2

The modulation pattern depends on the current parameters of the NPUSCH and is
defined by the higher layers. In Table 7, some general limitations regarding modulation
scheme are presented.

Table 7. NPUSCH modulation schemes [2].

NPUSCH Format NRU
sc Modulation Scheme

1 1 BPSK, QPSK
>1 QPSK

2 1 BPSK

5.5. Transform Precoding

In order to mitigate the problem of the high peak-to-average power ratio (PAPR),
the classical OFDM has been replaced by the SC-FDMA technique within the NB-IoT uplink
transmission. The main difference between those two methods is the additional discrete
Fourier transform (DFT) block that is implemented as a part of the transform precoding
module. The detailed transformation scheme is described in [2], and it should be noted
that the whole procedure encourages students to consideration combining both frequency
and time domains.

5.6. Demodulation Reference Signals

The given module is responsible for the DMRS signal generation. Generally speaking,
DMRS symbols are multiplexed with the NPUSCH symbols during the resource grid
arrangement. The exact DMRS symbols allocation and the number of its occurrence
depends on the parameters of the given transmission, as depicted in Figure 6.

Figure 6. DMRS allocation [2].



Sensors 2021, 21, 8234 13 of 20

The DMRS may be obtained based on the reference sequence ru(n) that varies in
relation to NRU

sc , as follows:

r̄u(n) =
1√
2
(1 + j)(1− 2c(n))w(n mod 16), 0 ≤ n < MNPUSCH

rep NUL
slotsNRU (9)

NPUSCH format 1: ru(n) = r̄u(n)
NPUSCH format 2: ru(3n + m) = w̄(m)r̄u(n), m = 0, 1, 2
for NRU

sc = 1 and:
ru(n) = ejαnejφ(n)π/4, 0 ≤ n < NRU

sc (10)

for NRU
sc > 1.
It should be noted that c(n) represents the pseudorandom Gold sequence described

in Section 5.3, reinitialized based on cinit = 35. The w(n), α and φ parameters are specified
and tabularized in [2].

In order to divide the pilot sequences between the separate slots, the additional group-
hopping parameter is introduced. Enabled group hopping provides the DMRS variety,
due to changing u index that indicates the current value of both w(n) and φ for each
NPUSCH slot.

In general, such a module with complicated calculations involving complex numbers
that is used in real systems and thus is restricted by, e.g., the real-time operation limita-
tions, may be a good didactic example demonstrating the importance of the computational
effectiveness and reinforcing student awareness regarding connection between the imple-
mentation itself and its further practical use. Finally, it may be an effective exercise to
develop good programming habits.

5.7. Mapping to Physical Resources

In general, the process of mapping transmitted data to the physical resources is based
on arranging symbols within the resource grid presented in Figure 5. The given procedure
should involve the current number of active subcarriers and map the symbols slot by slot,
including the number of NPUSCH repetitions MNPUSCH

rep . It is important to mention that
within the slot for seven symbols, both NPUSCH and DMRS data should be arranged.

5.8. OFDM Generation

The last part of the NB-IoT uplink is the OFDM generation module. It should be
noted that, taking into account the former transform precoding module (Section 5.5), the
SC-FDMA signal is generated instead of the typical OFDM. Nevertheless, the previously
presented modular approach of analyzing each procedure separately justifies such notation.
The next subsections refer to the three main OFDM generation functions, i.e., the phase
rotation, the inverse fast Fourier transform (IFFT), and the cyclic prefix (CP) attachment.

5.8.1. Phase Rotation

In the case of NRU
sc = 1, the additional phase rotation φk,l of the transmitted symbols

is applied, fulfilling the following requirements:

φk,l = ρ(l̃ mod 2) + ϕk(l̃) (11)

ρ =

{
π
2 f or BPSK
π
4 f or QPSK

(12)

ϕk(l̃) =

{
0 l̃ = 0
ϕk(l̃ − 1) + 2π∆ f (k + 1/2)(N + NCP,l)Ts l̃ > 0

(13)

l̃ = 0, 1, ..., MNPUSCH
rep NRU NUL

slotsNUL
symb − 1 (14)

l = l̃ mod NUL
symb (15)



Sensors 2021, 21, 8234 14 of 20

where Ts denotes the basic time unit 1/30,720,000 and k and l represent the subcarrier
index and the SC-FDMA symbol consecutively.

5.8.2. The IFFT

In the IFFT module, the inverse fast Fourier transform is performed simply over the
obtained resource grid, involving the context of the slots and subcarriers as well. Depending
on the current subcarrier spacing, 3.75 kHz or 15 kHz, the IFFT size equals 512 or 128,
respectively. It should be noted that the size of the IFFT processing directly influences
the computational cost of the module. However, considering the fact that, due to 12 or 48
subcarrier-based symbol allocation, the input vector contains a lot of zero data (due to the
zero-padding operation). It is also a good example in the context of an optimization task by
reducing the number of the IFFT calculations regarding unused transformation elements.

5.8.3. Cyclic Prefix Attachment

The last function of the OFDM module is the CP attachment. The main concept of
this block represents the process of replicating the end of each symbol at the beginning of
the same symbol. The exact number of CP samples may be obtained based on the time
dependencies presented in Table 3 and 1.92 MHz sampling frequency. Thus, the CP length
for the 3.75 kHz subcarrier spacing equals 16 samples, and for 15 kHz: 10 samples (every
first symbol in a slot) or 9 samples (the other six symbols in a slot). Moreover, the additional
frequency shift should be applied to provide the phase continuity of the samples.

6. Analysis of the Results and the Use Cases

In this section, the benchmark tests of the NPUSCH module of the NB-IoT uplink path
are presented. It is one of the possible framework realizations which could be treated as
the starting point for the students to work on their own implementations. The framework
modules are set to generate a set of complex samples at the output, i.e., the IQ waveform
of the radio signal with the 1.92 MHz sampling frequency (compatible with, e.g., SDR
USRP devices). Computations were performed on the PC class computer with the Intel
Core i7-10700 2.9 GHz processor and 32 GB of DDR4 type RAM. However, as previously
mentioned, the framework can be easily executed and investigated on various hardware
platforms. Thus, to present results in a more universal and useful way, the normalized
times (by means of the total computation time) for sequential processing are presented,
where the measurement accuracy was 1 µs. It should be noted that the framework must
operate in real time, which means that cumulative preparation time of one 10 ms radio
frame must be shorter than the frame itself.

For the benchmark purposes, the prepared input sensor data were generated randomly
with uniform distribution, but the TBS ranges were adjusted to maintain the constraints
described in the standard. It should be noted that, as an original part of the provided
framework, authors share the package for each module or decomposed function, i.e., the
input and output vectors with additional parameters of the test matrix that are available
under the terms of the CC BY license for educational purposes. At this point, it is worth
mentioning that the presented simulation studies were carried out for different sizes of
the NRU , NUL

slots and NSC to obtain the results that will correspond to the real 3GPP-based
NB-IoT network cases. In the real NB-IoT user terminal, the transmission parameters are
received from the eNB in the broadcast channel within the master information block (MIB)
and system information block (SIB) messages received by the sensor device before the
communication. However, for research and teaching purposes, they can be generated
separately for different student groups.

During the didactic use cases, the data streams can be adjusted, e.g., to the real opera-
tion of the data sensors or even show the dependencies how the propagation conditions
determine the transmission parameters and the final energy usage of the sensor data
transmission. It means that data can be generated more frequently (divided into smaller
TBS [38]) for the sensor devices which monitor environmental parameters that change



Sensors 2021, 21, 8234 15 of 20

dynamically, e.g., wind speed, or with large time intervals. For the purpose of the sample
analysis presented in the article, configurations with all the sizes of the available TBSs were
checked, which corresponds to more than 1000 transmissions with a length of 1 frame up
to 39 frames.

Taking into consideration the character of the computations, such as formulation of the
radio frames and the complex signal processing, it was expected that the OFDM generation
functional block (Section 5.8.2) will be the one which is the most time-consuming. Thus,
it was decided to firstly analyze the proportions of execution time between this module
and the rest of the processing chain as a function of the output radio signal length. In
Figure 7, the normalized execution time of all the modules, except the OFDM generation,
as a function of the generated number of radio frames are shown.

0

5

10

15

20

25

0 5 10 15 20 25 30 35 40

N
or

m
al

iz
ed

 e
xe

cu
tio

n 
tim

e 
[%

]

Number of generated frames

Figure 7. Normalized execution time of all the modules except the OFDM generation as a function of
the generated number of radio frames.

As expected, by means of procedural single-thread usage, the disproportion between
the OFDM module and the sum of execution times of other modules can be clearly seen.
The dependency between the execution time is exponential rather than linear in this case,
where minimum value was 1.3% and maximum value reached 19.1%. It means that the
impact in the total uplink efficiency of the blocks from CRC module to the mapping to
physical resources increases for the good propagation conditions, which results in using the
multitone transmission that is available only in the ∆ f = 15 kHz subcarrier spacing variant.
Thus, the 128 point FFT and IFFT transformations are used rather than the 512 point one,
which, with the less number of matrix operations during OFDM symbols formulation,
leads to more meaningful impact in that block chain.

Based on the obtained results, especially from the educational point of view, it is
important to learn the relations between the decomposed sections of the modules. In
Figures 8 and 9, the decomposed functional sections and their normalized execution times,
with respect to the total execution times of the whole framework, are presented as box-
and-whisker plots. It consists of the boxplot limited by the first quartile (25th percentile),
median, and third quartile (75th percentile) values, and whisker that points to the minimum
and maximum values. However, the minimum and maximum values are the lowest and
highest data points excluding the outliers, which were marked as additional dots in the
figures. In addition, in Table 8, the calculated reference normalized execution time results
including the outliers are presented, for each integrated or decomposed module.

The NB-IoT scrambling, i.e., the pseudorandom sequence generation for the NPUSCH
formulation, is one of the most computationally intensive modules in this chain. In this



Sensors 2021, 21, 8234 16 of 20

module, the sequence which is further used for generating the scrambling sequence and
scrambled with the input code word must be initialized. As it can be seen, the bitwise
operations, if properly implemented even with the use of procedural C/C++ language,
are more efficient than operations on the floating point values. However, modules that
occur after the scrambling one, even when they are operating on the floating point complex
signals, are still processed faster. This results from the effectiveness of the low-leveled
memory blocks copying and performance of the FFT library [39] with assembler parts.
It should be also noted that the DMRS module uses the same scrambling methods as in
the scrambling module. However, the difference is in the output of the scrambling base
module. The output length is based on the NRU and NUL

slots and the number of repetitions,
which results in a much higher amount of data for analysis, with respect to the DMRS
sequences that can be copied efficiently into the proper RUs.

This section of the uplink signal processing can be efficiently implemented in the
FPGA, especially taking into consideration the bitwise operations and the parallel process-
ing ability. This can be crucial, especially in the harsh propagation environments where
the number of security mechanisms needed to be used in order to provide the quality of
service (QoS) in the wireless sensor networks (WSNs) is higher. In addition, such approach
of duplicating the modules in the hardware is highly desirable from the educational point
of view. Learning the process of designing and developing the proper projects may show
a great advantage of using the FPGA in the signal processing performed in the dynam-
ically reconfigurable remote radio heads in the LTE eNB and the 5G New Radio Next
Generation NodeB (NR gNB), and also enable the use of practical solutions based on the
theoretical description.

N
or

m
al

iz
ed

 e
xe

cu
tio

n 
tim

e 
[%

]

0
1
2
3
4
5
6
7
8
9

10

CRC Rate matching
Turbo encoder Interleaving
Scrambling Modulation
Transform Precoding DMRS
Mapping

Figure 8. Normalized execution time of modules in the block chain between CRC and mapping to
physical resources.



Sensors 2021, 21, 8234 17 of 20

N
or

m
al

iz
ed

 e
xe

cu
tio

n 
tim

e 
[%

]

0

10

20

30

40

50

60

70

Phase rotation IFFT CP attachment

Figure 9. Normalized execution time of the OFDM generation decomposed functions.

Table 8. Normalized execution times of the framework modules and decomposed functions.

Min Quartile 1 Median Quartile 3 Max

CRC 0.01 0.02 0.05 0.1 1.61
Rate matching 0.03 0.11 0.26 0.78 3.73
Turbo encoder 0.01 0.03 0.06 0.15 0.92

Interleaving 0.01 0.04 0.08 0.48 1.09
Scrambling 0.15 0.39 0.92 2.79 9.67
Modulation 0.01 0.02 0.03 0.09 0.5

Transform precoding 0.05 0.09 0.15 0.68 1.78
DMRS 0.06 0.14 0.33 0.95 4.34

Mapping 0.5 0.7 0.96 1.2 5.66

Phase rotation 3.65 5.0 9.3 19.2 20.8
IFFT 23.9 26.2 30.7 33.0 40.3

CP attachment 31.9 52.8 54.3 56.4 64.0

On the other hand, as was previously presented, the OFDM generation module is
computationally demanding, mainly due to the numerous matrix operations. Each OFDM
symbol preparation is based on the IFFT processing and the CP attachment, which is
essential in providing the orthogonality. Basing on the knowledge concerning CP attach-
ment (a theoretical copying), the highest execution times can be misleading and should be
definitely explained for the purposes of the teaching process. In general, the approach of
just copying and appending the last part of the OFDM symbol onto the front of it is not
the only process that is performed in that module. In addition, there is a need to maintain
the phase continuity between successive samples by shifting the frequency of the signal
by half of the subcarrier spacing values (for ensuring spectrum symmetry with respect to
the DC component) and performing window function for the PAPR control. The process
of designing the proper filtration of the signal at the output is yet another important case.
PAPR minimization can be crucial, especially in the context of green sensors utilization and
power efficiency, and thus it may be a good opportunity to include practical aspects and a
learn-by-practice approach in the educational process.

The IFFT operation, with the length of 128 or 512 points (dependent on the subcarrier
spacing) in the NB-IoT interface, may be asymmetrically reduced and/or processed parallel,



Sensors 2021, 21, 8234 18 of 20

which determines designing and development of the multithreaded environment. These
are the potential topics of the students’ research activity in the Masters or Bachelors degrees,
either during laboratories or qualification works. The phase rotation module, based on
its description introduced in Section 5.8.1, can also be optimized by the usage of the
parallel processing and exponential values tables for the proper configurations in the
device static memory.

7. Conclusions

The complexity of the cellular systems requires wide knowledge on the radiocommu-
nication signal processing. The new era of the technical sciences, including radiocommuni-
cation, is mostly based on the software solutions. Such an approach enables simulations in
the different types of environment, from the very basic to the harsh ones, or different use
cases. It gives scientists and students opportunities to develop best-suited cellular concepts,
such as the NB-IoT. In Section 3, some NB-IoT simulators were described in terms of their
abilities and limitations. However, the implementation of the real radiocommunication
interface in the sensor devices on the basis of computer simulations is often very ineffective,
as it does not take into account the limitations of the low-level implementation in general
purpose processors or the FPGA matrices. Therefore, the implemented didactic framework,
based on the didactic experience of the authors, goes beyond the simple simulations con-
cerning implementation constraints as well. The main advantage of this approach is the
opportunity to observe and further analyze both inter- and intramodule data flow along
the whole physical layer, according to Figure 2. It is worth mentioning that this feature is
not provided by the commercially available simulation tools such as Matlab or Simulink.
All presented functions are organized as the functional modules that are compliant with
Rel. 13/14 3GPP standards. Their detailed description is included in Section 5, and further
supported by the functional analysis included in Section 6.

Not every module has the same computational cost, so it is reasonable to focus
on the software optimization as it directly influences the power consumption when the
computational time is reduced. From the educational point of view, it is even more
important to implement some software parts step by step, because it provides better
understanding of the issue. Observations presented in Section 6 allow students to assess
which part of the uplink they should expend more effort on, especially in the context of
efficient sensor networks. It is worth mentioning that every part of the PHY layer can be
checked and evaluated independently by using the specially generated sets of the input
vectors. During the future works, authors want to propose a similar framework for the
downlink path that is currently under development. It will provide similar possibilities
which will extend the didactic abilities of the hardware- and software-based laboratory for
the Bachelors and Masters students.

Author Contributions: A.O., O.B., K.K.C., P.R. and J.S. methodology, designing and performing
measurements, data analysis, scientific discussions, and writing the paper. All authors have read and
agreed to the published version of the manuscript.

Funding: This work has been partially financed and carried out as part of the project entitled “A
software-defined, universal radio interface for intelligent devices of Internet of Things”, co-financed
under the European Regional Development Fund within the Smart Growth Operational Program,
agreement no. POIR.01.01.01-00-1025/19, realized in the Gdansk University of Technology, Faculty
of Electronics Telecommunication and Informatics, Department of Radiocommunication Systems
and Networks.

Data Availability Statement: Input and output vectors with additional parameters test matrix are
available for free from the authors with the CC BY license for educational purposes.

Conflicts of Interest: The authors declare no conflict of interest.



Sensors 2021, 21, 8234 19 of 20

References
1. Foni, S.; Pecorella, T.; Fantacci, R.; Carlini, C.; Obino, P.; Di Benedetto, M.G. Evaluation methodologies for the NB-IOT system:

Issues and ongoing efforts. In Proceedings of the AEIT International Annual Conference, Cagliari, Italy, 20–22 September 2017.
2. 3GPP. TS 136 211-V15.3.0-LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation (3GPP

TS 36.211 version 15.3.0 Release 15). 2018.
3. Miao, Y.; Li, W.; Tian, D.; Hossain, M.S.; Alhamid, M.F. Narrowband internet of things: Simulation and modeling. IEEE Internet

Things J. 2018, 5, 2304–2314. [CrossRef]
4. Kanj, M.; Savaux, V.; Guen, M.L.; Kanj, M.; Savaux, V.; Le, M.; Tutorial, G.A.; Physical, N.i.; Design, L.; Kanj, M.; et al. A Tutorial

on NB-IoT Physical Layer Design. IEEE Commun. Surv. Tutor. 2020, 22, 2408–2446. [CrossRef]
5. Migabo, E.; Djouani, K.; Kurien, A. A Modelling Approach for the Narrowband IoT (NB-IoT) Physical (PHY) Layer Perfor-

mance. In Proceedings of the 44th Annual Conference of the IEEE Industrial Electronics Society, Washington, DC, USA, 21–23
October 2018.

6. Shi, Z.; Wang, M.; Lin, H.; Gao, Z.; Huang, L. NB-IOT Pipeline Water Leakage Automatic Monitoring System Based on Cloud
Platform. In Proceedings of the IEEE 13th International Conference On Anti-Counterfeiting, Security, and Identification (ASID),
Xiamen, China, 25–27 October 2019.

7. Lombardo, A.; Parrino, S.; Peruzzi, G.; Pozzebon, A. LoRaWAN vs NB-IoT: Transmission Performance Analysis within Critical
Environments. IEEE Internet Things J. 2021. [CrossRef]

8. Valecce, G.; Petruzzi, P.; Strazzella, S.; Grieco, L. NB-IoT for Smart Agriculture: Experiments from the Field. In Proceedings of the
7th International Conference On Control, Decision And Information Technologies—CoDIT 2020, Prague, Czech Republic, 29
June–2 July 2020; pp. 71–75.

9. Liberg, O.; Sundberg, M.; Wang, Y.P.E.; Bergman, J.; Sachs, J.; Wikstrom, G. Cellular Internet of Things; Academic Press: Cambridge,
MA, USA, 2018.

10. Malik, H.; Khan, S.Z.; Sarmiento, J.L.R.; Kuusik, A.; Alam, M.M.; Moullec, Y.L.; Parand, S. NB-IoT Network Field Trial: Indoor,
Outdoor and Underground Coverage Campaign. In Proceedings of the 15th International Wireless Communications & Mobile
Computing Conference (IWCMC), Tangier, Morocco, 24–28 June 2019.

11. Martinez, B.; Adelantado, F.; Bartoli, A.; Vilajosana, X. Exploring the performance boundaries of NB-IoT. IEEE Internet Things J.
2019, 6, 5702–5712. [CrossRef]

12. Kosiło, T.; Radecki, K.; Marski, J.; Górski, C. Mobile IoT systems in the urban area. Int. J. Electron. Telecommun. 2020, 66, 179–185.
13. Wang, Y.P.E.; Lin, X.; Adhikary, A.; Grovlen, A.; Sui, Y.; Blankenship, Y.; Bergman, J.; Razaghi, H.S. A Primer on 3GPP Narrowband

Internet of Things (NB-IoT). IEEE Commun. Mag. 2017, 55, 117–123. [CrossRef]
14. Popli, S.; Jha, R.K.; Jain, S. A Survey on Energy Efficient Narrowband Internet of Things (NBIoT): Architecture, Application and

Challenges. IEEE Access 2019, 7, 16739–16776. [CrossRef]
15. Yu, Y.-J.; Wang, J.-K. Uplink Resource Allocation for Narrowband Internet of Things (NB-IoT) Cellular Networks. In Proceedings

of the Asia-Pacific Signal And Information Processing Association Annual Summit And Conference (APSIPA ASC), Honolulu,
HI, USA, 12–15 November 2018.

16. Li, C.F.; Hwang, J.K.; Ma, C.; Lin, C.J. Software Defined Radio Implementation of LTE R13 NB-IoT Downlink Vector Signal
Generator. In Proceedings of the IEEE International Conference on Consumer Electronics—Taiwan (ICCE-TW), Taipei, Taiwan,
12–14 June 2017.

17. Abbas, A.M.; Zekry, A.; Youssef, K.Y.; Mahmoud, I.I. Simulink based Modeling and Performance Analysis of NB-IoT Uplink
Scheduler. In Proceedings of the 8th International Japan-Africa Conference on Electronics, Communications and Computations
(JAC-ECC 2020), Alexandria, Egypt, 14–15 December 2020.

18. Gupta, R.; Bachmann, B.; Kruppe, A.; Ford, R.; Rangan, S.; Kundargi, N.; Ekbal, A.; Rathi, K.; Asadi, A.; Mancuso, V.; et al.
LabVIEW Based Software-Defined Physical/MAC Layer Architecture for Prototyping Dense LTE Networks; WInnComm: Solon, OH,
USA, 2015. Available online: http://hdl.handle.net/20.500.12761/241 (accessed on 12 June 2021).

19. Chernyshev, M.; Baig, Z.; Bello, O.; Zeadally, S. Internet of things (IoT): Research, simulators, and testbeds. IEEE Internet Things J.
2018, 5, 1637–1647. [CrossRef]

20. Mellino, J.A.Z.; Luján, E.; Otero, A.D.; Mocskos, E.E.; Vega, L.R.; Galarza, C.G. Lite NB-IoT Simulator for Uplink Layer. In
Proceedings of the XVIII Workshop on Information Processing and Control (RPIC), Salvador, Brazil, 18–20 September 2019.

21. 3GPP. TS 136 212-V12.2.0-LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel coding (3GPP
TS 36.212 version 12.2.0 Release 12). 2014.

22. Martiradonna, S.; Grassi, A.; Piro, G.; Grieco, L.A.; Boggia, G. An Open Source Platform for Exploring NB-IoT System Performance.
In Proceedings of the 24th European Wireless Conference, Institute of Electrical and Electronics Engineers, Catania, Italy, 2–4 May
2018; p. 42.

23. Piro, G.; Grieco, L.A.; Boggia, G.; Capozzi, F.; Camarda, P. Simulating LTE cellular systems: An open-source framework. IEEE
Trans. Veh. Technol. 2011, 60, 498–513. [CrossRef]

24. Inaba, D.; Harada, F.; Shimakawa, H. Support for programming education with structured program design using combination of
phrases. In Proceedings of the ICCIT 2009—4th International Conference on Computer Sciences and Convergence Information
Technology, Seoul, Korea, 24–26 November 2009; pp. 210–212. [CrossRef]

http://doi.org/10.1109/JIOT.2017.2739181
http://dx.doi.org/10.1109/COMST.2020.3022751
http://dx.doi.org/10.1109/JIOT.2021.3079567
http://dx.doi.org/10.1109/JIOT.2019.2904799
http://dx.doi.org/10.1109/MCOM.2017.1600510CM
http://dx.doi.org/10.1109/ACCESS.2018.2881533
http://hdl.handle.net/20.500.12761/241
http://dx.doi.org/10.1109/JIOT.2017.2786639
http://dx.doi.org/10.1109/TVT.2010.2091660
http://dx.doi.org/10.1109/ICCIT.2009.32


Sensors 2021, 21, 8234 20 of 20

25. Castillo, J.F.; De Oca, C.M.; Flores, E.S.; Elizondo, P.V. Toward an approach to programming education to produce qualified
software developers. In Proceedings of the 22nd Conference on Software Engineering Education and Training, CSEET 2009,
Hyderabad, India, 17–20 February 2009; pp. 101–104. [CrossRef]

26. Ebert, M. Increase active learning in programming courses. In Proceedings of the IEEE Global Engineering Education Conference,
EDUCON, Athens, Greece, 25–28 April 2017; pp. 848–851. [CrossRef]

27. Konecki, M.; Lovrencic, S.; Kaniski, M. Using real projects as motivators in programming education. In Proceedings of the 2016
39th International Convention on Information and Communication Technology, Electronics and Microelectronics, MIPRO 2016,
Opatija, Croatia, 30 May–3 June 2016; pp. 883–886. [CrossRef]

28. Imai, Y.; Yokouchi, T.; Inomo, H.; Shiraki, W.; Ishikawa, H. A Linux-based engineering education with hardware implementation,
device drivers’ programming and network literacy learning. In Proceedings of the Fifth International Conference on Information
Technology Based Higher Education and Training—ITHET 2004, Istanbul, Turkey, 31 May–2 June 2004; pp. 463–467. [CrossRef]

29. Scatalon, L.P.; Garcia, R.E.; Barbosa, E.F. Teaching Practices of Software Testing in Programming Education. In Proceedings of the
Frontiers in Education Conference, Uppsala, Sweden, 21–24 October 2020.

30. Conte, D.J.; De Souza, P.S.L.; Martins, G.; Bruschi, S.M. Teaching Parallel Programming for Beginners in Computer Science. In
Proceedings of the Frontiers in Education Conference, Uppsala, Sweden, 21–24 October 2020. [CrossRef]

31. Buzek, E.; Krulis, M. An entertaining approach to parallel programming education. In Proceedings of the 2018 IEEE 32nd
International Parallel and Distributed Processing Symposium Workshops, IPDPSW 2018, Vancouver, BC, Canada, 21–25 May
2018; pp. 340–346. [CrossRef]

32. Poulová, P.; Šimonová, I. Didactic reflection of learning preferences in IT and managerial fields of study. In Proceedings of the
2013 12th International Conference on Information Technology Based Higher Education and Training, Antalya, Turkey, 10–12
October 2013.

33. McDonald, J. Teaching software project management in industrial and academic environments. In Proceedings of the Software
Engineering Education Conference, Austin, TX, USA, 8 March 2000; pp. 151–160. [CrossRef]

34. Krašna, M.; Bedrač, B. ICT Didactics: The New Study Discipline is Needed; MIPRO: Chiayi City, Taiwan, 2013.
35. Michelinakis, F.; Al-Selwi, A.; Capuzzo, M.; Zanella, A.; Mahmood, K.; Elmokashfi, A. Dissecting Energy Consumption of NB-IoT

Devices Empirically. IEEE Internet Things J. 2020, 8, 1224–1242. [CrossRef]
36. Rajchowski, P.; Cwalina, K.K.; Sadowski, J. Signals of the NB-IoT Network Generated by Using the Radiocommunication Tester R&S

CMW500; Technical Report; Gdańsk University of Technology: Gdańsk, Poland, 2021.
37. de Vries, E.; Wörtche, H. Remote Labs Didactics. In Proceedings of the IEEE Frontiers in Education Conference (FIE), Uppsala,

Sweden, 21–24 October 2020.
38. 3GPP. TS 136 213-V14.6.0-LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures (3GPP TS 36.213

version 14.6.0 Release 14). 2016.
39. Frigo, M.; Johnson, S.G. FFTW: An Adaptive Software Architecture For The FFT. In Proceedings of the IEEE International

Conference Acoustics, Speech, and Signal Processing (ICASSP), Seattle, WA, USA, 15 May 1998.

http://dx.doi.org/10.1109/CSEET.2009.21
http://dx.doi.org/10.1109/EDUCON.2017.7942946
http://dx.doi.org/10.1109/MIPRO.2016.7522264
http://dx.doi.org/10.1109/ithet.2004.1358217
http://dx.doi.org/10.1109/FIE44824.2020.9274155
http://dx.doi.org/10.1109/IPDPSW.2018.00065
http://dx.doi.org/10.1109/CSEE.2000.827033
http://dx.doi.org/10.1109/JIOT.2020.3013949

	Introduction 
	The NB-IoT Interface 
	Related Work 
	Framework Design 
	Uplink Implementation
	Channel Coding
	Cyclic Redundancy Check
	Turbo Encoder
	Rate Matching
	Multiplexing and Interleaving
	NPUSCH Format 2—Block Encoder

	NPUSCH Parameters
	Scrambling
	Modulation
	Transform Precoding
	Demodulation Reference Signals
	Mapping to Physical Resources
	OFDM Generation
	Phase Rotation
	The IFFT
	Cyclic Prefix Attachment


	Analysis of the Results and the Use Cases 
	Conclusions 
	References

