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Studies have reported the importance of mitochondria in sperm functionality. However, for some species, the glycolytic pathway
appears to be as important as oxidative phosphorylation in ATP synthesis and sperm kinetics. These mechanisms have not been
fully elucidated for bovine spermatozoa. Therefore, the aim of this study was to evaluate the role of mitochondria and the
glycolytic pathway in ATP synthesis, sperm movement patterns, and oxidative homeostasis of epididymal spermatozoa in
bovine specimens. We observed that mitochondrial uncoupling with protonophores significantly reduced ATP levels. However,
these levels were reestablished after stimulation of the glycolytic pathway. We verified the same pattern of results for sperm
kinetic variables and the production of reactive oxygen species (ROS). Thus, we suggest that, after its appropriate stimulation,
the glycolytic pathway is capable of maintaining ATP levels, sperm kinetic patterns, and oxidative balance of bovine epididymal
spermatozoa submitted to mitochondrial uncoupling.

1. Introduction

Studies have shown the importance of mitochondria in
sperm functionality, as they are considered the main source
of ATP for cellular homeostasis and motility [1, 2]. However,
the role of mitochondria in sperm metabolism has been a
matter of debate. Mukai and Okuno [3] verified that ATP
levels and flagellar beating remained constant when the mito-
chondria of mouse sperm was uncoupled concurrently with
glycolysis stimulation. However, by inhibiting glycolysis
and stimulating oxidative phosphorylation, authors observed
that flagellar beating and ATP levels were quickly reduced.
These results indicate that glycolysis plays an important role
in murine sperm energy production.

In a similar study, Nascimento et al. [4] performed
inhibitory and stimulatory treatments for both oxidative

phosphorylation and glycolysis in human sperm. Authors
concluded that oxidative phosphorylation, despite contribut-
ing to ATP production, is not sufficient to sustain sperm
motility, confirming that the glycolytic pathway is the
primary energy source for human sperm. Additionally,
ATP produced by oxidative phosphorylation in the sperm
midpiece is not efficiently released into the distal portions
of the tail, indicating that glycolysis plays a key role in the fla-
gellar beat of such sperm regions [5–7].

Davila et al. [8] demonstrated that equine spermatozoa
require oxidative phosphorylation as glycolytic pathway to
maintain motility. Complementary in ram, Losano et al. [9]
demonstrated that mitochondrial depolarization did not
affect total motility; however, sperm kinetic patterns were
altered. On the other hand, they found that glycolytic
pathway inhibition impaired total motility and sperm move-
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ment patterns. For both species, glycolytic pathway seems to
be as important as oxidative phosphorylation for sperm
physiology. However, the role of these pathways on bovine
sperm functionality has not been fully elucidated. This infor-
mation is extremely important for the understanding of bull
sperm physiology. In addition, studies evaluating the energy
metabolism of bovine sperm may contribute to the under-
standing of possible causes for the reduction in sperm quality
and fertilization failures related to these metabolic pathways
and then improve existent biotechnology’s, such as artificial
insemination which can impact in higher fertility rates.

Sperm collected directly from the epididymis seem to be
the ideal cellular model to study energy metabolism. This is
due to the many glycolysis, citric acid cycle, and oxidative
phosphorylation stimulants contained in the seminal plasma
derived from the accessory glands [10–12]. The fact that
epididymal spermatozoa have not been stimulated with these
substances provides a better in vitro manipulation of these
cells, allowing the stimulation and inhibition of these
pathways to evaluate the role of each metabolic pathway on
sperm functionality.

Therefore, the aim of this study was to evaluate the role of
mitochondria and glycolysis in ATP production, generation
of reactive oxygen species (ROS), and kinetic patterns of
epididymal bovine sperm by means of mitochondrial uncou-
pling and glycolytic pathway stimulation.

2. Material and Methods

The present experiment was conducted according to ethical
guidelines for animal experiments and approved by the Bio-
ethics Committee of the School of Veterinary Medicine and
Animal Science at the University of São Paulo (protocol
number 7978040914).

In this study, we submitted bovine epididymal sperma-
tozoa to treatment with the oxidative phosphorylation
uncoupler carbonyl cyanide 4-(trifluoromethoxy)phenylhy-
drazone (FCCP) to significantly reduce mitochondrial ATP
synthesis and stimulated the glycolytic pathway by glucose
addition. However, in order to verify the optimal
concentrations of the uncoupler, FCCP, we performed a
dose-response curve in experiment 1. Thus, the selected
concentrations were used in the subsequent experiments.
The aim of these experiments was to evaluate the contri-
bution of mitochondria to ATP synthesis (experiment 2),
patterns of sperm kinetics (experiment 3), and oxidative
homeostasis (experiment 4) of bovine epididymal sperm
and verify if stimulation of the glycolytic pathway would
be able to maintain these sperm parameters that are
probably suppressed by mitochondrial uncoupling.

2.1. Sample Collection. Epididymal sperm samples were
collected and then dissecting the epididymis cauda with a
scalpel blade, according to previous protocol [13]. To limit
blood contamination, dissection was performed carefully.
The flowing epididymal fluid was collected with an automatic
pipette. Then, samples were used in each respective
experiment proposed.

2.2. Experiment 1—Concentration-Response Curve of
Mitochondrial Uncoupler, FCCP. To evaluate the effect of
mitochondrial uncoupling by FCCP, spermatozoa from 3
bovine epididymides (n = 3) were collected and diluted to a
concentration of 100 million spermatozoa per mL in modi-
fied TALP. Despite a minimum number of epididymis
used, we evaluated the mitochondria of each spermato-
zoon singly, as experimental unit. Thus, we used 15 to
26 cells per FCCP concentration. Thereafter, the spermatozoa
were incubated in a perfusion chamber with mitochondrial
fluorophore tetramethylrhodamine-ethyl-ester perchlorate
at 500nM (ThermoFisher® Scientific, 0.5μL of TMRE in
1mL of medium) for 5 minutes at 37°C. For the sperma-
tozoa to remain attached during perfusion with FCCP,
coverslips of the perfusion chamber were treated with
polylysine.

After incubation, the amount of TMRE fluorescence cap-
tured by each sperm mitochondrion was recorded by the
software LAS AF Lite (Leica® Microsystems, Germany) at
an emission of 500nm and excitation of 600nm by a fluores-
cence microscope (Leica Microsystems, Germany). Thirty
seconds of mitochondrial basal fluorescence was recorded,
and then perfusions were performed with increasing FCCP
concentrations (Tocris Bioscience®, MN, USA; 0.3, 1, 3, 10,
30, 60, and 100μM) by means of an electrovalve controller.
Stimulation performed with FCCP at 30 seconds was
recorded, and the percentage of mitochondrial depolariza-
tion was calculated based on the difference between the basal
fluorescence and the amount of fluorescence retained in the
mitochondria of each spermatozoon after 30 seconds of
FCCP stimulation.

The lower FCCP concentrations of the dose-response
curve (0.3, 1, and 3μM) and the concentration insufficient
for the promotion of mitochondrial depolarization (0.1μM,
concentration under the curve) were selected to be used in
the subsequent experiments.We selected these concentrations
inorder to significantly reduce themitochondrialATPsynthe-
sis without promoting disruption in this organelle.

2.3. Experiment 2—Effect of Mitochondrial Uncoupling and
Glycolysis Stimulation onATPLevels. In this experiment, sper-
matozoa from 6 bovine epididymides (n = 6) were collected
and diluted to a concentration of 100 million spermatozoa
per mL in modified TALP medium. Each sample was divided
into ten aliquots, which were submitted to a 5× 2 factorial
design wherein one of the factors was the addition of glucose
(5mM) and the other factor was the treatmentwith increasing
concentrations of FCCP (0.1, 0.3, 1, and 3μM). After a
15-minute incubation, the treatments were subjected to
measurements of ATP levels by means of a luminescence
technique. For this procedure, 50μL aliquots in duplicate
from each treatment containing 100000 spermatozoa
were added to 50μL of CellTiter-Glo® Luminescent Cell
Viability Assay kit (Promega®, USA) and incubated for
30 minutes at 37°C according to the manufacturer’s recom-
mendations. Immediately after this procedure, ATP levels
were measured in a luminescence apparatus (ThermoFisher
Scientific, MA, USA) in duplicate. The results obtained,
expressed in arbitrary light units (AUL), were interpolated
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on a standard curve containing different concentrations of
ATP (10, 100, 1000, 5000, and 10000nM) and were then
expressed in nM ATP.

2.4. Experiment 3—Effect of Mitochondrial Uncoupling and
Glycolysis Stimulation on Sperm Kinetic Patterns. To evaluate
the effect of mitochondrial uncoupling and glycolysis
stimulation on sperm kinetic patterns, spermatozoa from 7
bovine epididymides (n = 7) were collected and diluted to a
concentration of 100 million spermatozoa per mL in
modified TALP medium. Each sample was divided into ten
aliquots, which were submitted to a 5× 2 factorial design
wherein one of the factors was the addition of glucose
(5mM) and the other was the treatment with increasing
concentrations of FCCP (0.1, 0.3, 1, and 3μM). After 5
minutes of incubation, the sperm samples were subjected to
computerized analysis of sperm kinetics (ISASPBOS,
Proiser®, Valencia, Spain). The following variables were con-
sidered: motility (%), progressive motility (%), VAP (average
path velocity, μm/s), VSL (straight-line velocity, μm/s), VCL
(curvilinear velocity, μm/s), ALH (amplitude of lateral head
displacement, μm), BCF (beat cross-frequency, Hz), STR
(straightness, %), and LIN (linearity, %). In addition to these
parameters, the sperm were also divided into four groups
based on velocity: rapid (VAP> 50μm/s; %), medium
(30μm/s<VAP< 50μm/s; %), slow (VAP< 30μm/s or
VSL< 15μm/s; %), and static (%) [14].

2.5. Experiment 4—Effect of Mitochondrial Uncoupling and
Glycolysis Stimulation on Reactive Oxygen Species
Production. To evaluate the effect of mitochondrial
uncoupling and glycolysis stimulation on reactive oxygen
species production, spermatozoa from 6 bovine epididymi-
des (n = 6) were collected and diluted to a concentration of
100 million spermatozoa per mL in modified TALP. Each
sample was divided into ten aliquots, which were submitted
to a 4× 2 factorial design wherein one of the factors was the
addition of glucose (5mM) and the other was the treatment
with increasing concentrations of FCCP (0.1, 0.3, 1, and
3μM). These treatments were incubated for 30 minutes at
37°C and subjected to the detection of reactive oxygen spe-
cies. To perform this technique, 100000 sperm were incu-
bated in modified TALP solution containing 10μM (final
concentration) of the fluorescent probe CM-H2DCFDA
for 30 minutes (triplicate samples). After incubation was
performed, the ROS were detected using a fluorometer
(Fluostar microplate reader Omega, Labtec-BMG, Germany)
at excitation 492–495nm and emission 517–527nm. The
fluorescence intensity results obtained were interpolated
on a standard curve containing different concentrations
of hydrogen peroxide (H2O2: 3, 10, 30, 60, 100, 200, and
300μM) and were then expressed in μL of O2 generated.
Data were normalized relative to the control group
(untreated samples).

2.6. Statistical Analysis. The concentration-response curve
for FCCP (experiment 1) was performed by nonlinear regres-
sion using the software GraphPad Prism 6. Data relating to
the measurement of ATP levels and computerized analysis

of sperm kinetics (experiments 2 and 3, resp.) were
analyzed using the SAS System for Windows (SAS Institute
Inc., Cary, NC, USA). Thus, the interaction between FCCP
and glucose factors was determined by PROC GLM. Differ-
ences between treatments were assessed using parametric
(Student’s t-test for each factor separately or LSD test for
the combination of factors) and nonparametric tests
(Wilcoxon) in accordance with the normality of the residuals
(Gaussian distribution) and homogeneity of the variances.
To analyze the effect of FCCP in the presence or absence of
glucose in the ROS production, data normalized to the
control group were compared by ANOVA variance analysis
(LSD test) using the SAS System for Windows program
(SAS Institute Inc., Cary, NC, USA). The level of significance
to reject the H0 (null hypothesis) was 5%; that is, the
significance level was 0.05. Significant differences between
classificatory variables (treatments) and a specific response
variable were considered.

3. Results

3.1. Experiment 1—Concentration-Response Curve of
MitochondrialUncouplerFCCP.By using a nonlinear regres-
sion, we found that the concentration-response curve is
square root = 0 7 and EC50=4.67× 10−5μM. We observed
a high percentage of depolarization with FCCP concentra-
tions of 30μM, 60μM, and 100μM (Figure 1). Thus, in
order to select points where there is a reduction in ATP
without promoting disruption in the organelle, we selected
3μM, 1μM, 0.3μM, and 0.1μM for the concentrations
used in the subsequent experiments (concentration under
the curve—Figure 1).

3.2. Experiment 2—Effect of Mitochondrial Uncoupling and
Glycolysis Stimulation on ATP Levels. There were significant
effects of FCCP, glucose, and FCCP-by-glucose interaction
in the ATP (P < 0 0001; Table 1) analysis. Then, it was pos-
sible to compare the effects of the addition of glucose in
the FCCP sample (Figure 2). We observed a lower ATP
production in the FCCP group at concentrations of
0.3μM (180.3± 31.9 nM), 1μM (220.2± 40.4 nM), and
3μM (272.3± 70.4 nM) than at 0μM (control—448.6
± 63.7 nM) and 0.1μM (422.4± 41.5 nM—Figure 2).
However, in the group treated with FCCP supplemented
with glucose, the concentrations were similar between the
groups treated with 0.1μM (610.8± 57.8 nM), 0.3μM
(606.2± 64.2 nM), 1μM (670.9± 61.9 nM), and 3μM
(696.1± 68.5 nM) FCCP and the group treated with glu-
cose without FCCP (577.2± 70.4 nM) (Figure 2).

3.3. Experiment 3—Effect of Mitochondrial Uncoupling and
Glycolysis Stimulation on Sperm Kinetics Patterns. There were
significant effects of FCCP, glucose, and FCCP-by-glucose
interaction (P < 0 05) on all CASA parameters (Table 1).

We observed a decrease in the total motility between
samples without FCCP (control) and with glucose
(Figure 3(a)); however, it was possible to note an increase
in motility in the groups treated with 0.3μM, 0.1μM, 1μM,
and 3μM FCCP supplemented with glucose (Figure 3(a)).
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This same effect was detected for progressive motility
(Figure 3(b)), VAP, VSL, VCL, and rapid sperm velocity
(see Supplementary Material available online at https://
doi.org/10.1155/2017/1682393).

Next, we examined the effects of the addition of glucose
in the FCCP samples (Figure 3 and Supplementary Material).
In the BCF analysis, we observed an increase in the groups
with 1μM and 3μM of FCCP supplemented with glucose
but a decrease in the glucose group (Supplementary
Material). Furthermore, we observed an increase in the slow
sperm velocity in the samples supplemented with glucose in
the groups treated with 1μM and 3μM of FCCP and glucose

alone but a decrease in the group treated with 0.3μM FCCP
(Supplementary Material).

With FCCP treatment, the control and 0.1μM groups
had higher values of total sperm motility, VAP, and VSL
than the 0.3μM group, which was superior to the 1μM
and 3μM samples (Figure 3 and Supplementary Material).
However, in the ALH, BCF, straightness, linearity, and
wobble analyses, the control, 0.1μM, and 3μM groups
had higher rates than the 1μM and 3μM groups
(Supplementary Material). In the VCL and percentage of
medium sperm velocity, we observed that the 3μM and
1μM groups had lower values than the 0.3μM group,
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Figure 1: Dose-response curve of FCCP concentrations (0.3, 1, 3, 10, 30, 60, and 100μM) in sperm of bovine epididymal samples. Superscript
numerals indicate the FCCP concentration used and their respective images. Mitochondrial depolarization of bovine spermatozoa at FCCP
concentration of 0μM (I), 10 μM (II), 30μM (III), and 60μM (IV). Arrows indicate mitochondria labeled with the TMRE fluorescent probe at
different percentages of mitochondrial depolarization. 400x magnification.

Table 1: Probability values for the FCCP (0, 0.1, 0.3, 1, and 3μM), glucose, and their interaction on computer-assisted sperm analysis
(CASA).

FCCP Glucose FCCP× glucose
Total sperm motility (%) <0.0001 0.0003 <0.0001
Sperm progressive motility (%) <0.0001 0.0005 <0.0001
Percentage of rapid sperm (%) 0.0006 0.0077 <0.0001
Percentage of medium sperm (%) 0.0087 0.0033 <0.0001
Percentage of slow sperm (%) 0.3993 0.0361 0.0045

Amplitude of lateral head displacement (ALH—μm) 0.0009 0.0119 0.0095

Average path velocity (VAP—μm/s) <0.0001 0.0002 <0.0001
Straight line velocity (VSL—μm/s) <0.0001 0.0002 <0.0001
Curvilinear velocity (VCL—μm/s) 0.0002 0.0038 0.0002

Beat cross-frequency (BCF—Hz) <0.0001 0.0020 <0.0001
Sperm straightness (STR—%) 0.0002 0.0020 <0.0001
Sperm linearity (LIN—%) <0.0001 0.0003 <0.0001
Wobble (WOB—%) <0.0001 0.0003 <0.001
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which was similar to the 0.1μM group but lower than the
control (Supplementary Material). In progressive motility
(PM), the control group had the highest rates (Figure 3).
However, we observed lower rates of PM in the 3μM and
1μM groups than in the 0.3μM group, which was inferior
to the 0.1μM group (Figure 3). In the medium sperm veloc-
ity, the control group was superior to the 1μM and 3μM
groups (Supplementary Material). On the other hand, in
the slow sperm velocity, the control and 1μM groups had
lower rates than the 0.1μM and 0.3μM groups (Supplemen-
tary Material).

When we compared the results between the concentra-
tions of FCCP supplemented with glucose, we highlighted
the higher values of progressive motility, straightness, and
rapid sperm velocity in the groups treated with 3μM and
0.3μM of FCCP, which were superior to the glucose group
(Figure 3 and Supplementary Material). In the total
motility analysis, the 3μM group was superior to the glu-
cose group (Figure 3). However, in the VCL, the 0.3μM
group had higher values than the 1μM group
(Supplementary Material). The glucose group was lower
than the 0.3μM, 1μM and 3μM groups in the BCF
parameter (Supplementary Material). However, in the slow
sperm velocity, the 1μM group was higher than the
0.3μM group (Supplementary Material). The remaining
CASA variables did not show any difference between the
groups (Supplementary Material).

3.4. Experiment 4—Effect of Mitochondrial Uncoupling and
Glycolysis Stimulation on Reactive Oxygen Species Production.
In the production of the reactive oxygen species, we high-
light in Figure 4 the higher ROS generated by sperm
treated with 3μM of FCCP supplemented with glucose
(332.9± 34.58μL) than that with FCCP concentrations of
0.1μM (213.2± 38.77μL), 1μM (191.44± 50.39μL), and
3μM (170.06± 49.34μL).

4. Discussion

The aim of this study was to evaluate the role of mitochon-
dria and the glycolytic pathway in the maintenance of ATP
levels, the parameters of sperm movement, and the produc-
tion of reactive oxygen species in epididymal bovine sperm.
To perform this experiment, we submitted bovine sperm to
mitochondrial uncoupling with FCCP to significantly reduce
the synthesis of ATP by the mitochondria and evaluate the
effect of this reduction in sperm functionality. Furthermore,
we promoted stimulation of the glycolytic pathway by
glucose addition concurrently with the mitochondrial
uncoupling to assess whether glycolysis would be able to
maintain the ATP levels, sperm kinetic patterns, and oxida-
tive homeostasis possibly harmed by mitochondrial
depolarization.

The mitochondrial uncoupler FCCP is a lipophilic
molecule with protonophore properties; in other words, it is
capable of interacting with the inner mitochondrial
membrane to allow pumped protons to return to the mito-
chondrial matrix, dissipating the proton gradient and
influencing the mitochondrial chemiosmosis [15, 16].
Indeed, in our experiment, we confirmed the depolarizing
effect of the uncoupler FCCP. In experiment 2, we observed
a significant reduction in ATP levels in the groups treated
with 0.3, 1, and 3μM of FCCP compared to the control
group. ATP production in the mitochondria occurs by means
of the coupling of two reactions: the transport of electrons
throughout the respiratory chain and the proton gradient.
This latest gradient is capable of storing energy, called proton
motive force, which drives the synthesis of ATP through
ADP and inorganic phosphate [17]. FCCP has a protono-
phore effect that will dissipate the proton gradient, thereby
reducing ATP synthesis, as noted in our results. On the other
hand, the groups that were treated with these same FCCP
concentrations but were supplemented with glucose had
higher levels of ATP, similar to the control group. From these
results, we can suggest that the glycolytic pathway, after being
stimulated, is able to maintain ATP levels in bovine epididy-
mal sperm. In fact, our results were consistent with a
previous study in boars, which demonstrated that sperm
mitochondria account for only 5% of energy production,
while the glycolytic pathway contributes to 95% [18].
Additionally, species such as mice may use ATP from glycol-
ysis and mitochondrial respiration depending on their
biological conditions without changing sperm functionality
or sperm ATP levels [19].

In experiment 3, we observed a very similar pattern of
results as in experiment 2. The motility and spermatic move-
ment patterns were affected by mitochondrial uncoupling.
However, stimulation of the glycolytic pathway maintained
sperm kinetic patterns, even with cells undergoing mitochon-
drial uncoupling. These results suggest that for bovine sperm,
there is a close relationship between motility and ATP levels.
However, this relationship is still a matter of controversy. In
accordance with our study, Mukai and Okuno [3] verified
that ATP levels and flagellar beating remained constant when
mouse sperm mitochondria were uncoupled concurrently
with the supplementation of substrates for glycolysis.
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Additionally, Krzyzosiak et al. [20] also observed that bovine
sperm are capable of maintaining similar motility patterns in
both aerobic and anaerobic conditions, assuming that glycol-
ysis is capable of maintaining sperm motility. On the other
hand, Ramió-Lluch et al. [21] demonstrated that the inhibi-
tion of ATP synthase impairs sperm motility, while intracel-
lular ATP levels remain unchanged. Therefore, the author
suggested an unknown essential mitochondrial mechanism
responsible for motility maintenance that does not rely only
on the maintenance of ATP levels. The variations in the
results of the different experiments seem to be related to the

species involved and the biological conditions to which such
cells have been subjected [22, 23]. Therefore, there is a need
for further studies to elucidate these mechanisms.

Regarding experiment 4, we observed that the groups
treated with FCCP at 1 and 3μM in the absence of glu-
cose had a lower production of reactive oxygen species
(ROS). The reactive oxygen species produced by sperm
play a key role in many physiological processes such as
hyperactivation [24], capacitation [25], and the interaction
between the sperm and oocyte [26]. The fact that the
groups treated with FCCP and glucose did not differ from
the control group suggests that glycolysis stimulation is
able to maintain the physiological ROS production and,
ultimately, oxidative balance. Moreover, the ability of
FCCP in the absence of glucose to reduce ROS production
reveals a possible therapeutic potential for preventing the
release of excessive reactive oxygen species. This ability
to prevent ROS production may be due to the increase
of the electron transport rates accompanied by a reduction
in mitochondrial intermediate states which is able to
donate electrons to oxygen [27]. Furthermore, studies have
demonstrated that the reduction in ATP synthesis by
mitochondria is accompanied by a reduction in ROS pro-
duction [28]. In fact, studies have shown this ability of
mitochondrial uncouplers in somatic cells [29, 30].

Therefore, knowledge of the role of each metabolic
pathway on sperm functionality may target therapies using
substrates to stimulate these pathways in reproduction
biotechnologies. Furthermore, the data of mitochondrial
uncoupling FCCP reduces the reactive oxygen species
production and suggests that this molecule can be used to
prevent seminal oxidative stress during procedures that
induce this stress, such as cryopreservation. Thus, such
procedure can improve reproductive indexes by means of
assisted reproduction techniques in cattle, especially
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intrauterine artificial insemination. Nevertheless, this thera-
peutic effect should be further studied in spermatozoa.

5. Conclusion

In conclusion, after its stimulation, the glycolytic pathway is
capable of maintaining ATP levels, sperm kinetic patterns,
and oxidative balance of bovine epididymal spermatozoa
submitted to mitochondrial uncoupling.
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