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Abstract
Deciphering gene–disease association is a crucial step in designing therapeutic
strategies against diseases. There are experimental methods for identifying
gene–disease associations, such as genome-wide association studies and
linkage analysis, but these can be expensive and time consuming. As a result,
various  methods for predicting associations from these and other datain silico 
have been developed using different approaches. In this article, we review
some of the recent approaches to the computational prediction of
gene–disease association. We look at recent advancements in algorithms,
categorising them into those based on genome variation, networks, text mining,
and crowdsourcing. We also look at some of the challenges faced in the
computational prediction of gene–disease associations.
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Introduction
Aberrations in certain genes have been observed to either predis-
pose individuals to disease or be directly responsible for the devel-
opment of a disease phenotype, as in the case of Huntington’s  
disease1 and sickle cell disease2. Deciphering the link between 
genes and diseases is an open problem in biomedical sciences, 
but it presents an opportunity to better understand disease aetiol-
ogy, thereby allowing for the design and development of better  
mitigation strategies. Note, here we are describing only the links 
or associations between genes and disease rather than suggesting 
causality, as the issue of causality is still under debate.

Experimental methods for gene–disease association, such as  
linkage studies3, genome-wide association studies (GWAS)4, and 
RNA interference screens5, are expensive and time consuming to 
run. As a result, a number of computational methods6–8 have been 
developed to identify or predict gene–disease associations. These 
methods have different strengths and weakness and are suited for 
different classes of disease. For instance, methods that are suited 
for monogenic diseases, such as those that look at candidate dis-
ease gene expression patterns, may perform poorly when applied 
to a complex disease whose aetiology is attributed to many genes 
that work in concert to elicit the disease phenotype. In complex 
diseases, the genes that are responsible for disease phenotype 
when individually investigated are often found to give signals too 
weak to assign gene–disease association. One such example, as 
suggested by GeneRank9, is the case where genes that are strong 
drivers of disease are transcription factors that may not be differ-
entially expressed between disease and non-disease conditions but 
are responsible for regulating the expression of other genes that are 
differentially expressed.

The diversity of data that is used to derive gene–disease relation-
ships as outlined in the review of tools in 6–8 is a clear testament 
to the complexity of biological systems. Consequently, methods  
that incorporate diverse data sets, such as that described in 10, tend 
to achieve better results for the reason that when a gene–disease 
association is backed by many heterogeneous methods and data, 
it is more likely to be a true association. In deriving gene–disease 
associations, different tasks can be performed in parallel or as part 
of a sequential pipeline. Some of the activities required include 
combinations of the following:

•   �Identifying variants that are associated with the disease and 
identifying genes that are associated with the variants.

•   �Establishing gene–disease association via other methods. 
In some cases, gene–disease association is derived from 
differential expression of genes in disease and non-disease 
conditions. Text mining biomedical literature is also a very 
popular source of gene–disease association data for most 
computational tools owing to the fact that the data are rela-
tively easy to access. However, the success of text mining 
methods is heavily dependent on the quality of the text data 
and the efficiency of the algorithms.

•   �Assigning some confidence to the established gene–disease 
association, e.g. assigning weights based on where the asso-
ciation was derived from (experimentally derived, expertly 
curated, or predicted from text).

•   �Identifying publications that support the association. Some 
tools use publication support as a preliminary step in retriev-
ing candidate disease genes. Often tools that use text mining 
as a basis for assigning gene–disease associations retrieve 
co-mentions of genes and diseases from biomedical lit-
erature when drawing a pool of candidate genes, which are  
further examined for association with a given disease. 
In other cases, the number of publications that support a  
particular gene–disease association is used as a basis for 
ranking the validity of the association.

•   �Presenting and distributing the results, which addresses the 
format in which the data are presented and distributed. Cur-
rently, data representation in scientific research is geared 
towards satisfying two key needs: a) that the data can be  
easily accessed and interpreted by non-technical users for the 
purposes of knowledge acquisition and b) that the data are 
accessible to technical users for the purposes of extending 
the tool, e.g. application programming interfaces (APIs), or 
for large-scale data analysis.

Accordingly, tools are being developed to address each of the  
components above. Some tools amalgamate two or more compo-
nents into one contiguous process that is packaged into a single 
tool. In some cases, the whole gene–disease association discov-
ery engine is infused into a single platform, such as in the case of  
DisGeNET11.

This article seeks to review recent advances in elucidating  
gene–disease associations by investigating strengths of current 
computational methods and some of the challenges. The list of 
the tools that we review is by no means exhaustive, but we focus 
on some tools that have used innovative ways to advance gene– 
disease association algorithms. We have categorised the tools 
based on the approach used—1) genome variation, 2) text mining,  
3) crowdsourcing, and 4) networks—and provide some examples 
of each. Summary information for the examples is provided in  
Table 1.

Genome variation
GWAS and genetic linkage studies3 are the main methods used 
for identifying variations across the genomes of individuals and  
associating these with diseases or phenotypes. The idea behind 
GWAS is to establish whether there is a significant genetic vari-
ation between case and control populations for a given phenotype 
under investigation.

The most common type of variation studied for diseases is the  
variation at a single nucleotide position, otherwise known as the 
single nucleotide polymorphism (SNP), although other types of 
variation such as copy number or chromosomal rearrangements 
have also been linked to many diseases. GWAS identify marker 
SNPs that are associated with the phenotype/trait under inves-
tigation. Once the marker SNPs have been identified, the next  
challenge is to determine how the variants are responsible for 
the phenotypes. This entails finding the location of the SNPs in  
relation to genes and, if associated with a gene, then identifying 
the pathways the gene is involved in. Genetic linkage studies, on 
the other hand, identify linked regions on the genomes of related 
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Table 1. A brief summary of some of the tools that have been reviewed in this article. Each tool is classified 
according to the categories that are described in the introduction section, the algorithm used, the technology used in 
implementation, the data sources used, and how the tool can be accessed.

Tool Algorithm Technology Data Sources Accessibility

Variation 
DisGeNET

 
GWAS

 
Python, R, Bash, 
SPARQL

 
CTD 
Uniprot 
ClinVar 
OrphaNet 
GWAS catalogue 
RGD 
MGD 
GAD 
BeFree

 
Cytoscape app 
RDF SPARQL endpoint 
Scripts (Python, R, 
Perl, Bash) 
R Package 
Linked open Data 
cloud

Text Mining 
MOPED-Digger 
 
 
Inductive Matrix 
Completion 
 
Implicitome

 
NLP (co-occurrence of 
gene–disease in abstracts) 
 
Matrix completion 
 
 
NLP (Peregrine) 

 
Java, Apache 
Lucerne  
 
C/C++, Python, 
MATLAB 
 
Java

 
PubMed 
 
 
OMIM 
 
 
UMLS 
Entrez Gene 
OMIM 
Uniprot 
HGNC 
JoChem

 
Desktop application 
 
 
Desktop application 
 
 
Desktop application

Reference Variant 
Store (RVS)

Variant annotation, data 
integration

Apache Hadoop 
Python, Java, 
JavaScript, Scala, 
MySQL

1000 Genomes 
EXAC 
Scripps Wellderly

RESTful APIs 
Web

Crowdsourcing 
Dizeez

 
Text mining tools, the 
crowd (MTurkers)

 
Java, Perl, C++, web 
technologies

 
OMIM 
PubMed 
PubChem

 
Web

Networks 
HeteSim Multipath 
(HSMP)

 
Support vector machine, 
multipath analysis

 
MATLAB

 
OMIM, 
HumanNet, 
HPRD

 
Desktop application

API, application programming interface; CTD, Comparative Toxicogenomics Database; EXAC, Exome Aggregation Consortium; 
GAD, Genetic Association Database; GWAS, genome-wide association studies; HGNC, Human Genome Organisation (HUGO) Gene 
Nomenclature Committee; HPRD, Human Protein Reference Database; MGD, Mouse Genome Database; NLP, natural language 
processing; OMIM, Online Mendelian Inheritance in Man; RDF, resource description framework; RGD, Rat Genome Database; SPARQL, 
SPARQL protocol and resource description framework query language; UMLS, unified medical language system.

individuals by observing the transmission of the loci from parents 
to offspring that is expected by independent inheritance. Genetic 
linkage is used to find regions in the genome that predispose an 
individual to a particular phenotype.

For in silico studies, the association data are usually obtained from 
some of the many databases that maintain genotype–phenotype 
information. The review of Brookes and Robinson12 lists some of 
the databases that contain genotype–phenotype data in relation to 
human health. The databases contain more or less similar genome 
variation data; however, they differ in aspects such as the data 
access policies, the standards that they employ when curating the 
data, and the expertise of the database curators. Some databases 

such as Orphanet (www.orpha.net)13 and OMIM (www.omim.org)14 
cater for domain-specific phenotypes, i.e. rare and Mendelian dis-
eases, respectively, which encourages use by domain experts. How-
ever, the preference of one particular database over another largely 
depends on the individual requirements of the user, although some 
databases, such as the GWAS catalogue (www.ebi.ac.uk/gwas/)15, 
are widely used owing to their comprehensive coverage of variation 
data and ease of access. The GWAS catalogue presents the varia-
tion data in an interactive karyogram that can be easily queried by 
different parameters in addition to offering programmatic access 
to the data. These facilities encourage adoption of the resource. 
While dbSNP (https://www.ncbi.nlm.nih.gov/projects/SNP/) is 
a commonly used source of variants, it does not attempt to cover 

Page 4 of 9

F1000Research 2017, 6(F1000 Faculty Rev):578 Last updated: 26 APR 2017

http://www.orpha.net
http://www.omim.org
http://www.ebi.ac.uk/gwas/
https://www.ncbi.nlm.nih.gov/projects/SNP/


variant-disease associations. ClinVar (https://www.ncbi.nlm.nih.
gov/clinvar/), on the other hand, provides a clinical or phenotypic 
association for variants, with supporting evidence from multi-
ple sources. The Reference Variant Store (RVS) (http://rvs.u.hpc.
mssm.edu/)16 is perhaps the single most comprehensive repository 
for genome variation data both in size (over 400 million variants 
and 80,000 samples) and in the variety of annotation data that are 
stored. The RVS also has, as one of its main features, a RESTful 
API for the flexible retrieval of data by different features such as 
frequency, prediction method, disease, and literature.

There are a number of tools that use a combination of outputs  
from GWAS or linkage studies, next-generation sequencing (NGS), 
and data from the abovementioned resources to prioritise gene– 
disease association. One example is Exomiser17, which incorpo-
rates variant annotation, protein interaction networks, and pheno-
type, clinical, and other information for disease gene identifica-
tion for Mendelian diseases from a variant call format (VCF) file.  
Algorithms have been developed to predict the effects of  
changes in the DNA or protein sequence based on certain prop-
erties of sequences. SIFT (http://sift.jcvi.org/)18, PolyPhen-2 
(http://genetics.bwh.harvard.edu/pph2/)19, and PROVEAN 
(http://provean.jcvi.org/)20 are some of the tools that are used in  
predicting the phenotypic effects of genome variation. CADD 
(http://cadd.gs.washington.edu/)21 is also used in many cases for 
gene–disease association studies to prioritise functional, del-
eterious, and pathogenic variants. It works by integrating diverse  
annotation sources into a single C score. 

Text mining
The bulk of scientific knowledge is still kept in textual format, 
although the availability of these data in scientific databases is 
also growing exponentially. For instance, Burger et al.22 estimate 
that articles about gene–disease associations that are deposited in 
public databases grow at the rate of about 10,000 papers per year  
(approximately one paper every hour of every day). As a result, 
there is an increasing need to find better and faster ways of  
retrieving and processing knowledge from scientific databases. 
Databases that are manually curated by experts provide high- 
quality data, albeit at a very slow pace, so text mining algorithms 
are now being used to automate some manual processes.

Gene–disease association may be derived from direct association  
of a gene with a disease in biomedical text23–25. In some cases, 
implicit association between genes and diseases is used, as  
demonstrated in 26, wherein a gene X is implicitly associated with 
a disease Z if it is directly associated with a biological concept  
(gene, drug, phenotype, or biological process) Y, which is also 
directly associated with the disease Z.

The National Centre for Biotechnology Information (NCBI)  
maintains a set of high-quality text mining software in its tool set. 
Some examples of tools that are relevant for processing genome 
variation information include tmVar27, for extracting sequence  
variants at the levels of both genes and proteins from biomedical  
literature; DNorm28, which is a resource that is used to automati-
cally identify disease names in biomedical text; and GNormPlus24, 
which identifies gene mentions and normalization in biological  

text. Gene normalization, as described in 29, is the process of  
identifying and assigning biomedical database identifiers to genes 
retrieved from biomedical text. In order to improve efficiency, 
GNormPlus integrates other resources such as SimConcept30  
for identifying and simplifying composite names and SR4GN31  
for species named entity identification in biomedical text.  
PubTator28 is another resource for biocuration that incorporates 
biomedical text search. A user may search for PubMed articles  
by the following terms: gene, disease, PubMed, or chemical.  
PubTator incorporates precomputed searches from tools such as 
GNorm, DNorm, and SR4GN.

From the tools discussed above, a simple text mining-based  
gene–disease association can be implemented by performing a 
PubMed-like keyword search using PubTator, using normalisa-
tion and annotation tools to retrieve relationships between con-
cepts (tmVar for mutation, GNormPlus for genes, and DNorm for  
diseases), and then presenting the results for visual inspection or 
integration into other analysis pipelines.

Crowdsourcing
Crowdsourcing refers to the act of delegating a job traditionally 
assigned to a dedicated agent (usually an employee) to a large  
group of people in the form of an open call32. The immense quan-
tity of data that biomedical scientists need to deal with today has 
prompted the search for innovative ways of solving scientific 
problems. The following qualities identify suitable candidates for 
crowdsourcing solutions:

1)   �Few individuals with rare abilities could solve the problem. 
It is sometimes difficult to harness all the necessary skills 
for a particular task in one organization or through tradi-
tional ways of collaboration.

2)   �The problems are simple tasks that require human intel-
ligence, e.g. annotating images.

3)   �The problems can be broken into tasks with definite end-
points. The possibility of breaking jobs into smaller tasks 
translates to the possibility of sharing the incentives with 
a larger group of people and, in essence, simplifying the 
problem.

Many problems in bioinformatics possess the qualities listed  
above, and some scientists have explored the use of crowdsourc-
ing methods to solve these problems33. Researchers design tasks 
for which they wish to recruit a crowd and then invite workers to 
participate in the tasks by using crowdsourcing platforms such as 
Crowdflower (http://www.crowdflower.com), Amazon Mechani-
cal Turk (AMT) service (https://www.mturk.com), and Kaggle  
(www.kaggle.com).

Several crowdsourcing approaches have been used to identify 
gene–disease associations. Dizeez34 works as a multiple quiz 
game in which a player is presented with a disease drawn from the  
Human Disease Ontology35 as the “clue” and a list of five genes. 
Only one of the five genes has been linked to the clue disease  
before. The player is challenged to accumulate points by guessing 
the correct gene–disease links. All guesses are taken as “assertions” 
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and examining the frequencies of the “assertions” for unknown  
links identifies new gene–disease associations. Running simula-
tions in which a player randomly assigned gene–disease associa-
tions validated the results of Dizeez by showing that there was a  
significant difference with the real results from playing the game. 
In another approach, Burger et al.22 adopted a hybrid method in 
which they used gene and mutation tagging tools GenNorm29 and  
Extraction of Mutation (EMU)36, respectively, to extract gene-
mutation pairs from PubMed abstracts. Each gene-mutation  
pair is then presented to the recruited workers in the AMT  
service as a human intelligence task (HIT). Basically, a HIT accord-
ing to 22 is a minimal task that cannot be automated. The qual-
ity of the crowdsourced service is evaluated by redundancy and 
aggregation in such a way that the same task is presented to five  
different workers and the congruency of their results is evalu-
ated, the idea being that a result that is supported by many work-
ers is most likely to be correct. Like in Burger et al.22, Li et al.37 
also incorporated text mining tools tmChem38 and DNorm28 in  
addition to the wisdom of the crowd to identify associations between 
chemical substances and diseases from text.

The review articles 26 and 32 together with 39 provide more infor-
mation on crowdsourcing in biomedicine, particularly touching 
on how to choose the right crowdsourcing platform for a particu-
lar task and some of the challenges that one may face when using  
crowdsourcing to solve problems in bioinformatics.

Networks and semantic similarity-based algorithms
Network algorithms rely on the premise that phenotypically simi-
lar diseases are caused by genes that are functionally related40.  
The idea is to find a set of genes that are already linked to the dis-
ease or phenotype in question and then find genes that are func-
tionally related to that set. Many examples of network-based  
methods have been reviewed in Piro & Cunto6 and two are men-
tioned below. HeteSim41 integrates heterogeneous networks of  
protein–protein interaction (PPI), gene–phenotype association, 
and phenotype–phenotype similarity to prioritise novel gene– 
phenotype associations. Natarajan & Dhillon42 formulate the  
gene–disease association problem in a similar way to a rec-
ommendation problem in which the players are genes as the  
“recommenders”, and diseases are the “items” that they recom-
mend or “prefer”. The goal is to identify which diseases a given  
set of genes would prefer given a set of observed preferences  
provided as biological entities.

Discussion
Gene–disease association is a crucial step in understanding dis-
ease aetiology. The process has been directed by manually  
curated biomedical databases owing to the faith that is placed on 
expert knowledge and individual attention. The exponential rate 
at which biomedical databases grow is quickly rendering manual 
curation of biomedical databases unattainable. The big challenge 
now is that of obtaining gene–disease associations on a large  
scale while at the same time not compromising on the quality  
of the associations. Scientists have developed innovative solutions 
in trying to solve this problem, ranging from adapting popular  
algorithms from other fields, like in the case of GeneRank adapting 
Google’s PageRank9, to using crowdsourcing platforms22,34.

From the tools discussed above, a common trend is that most 
gene–disease association tools are built in a modular manner such 
that different standalone components are aggregated together to 
form the complete tool. For example, a tool that identifies muta-
tions in biological text like EMU36 can be combined with a tool 
that performs gene normalisation like GenNorm29 to build a muta-
tion-finding tool like that of Burger et al.22. One of the challenges 
is standardisation of the data across the tools while still maintain-
ing quality, especially when the different data sources are con-
stantly updated. One would need to determine whether the different  
components are using the same database version. A solution would 
be to use third-party data providers such as CellBase43, which  
provides web services for retrieving biological information from 
heterogeneous sources to handle data harmonisation across  
different tools.

Unconventional approaches such as crowdsourcing gene–disease 
association have also helped to partially deal with the inherent 
problem of volume and quality control of data that are saved into 
the databases. Redundancy and aggregation is one of the chief 
quality control methods that is employed by many crowdsourcing 
projects in bioinformatics33 owing to the availability of a large pool 
of experts willing to work for relatively affordable compensation, 
even for free in some cases.

Another observation about the methods described is that  
although the algorithms are hardly altered—for example, net-
work algorithms still look for functional links among genes and  
text mining algorithms still parse biological text in order to unearth 
relationships between genes and diseases—the innovation is in 
the implementation of the algorithms and in handling some of 
the inherent weaknesses of the algorithms such as limited data.  
As an illustration, the crowdsourcing algorithm in Burger et al.22 
substitutes human labour for tasks that would otherwise be per-
formed by software. Another example is the transferring of anno-
tation between different but related biological components to  
complement limited data, like in the case of a literature-wide  
association study (LWAS) that is applied in Implicitome26. In 
Implicitome, a connection between a gene and a disease is  
obtained by independently mining literature for a connection 
between a gene and a biological component, which, in turn, has 
literature that links it to a disease.

Another recurrent theme in this review is the integration of  
different modules and data sources, whether as a distinct part 
of an algorithm or integration of similar data to ensure compre-
hensive coverage. This requires the addressing of the issues of  
compatibility and standardisation so that different components  
can link harmoniously. Many tools make use of ontologies  
such as the disease35,44 and phenotype ontologies45 for data  
standardisation.

Challenges
The two biggest challenges in gene–disease associations are how 
to store and display the relevant data for retrieving gene–disease 
associations in a readily accessible manner for researchers with 
varying levels of technical expertise and scalability of algorithms. 
As mentioned previously, standardisation of data across different 
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platforms is important, but so are considerations of how to deal  
with controlled access. The development of software that scales 
with the rate of increase in data size and complexity is also a major 
challenge. How do you build efficient software that will incorporate 
the changes in knowledge both in a timely manner and on a large 
scale? A third challenge is the integrity of the resulting associations 
and attributing evidence to assertions made by algorithms. While 
gene–disease associations can improve our knowledge on disease 
aetiology, it is still an area of active research and these associa-
tions should not be used in a clinical setting without further valida-
tion. Environment and context can have an important effect on the 
impact and relevance of a gene– (or variant)–disease association, so 
the data cannot be used in isolation.

There are many groups working globally on gene–disease asso-
ciations in terms of method development, data consolidation, or  
experimental versification, and only a few are mentioned in this 
review. The Global Alliance for Genomics and Health (http://
genomicsandhealth.org/), for example, has genotype to pheno-
type and variant interpretation projects, and many of the cancer 
initiatives focus on the clinical interpretation of variants. Here we 
have focussed only on some of the recent methods for predicting  
gene–disease associations to provide a taste of the different 
approaches.

Data sources
Listed below are some of the data sets that are used by tools that 
we reviewed.

OMIM (www.omim.org): Online Mendelian Inheritance in Man46

CTD (http://ctdbase.org/): The Comparative Toxicogenomics Data-
base—provides data about interactions between chemicals and gene 
products and how the interactions are related to diseases47

ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/): an archive for 
interpretations of the clinical significance of genetic variants48

OrphaNet (www.orpha.net): an online rare disease and orphan 
drug database13

The GWAS Catalog (www.ebi.ac.uk/gwas/): manually curated, 
quality-controlled, literature-derived database of GWAS15

MGD (http://www.informatics.jax.org/): the Mouse Genome  
Database49

RGD (http://rgd.mcw.edu/): the Rat Genome Database50

LHGDN (http://www.dbs.ifi.lmu.de/~bundschu/LHGDN.html): 
the literature-derived human gene-disease network—text mining-
derived database for classifying gene–disease associations

BeFree (http://ibi.imim.es/befree/): gene–disease associations 
extracted from MEDLINE abstracts using BeFree system51 for text 
mining

GAD (https://geneticassociationdb.nih.gov/): the Genetic Asso-
ciation Database, which is an archive of complex diseases in 
humans52

ExAC (http://exac.broadinstitute.org/): the Exome Aggregation 
Consortium, which collects and harmonises exome sequencing data 
from large exome sequencing projects53

HGNC (http://www.genenames.org/): the HUGO Gene Nomencla-
ture Committee, which is a database for human gene names and 
symbols54

JoChem (http://biosemantics.org/index.php/resources/jochem): a 
dictionary to identify small molecules and drugs in text55
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