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Abstract

MAN1B1-CDG is a multisystem disorder caused by mutations in MAN1B1,

encoding the endoplasmic reticulum mannosyl-oligosaccharide alpha-1,-

2-mannnosidase. A defect leads to dysfunction within the degradation of

misfolded glycoproteins. We present two additional patients with

MAN1B1-CDG and a resulting defect in endoplasmic reticulum-associated pro-

tein degradation. One patient (P2) is carrying the previously undescribed p.

E663K mutation. A therapeutic trial in patient 1 (P1) using disulfiram with the

rationale to generate an attenuation of translation and thus a balanced,

restored ER glycoprotein synthesis failed. No improvement of the transferrin

glycosylation profile was seen.
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1 | INTRODUCTION

Congenital disorders of glycosylation (CDG) are an
expanding group of inherited multisystem disorders
affecting glycoprotein and glycolipid glycan synthesis
and attachment. Over 125 different subtypes have been
described so far, showing a diverse clinical spectrum.1,2

Among these, disorders of N-glycosylation represent
the most common subgroup.3

MAN1B1-CDG is a multisystem disorder caused by
mutations in MAN1B1, encoding the endoplasmic reticu-
lum mannosyl-oligosaccharide alpha-1,2-mannnosidase
(MAN1B1). A defect leads to impaired degradation of
misfolded glycoproteins.4,5 Terminally misfolded or
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unassembled proteins are degraded by a process termed
endoplasmic reticulum-associated protein degradation
(ERAD) (Figure 1: N-glycan processing and ERAD). It
serves as a part of the quality control in the early secre-
tory pathway to prevent the accumulation of misfolded
glycoproteins in the ER.6,7 ERAD consists of three func-
tional steps. MAN1B1 as a class α1,2-mannosidase is
involved in the first step, the recognition of a misfolded
glycoprotein and a following extensive demannosylation
by removing α1,2-linked mannoses preferentially from
branch B of the oligosaccharide to yield Man8GlcNAc2.

8,9

Attributable to higher enzyme concentration or pro-
longed digestion, further mannoses can be trimmed.5,10,11

The second step is the retrotranslocation of the glyco-
protein to the cytoplasm followed by an ubiquitin-
mediated degradation via the 26S-proteasome.12

To date, there is no therapeutic approach to treat
MAN1B1-CDG. Influencing ER glycoprotein synthesis
with the aim of “rationalizing” this process in the context
of hindered glycosylation, also termed translational
balancing, has been proposed as a possible approach to
treat glycosylation disorders. Regarding this concept it
was previously demonstrated that the acetaldehyde dehy-
drogenase inhibitor disulfiram, which was initially used
for the treatment of alcohol dependence, is able to inhibit
protein synthesis while promoting an extension of lipid
linked oligosaccharides (LLO).13 Therefore, a therapeutic
trial using disulfiram with the rationale to generate an
attenuation of translation and thus a balanced, restored
ER glycoprotein synthesis was conducted.

2 | MATERIAL AND METHODS

2.1 | Sample collection

Samples from both patients as well as healthy controls
were collected after written informed consent was
obtained and according to local bioethical regulations.

2.2 | Genetic analysis

DNA was isolated from EDTA blood with the
PAXGene Blood DNA System (PreAnalytiX GmbH,
Hombrechtikon, Switzerland) and DNA concentration
was measured with the Qubit 2.0 fluorometer (Thermo
Fisher Scientific, Waltham, Massachusetts). Whole-
exome sequencing was performed with Illumina
HiSeq2500/4000 as previously described.14 In silico
analysis of the p.E663K substitution was performed
with SIFT,15 PolyPhen-2,16 MutationTaster,17 and
HOPE.18

2.3 | Glycosylation studies

Isoelectric focusing (IEF) was performed on a Pharmacia
Phast system (Pharmacia Fine Chemicals, Uppsala, Swe-
den) according to a previously published protocol.19 SDS-
PAGE of serum transferrin following immunoprecipitation
was performed following the previously reported method.20

High-performance liquid chromatography (HPLC) of
carbohydrate-deficient transferrin was performed using the
commercially available “CDT in serum” kit (Chromsystems
Instrument and Chemicals GmbH, Gräfelfing, Germany)
according to the manufacture's protocol using capillary
blood samples collected with Microvette CB 300 LH, 100 μL
(SARSTEDT AG & Co. Nümbrecht, Germany), a system for
capillary blood collection as described previously.21

2.4 | Matrix-assisted laser desorption
time-of-flight mass spectrometry of
transferrin

Mass spectrometry (MS) of glycopeptides for glycoform
profiling was performed according to the method
described before with some modifications.22 Transferrin
was purified from serum by immunoaffinity with rabbit
polyclonal antibody against human transferrin. Purified
transferrin was dissolved in 0.5 mL of 6 M guanidium
hydrochloride, 0.25 M Tris-HCl, pH 8.5 and reduced with
5 mg of dithiothreitol at 60�C for 3 hours. Then, 9 mg of
iodoacetamide were added to the solution, followed by
incubation in the dark at room temperature for
30 minutes for carbamidomethylation. The reagents
were removed by a gel fitration column, NAP-5 (GE
Healthcare, Piscataway, New Jersey), equilibrated with
0.05 N HCl, and the recovered protein solution was
adjusted at pH 8.5 with Tris. The carbamidomethylated
transferrin was digested by a mixture of trypsin and
Acromobacter lysylendopeptidase (Wako, Osaka,
Japan) at 37�C for 12 hours. The procedure of glyco-
peptide enrichment was omitted. The digest was
desalted using a Millipore ZipTip C18 pipette tip and
analyzed with a matrix-assisted laser desorption time-
of-flight (MALDI TOF) mass spectrometer (Voyager
DE-Pro). The sample matrix was 20 mg/mL of
2,5-dihydroxybenzoic acid dissolved in 50% acetonitrile
in water. Measurements were performed in positive
ion and linear TOF mode.

2.5 | Electron microscopy

Dermal fibroblasts were collected from patient
1 (P1) using 4 mm punch biopsy and cultivated under
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standard conditions. Fibroblast pellets were fixed in 2,5%
glutaraldehyde with Sörensen phosphate buffer. Subse-
quently, the samples were fixed with 1% osmiumtetroxide,
dehydrated and embedded in Epon. Then, 60 nm ultrathin
sections were cut by Leica Ultracut R ultramicrotome
(Vienna, Austria) and counterstained with 8% uranyl ace-
tate in bidistilled water and incubated with lead citrate solu-
tion. Samples were inspected with a CM 10 transmission
electron microscope (Philips, Amsterdam, Netherlands).
The evaluation of the dilatation of the Golgi apparatus was

performed optically. Then, 72 Golgi complexes of P1 and
62 Golgi complexes of the control were analyzed.

2.6 | Disulfiram therapy

Patient 1 received disulfiram (L. Molteni & C. dei F.lli
Alitti Societa di Esercizio, Scandicci, Italy). Mannitol-
Siliciumdioxid NRF was used as filling agent with
10 mg/20 mg of disulfiram powder. The capsules were

FIGURE 1 N-glycan processing and endoplasmic reticulum-associated protein degradation (ERAD). Blue square: N-acetylglucosamine;

green circle: mannose; blue circle: glucose. Preassembled lipid linked oligosaccharide is transferred to the nascent polypeptide chain

entering the endoplasmatic reticulum, performed by oligosaccharyltransferase (OST).53,54 Two glucose residues of the triglucosylated glycan

are trimmed from branch A by ER alpha glucosidase 1 (G1) and subsequently ER alpha glucosidase 2 (G2). Lectin-type chaperone clanexin

(CNX) and its soluble paralogue calreticulin (CRT) recognize the Glc1Man9GlcNAc2 structure and support co- and posttranslational protein

folding.55 ERp57 (oxidoreductase) and peptidyl-prolyl isomerase cyclophilin B (PPI) are associated with CNX and CRT to promote proper

folding by formating intramolecular and intermolecular disulphide bonds. Removal of the innermost glucose residue by G2 leads to a

dissociation form the CNX/CRT chaperon system.56 Proteins which have folded and oligomerized properly are directed to the cis Golgi with

the potential assistance of the mannose-binding lectin ERGIC53, VIP36 and other homologous proteins.57 If proteins fail to aquire their

correct conformation, folding sensor UGT1 recognizes the structure of the polypeptide with exposed non-native determinants. If these are

deteced, one glucose residue is added to the N-glycane at branche A leading to a retruning entrance into the CNX/CRT cycle to achieve

proper folding.58 Prolonged residence of misfolded glycoproteins within the CNX/CRT cycle promotes trimming of alpha 1,2-linked

mannose residues by MAN1B1 and EDEMS indicating failure of the glycoprotein to achieve native structure within a time frame.5,9 N-

glycans with trimmed, lower mannoses, which expose an alpha 1,6 linked mannose on branche C are recognized by OS9 (mammal)/ Yos9p

(yeast) and XTP3-B.59,60 These two ER resident ERAD lectins interact with the membrane-embedded ubiquitin ligase HRD1 (HMG-CoA

reductase degradation protein 1) leading to a delivery of terminal misfolded proteins to dislocatin sites in the ER membrane.61,62 This is

folled by transport into the cytosol with polyubiquitination and proteasomal degradation.63
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manufactured by Bookholter Apotheke OHG (Nordhorn,
Germany).

The FDA-recommended dose range for disulfiram
with regard to adults is 125 mg/d to a maximum of
500 mg/d (average daily dose of 250 mg).23

The target dose was weight-adapted to the adult dose
(weight of P1: 35 kg, defined maximum dose: 150 mg/d).

Disulfiram was administered orally in increasing
doses from 10 to 150 mg once a day with an increment
approximately every 4 weeks. We increased the dosage in
the setting of an extended up-titration in a series of seven
steps, initially by 10 mg in order to quickly detect possi-

ble side effects. Monitoring was conducted in the context
of clinical presentations. Adverse events including
fatigue, headache, hepatic damage, allergic dermatitis,
peripheral neuropathy, and mental status changes are
rarely reported.23 A meta-analysis of 22 studies regarding
to safety and tolerance of disulfiram shows no difference
between disulfiram and control groups reporting serious
adverse events requiring hospitalization or lead to
death.24

With good clinical tolerability we raised in the further
progression by 30 mg and at last 50 mg. Glycosylation
was assessed eight times using HPLC.

FIGURE 2 Clinical presentation of

mannosyl-oligosaccharide alpha-

1,2-mannnosidase (MAN1B1)-congenital

disorders of glycosylation (CDG). A,

Picture of patient 1 (P1). B, Picture of

patient 2 (P2). C, Echocardiography of

P1 in the parasternal longitudinal axis

shows a slight extension of the aortic

bulbous (28 mm; 28 mm/m2 body

surface area; reference value 15-20 mm/

m2 body surface area). D, Neurological

findings of subject P 2: A magnetic

resonance image (MRI) in T2. The image

revealed multiple subependymal

heterotopia of the gray matter,

exemplarily marked with yellow stars

(A)

(B)

FIGURE 3 Protein mannosyl-

oligosaccharide alpha-1,2-mannnosidase

(MAN1B1) and known mutations. A,

Close-up of the mutation p.E663K. The

protein is colored gray, the side chains

of both the wild type and the mutant

residue are shown and colored green

and red, respectively (https://www3.

cmbi.umcn.nl/hope/report/

5e787bb79cd87612add919e0/). The

affected residue is involved in Ca2+

binding via hydrogen bonds.8 B, Protein

MAN1B1 and known mutations.

MAN1B1 encoding the mannosyl

oligosaccharide α1,2-mannosidase is

localized on chromosome 9q34.3 and

consists of 13 coding exones.5 The

encoded protein consists of an N-

terminal cytoplasmic tail (85 amino

acids), a transmembrane helix

(17 amino acids), a luminal stem

domain (137 amino acids) and a luminal

catalytic domain (341 amino acids)5,9
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3 | RESULTS

3.1 | Case report

Patient 1 (P1) is a 10-year-old son of non-consanguineous
parents of German origin, diagnosed at the age of 8 years.
Muscular hypotonia was present directly after birth, lead-
ing to delayed motor development (sitting at 13 months,
unassisted walking at 2 years and 11 months). Delayed
speech development in combination with progressive
dysarthria was noted. Furthermore, the patient was diag-
nosed with annuloaortic ectasia, which has been reported

in few other cases25 (Figure 2: clinical presentation of
MAN1B1-CDG).

Typical dysmorphic features of the disorder like down-
slanting palpebral fissures and low-set eats were present,
albeit less pronounced than in other described cases. In addi-
tion, a right-hand simian crease and plano-valgus feet were
noted. Brain MRI showed no structural abnormalities while
EEG revealed nonspecific mild global changes without any
signs of convulsive activity. GOT was mildly elevated ranging
from 88 to 147 mg/dL (reference: 10-50 mg/dL).

Patient 2 (P2) is the 5-year-old son of an unrelated
couple of German origin, diagnosed at the age of

(A)

(B)

FIGURE 4 Glycosylation

assays. A, Isoelectric focusing (IEF)

showed a type 2 pattern with an

increased trisialo-transferrin. A

PMM2-congenital disorders of

glycosylation (CDG) patient showed

an increased disialo-transferrin and

asialo-transferrin fraction. B, Matrix-

assisted laser desorption time-of-flight

mass spectrometry (MALDI TOF MS)

of P1 and P2. A Hybrid-type glycan is

found only at Asn432 site of

transferrin in mannosyl-

oligosaccharide alpha-

1,2-mannnosidase (MAN1B1). This

major species with m/z 3351 is not

found in the control. It is

corresponding to the glycan type

Sia1Gal1Man5GlcNAc3. Blue square:

n-acetylglucosamine; green circle:

mannose; blue circle: glucose; yellow

circle: galactose; red rhombus: sialic

acid; gray triangle: fucose
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5 years. As in patient 1, muscular hypotonia was pre-
sent directly after birth. Delayed motor and speech
development were noted (unassisted walking at 3 years

and 6 months, one-word sentences at 2 years and
6 months). He presented with characteristic facial dys-
morphism: hypertelorism, sparse eyebrows, down-

(A)

(C)

(B)

FIGURE 5 Electron microscopy.

A,B, Electron microscopy of fibroblasts

of the control (picture A) and patient

1 (picture B). Yellow stars show regular

Golgi morphology with flattened stacked

membranes. Red stars represent an

altered Golgi morphology with dilated

cisterns and a widened Golgi

appearance. C, optical analysis of

electron microscopy

FIGURE 6 Disulfiram

administration. Disulfiram was

administered orally in increasing doses

from 10 to 150 mg/d once a day with an

increment approximately every 4 weeks.

Glycosylation was assessed using high-

performance liquid

chromatography (HPLC)
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slanting palpebral fissures, an epicanthus and large
lower set ears. In addition, clinodactyly of the fifth fin-
ger on both sides was noted. At the age of 1 year, a
stroke-like episode with left-sided hemiparesis
occurred. Brain-MRI showed no signs of ischemia or
intracranial hemorrhage, while subependymal gray
matter heterotopia and prominent Virchow-Robin
spaces were present (Figure 2: clinical presentation of
MAN1B1-CDG). Heterotopia was described in one
additional case of MAN1B1-CDG.23,26 EEG showed no
seizure activity or post-convulsive changes during the
episode. Control EEG showed increased susceptibility
to seizures with sharp-waves and slow waves with a
theta activity of 6 to 7 Hz. As in P1, slight elevation of
GOT was present (74-94 mg/dL).

3.2 | Genetic analysis

Whole-exome sequencing identified compound hetero-
zygous mutations within MAN1B1 in each case.
Patient 1 was found to be compound heterozygous in
trans for the previously described MAN1B1 variants
c.1189G > A (p.E397K) and c.2065G > A (p.E689K)
with the former leading to no measurable enzyme
activity in a homozygous state explainable by a
reduced expression or stability of this protein variant
while the latter affects the active site of the pro-
tein.27,28 In patient 2, the previously described variant
c.1789C > T (p.R597W)28 was identified in trans with
the undescribed variant c.1987G > A (p.E663K). This
variant lies in a highly conserved region and is
predicted to be pathogenetic by all used prediction
algorithms.18 The affected residue is involved in Ca2+

binding via hydrogen bonds8 (Figure 3: protein
MAN1B1 and known mutations).

3.3 | Glycosylation assays

To investigate the glycosylation profile of the patients,
analysis of serum transferrin by HPLC, IEF and sodium
dodecyl sulfate polyacrylamide gel electrophoresis (SDS-
PAGE) were performed. Glycan structure was analyzed
using MALDI TOF MS.

Both subjects show a type 2 serum transferrin IEF
pattern with an increase of trisialo-transferrin (Figure 4:
glycosylation assays).

HPLC revealed an increased trisialo-transferrin (P1:
45,5%; P2:42,3%; reference <6,5%), instead tetrasialo-
transferrin (P1: 51,9%; P2: 54,8%; reference >85%) and
pentasialo-transferrin (P1: 2,5%, P2: 2,7%; reference
>15%) were decreased (supplement: HPLC).T
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Immunoprecipitation and SDS-PAGE of serum transfer-
rin showed no observable difference when compared to
wild-type controls (supplement: Immunoprecipitation and
SDS-PAGE).

MALDI TOF MS of serum transferrin detected a hybrid-
type glycan structure only at Asn432 site of transferrin in
MAN1B1, as shown before22 (Figure 4: glycosylation assays).

3.4 | Electron microscopy

We performed electron microscopy of the fibroblasts of
patient 1 (P1) to evaluate the Golgi apparatus optically.
The fibroblasts of the patient reveal a more heteroge-
neous pattern of Golgi cisterns compared to the control.
The individual membrane-bound cisterns appear in half
of the examined Golgi complex clumsy and dilated
(Figure 5: electron microscopy).

Some dilated dictyosomes also occur in the control,
but less frequently than in the patient.

3.5 | Disulfiram therapy

Within our therapy trial, no normalization of the trans-
ferrin glycosylation profile was detected at any of the
administered dosages. The corresponding HPLCs of P1
remained constant with minor variations (Figure 6: disul-
firam administration).

4 | DISCUSSION

MAN1B1-CDG is a growing subgroup within the family
of CDG. We report on two new patients, who presented
with a general developmental delay and characteristic
facial dysmorphism. Whole-exome sequencing revealed
the previously undescribed variant c.1987G > A; [p.
E663K] in addition to known mutations. Both patients
were compound heterozygous.

Since the first description of MAN1B1-CDG by Rafiq
et al, an increasing number of cohorts have been
reported.27 The clinical presentation of MAN1B1-CDG is
mainly characterized by a typical face, mostly moderate
intellectual disability, behavioral disturbances and
obesity.25-33

Neurological manifestations are frequent with an
abnormal MRI-brain image, seizures and ataxia reported
in several cases. Stroke like episodes, which occurred in
one of our patients, have not been documented in
MAN1B1-CDG, but in other CDG diseases, for example,
PMM2-CDG. Recently, evidence has been presented that
stroke like episodes in PMM2 CDG may occur due to
hypoglycosylation of calcium channels.34 Also, ataxia
might be explained by a hypoglycosylation driven
channelopathy.34

Table 1 summarizes additional features sorted by
genotype.

Comparing the already known mutations sites
(Figure 3: protein MAN1B1 and known mutations),

FIGURE 7 PKR-like ER kinase

(PERK) in the frame of unfolded protein

response (UPR). Due to ER Stress,

translational initiation is attenuated by

phosphorylation of the eukaryotic

initiation factor 2α (eIF2α).64,65 The
phosphorylation of eIF2α is mediated by

PERK (PKR-like endoplasmic reticulum

kinase), which phosphorylates eIF2α at

Ser 51 leading to a reduction of the

polypeptide synthesis (70-90%) and

dimishing the load of ER client proteins.

Under basal conditions, without stress,

heat shock protein 90 and BiP bind to

the cytoplasmic and ER luminal

domains of PERK, leading to a

stabilization and preventing its

activiation. Under stress conditions BiP

binds to unfolded and misfolded

proteins, thus activating PERK by

permitting the release of PERK for

homodimeriziation and

autophosphorylation. 48

KEMME ET AL. 51



which are distributed evenly over the entire gene, there is
no indication of mutation hotspots or a direct genotype-
phenotype correlation in the available data.

In general, previously described missense mutations
reduce enzyme activity due to a decreased protein concen-
tration. This leads to a delayed trimming from Man9-
GlcNAc2 to Man8GlcNAc2, with a minimal reported
trimming efficiency of 36% of normal values.25,27

The intracellular localization of MAN1B1 has been sub-
ject to debate. It was initially predicted to act as an ER-
resident protein while other studies indicate a localization of
MAN1B1 within the Golgi apparatus of mammalian cells.9

The proposed model describes MAN1B1 as a checkpoint
within the Golgi to recycle misfolded proteins that escaped
ERAD.35,36 In contrast, an alternative model suggests that
MAN1B1 is located in specialized quality control vesicles
(QVC) within the ER-derived quality control compartment
(ERQC). In ERQC is a higher concentration of MAN1B1
present, which is required for trimming to Man5-6GlcNAc2
in vivo, leading to ERAD.37-39

The use of immunofluorescence methods leads to an
artificial appearance of MAN1B1 in a Golgi pattern cau-
sed by membrane disturbance.

The described QVCs show a vesicular pattern and
are highly mobile depending on microtubules and COP-
II, demonstrated by inhibitors of these, which signifi-
cantly affect the mobility of QCVs.38 During ER stress,
QCV assemble in a juxtanuclear region at the ERQC.37

It provides a high local enzyme concentration and accu-
mulates ERAD substrates, which underlines the role of
MAN1B1 in targeting misfolded substrates to ERAD.40

In the performed electron microscopy of P1's cells,
the Golgi apparatus cisterns appear dilated and coarse.
Golgi membranes are compressed, the single dictyosomes
occur often only twice connected in series. A pre-Golgi
located defect at the ERQC might cause alterations of
Golgi morphology, since a mutation of MAN1B1 results
in an inadequate elimination of misfolded proteins. This
toxic misfolded protein can lead to malfunctions in the
following compartments and a disorder of cell homeosta-
sis including an alteration of morphology.

4.1 | Treatment of MAN1B1-CDG

Despite recent advances, the vast majority of CDG lacks
specific therapeutic approaches. In some, monosaccha-
ride or cofactor supplementation have been shown to
exert favorable effects on both glycosylation and clinical
presentation.20,41-47

To date, there is no therapeutic approach to treat
MAN1B1-CDG. Due to MAN1B1's mannose cleavage
function, it is not possible to support enzyme function by

creating an excess of substrate or removal of the resulting
product to positively influence kinetics, as it is done in
other CDG. The substitution of the co-factor Ca2+ does
not appear to be feasible due to the strict regulation of
Ca2+ metabolism.

Aside from substrate or cofactor substitution, influenc-
ing the ER glycoprotein synthesis with the aim of “rational-
izing” this process in the context of hindered glycosylation
has been proposed as a possible approach to treat glycosyla-
tion disorders.13 This concept, also dubbed translational
balancing, aims to ameliorate ER glycoprotein synthesis by
the activation of unfolded protein response (UPR) initiated
by the PKR-like ER kinase (PERK).48 Impaired N-
glycosylation causes an accumulation of LLO intermediates.
Translational attenuation by PERK balances ER glycopro-
tein synthesis with LLO flux.13 It was previously demon-
strated that the acetaldehyde dehydrogenase inhibitor
disulfiram is able to stimulate PERK leading to an inhibition
of protein synthesis while promoting LLO extension13

(Figure 7: PERK in the frame of UPR).
In our trial of oral disulfiram (DSF) therapy, no effect

on transferrin glycosylation could be observed. The com-
plex pharmacokinetic can be considered as a possible
explanation.23,49,50 Disulfiram (C10H20N2S4) is rapidly
metabolized and extremely unstable in gastric fluid and
blood. After absorption, DSF is quickly reduced to its
monomer diethyldithiocarbamic acid (DDC), followed by
further conversion. The reduction to its metabolite DDC
takes 4 minutes in blood in vitro.51 The drug has a strong
affinity to bind albumin (96.1%) and a high lipid solubil-
ity. The plasma concentration after oral administration
of a therapeutic dosage for adults (500 mg) is below the
limit of detection. In vivo, the main peak plasma concen-
tration reaches an nM concentration after 9.2 hours
(DSF), respectively.52

Disulfiram may only reach insufficient concentration
in cells when administered orally or the generated metab-
olites are not able to influence glycoprotein synthesis pos-
itively. Regardless, it is conceivable that disulfiram is in
general not sufficient to generate a proper glycosylation
in MAN1B1-CDG.

4.2 | Outlook

With 46 patients, MAN1B1-CDG belongs to the more fre-
quent N-glycosylation disorders, which forms an extra
stimulus to search for a therapy.
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SUPPORTING INFORMATION
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in the Supporting Information section at the end of this
article.
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