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Abstract: Parkinson’s disease is associated with degeneration of neuromelanin (NM)-containing
substantia nigra dopamine (DA) neurons and subsequent decreases in striatal DA transmission.
Dopamine spontaneously forms a melanin through a process called melanogenesis. The present
study examines conditions that promote/prevent DA melanogenesis. The kinetics, intermediates, and
products of DA conversion to melanin in vitro, and DA melanogenesis under varying levels of Fe3+,
pro-oxidants, and antioxidants were examined. The rate of melanogenesis for DA was substantially
greater than related catecholamines norepinephrine and epinephrine and their precursor amino
acids tyrosine and l-Dopa as measured by UV-IR spectrophotometry. Dopamine melanogenesis
was concentration dependent on the pro-oxidant species and Fe3+. Melanogenesis was enhanced by
the pro-oxidant hydrogen peroxide (EC50 = 500 µM) and decreased by the antioxidants ascorbate
(IC50 = 10 µM) and glutathione (GSH; IC50 = 5 µM). Spectrophotometric results were corroborated
by tuning a fast-scan cyclic voltammetry system to monitor DA melanogenesis. Evoked DA release
in striatal brain slices resulted in NM formation that was prevented by GSH. These findings suggest
that DA melanogenesis occurs spontaneously under physiologically-relevant conditions of oxidative
stress and that NM may act as a marker of past exposure to oxidative stress.
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1. Introduction

Melanin is a broad term for a group of natural pigments formed by the oxidation of amino acids or
catecholamines followed by polymerization into an insoluble pigment. Melanocytes (cells expressing
melanin pigments) are found in the skin [1], the eye (in both the iris pigment epithelium and in the retinal
pigment epithelium) [2], the inner ear [3,4], in the olfactory mucosa [5], and in dopamine (DA) cells in
the substantia nigra [6]. Genetic disorders of melanogenesis (including albinism) can be characterized
by a lack of functional tyrosinase, the enzyme that produces melanin. This results in lower levels of
melanin in the skin, eye, ear, and nose epithelium, but not in the brain, indicating that neuromelanin
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(NM) in the brain forms through an alternative mechanism. Besides melanin’s photoprotective
properties, it is known to act either as a pro-oxidant or an antioxidant depending upon its degree
of polymerization [7].

Neuromelanin is a brown to black melanin found in specific populations of catecholaminergic
neurons in the brain, including noradrenergic neurons in the locus coeruleus (LC) and dopaminergic
(DAergic) neurons in the substantia nigra pars compacta (SNc) in the midbrain of humans and some
non-human primates [6,8]. This is what gives the SNc its distinctive dark color. Parkinson’s disease
(PD), the second most common neurodegenerative disease, is characterized by motor deficits such as
muscle rigidity, muscle tremors, slow planned movements, and postural instability [9]. The primary
cause of these motor deficits is due to the loss of DA neurons in the nigrostriatal pathway, which consists
of DA neurons of the SNc projecting to target regions of the striatum [10]. Due to the correlation
between the death of the pigmented DA cells in the SNc and PD symptoms, it was originally thought
that NM was toxic and resulted in the death of DA cells in PD. However, the relationship of NM in SNc
DA neurons to PD pathogenesis is much more complicated: DA neurons containing less NM are more
likely to die in models of PD [11,12] and NM can bind to and render toxic iron ions redox inactive [13].
Given the emerging evidence that oxidative stress plays a large role in PD pathogenesis [14–16],
NM may in fact have a protective role. However, this means that NM holds a repository of redox
inactive iron and potentially other heavy metals; if spilled into the extracellular space (for example,
due to apoptosis), NM can degrade resulting in a sudden release of toxic metals and inflammatory
response [17]. Thus, while NM may have a neuroprotective role [18], it can also lead to a cascade of
DA cell death once one cell dies and releases its NM reservoirs [17].

In the skin, melanin is formed enzymatically by tyrosinase [6], but mutations in tyrosinase that
prevent melanin formation in the skin do not appear to affect the formation of NM. Importantly,
NM deposits in the SNc are not ubiquitous across age groups in humans [19], and generally are only
present after infancy and childhood. Since melanogenesis of NM does not appear to be linked to
enzymes already associated with melanogenesis, the formation of NM may occur via non-enzymatic
processes such as aggregation through coordination chemistry or radical polymerization [20]. In this
study, the spontaneous melanogenesis of DA was investigated to determine the potential role of direct
and indirect Fe3+ interactions with DA and radical polymerization. We hypothesized that spontaneous
melanogenesis of DA would be dependent on the presence of Fe3+, either through DA aggregation
through the catechol’s coordination chemistry with Fe3+ or through radical intermediates generated via
the Fenton reaction, and that the anti-oxidants ascorbate and glutathione would block melanogenesis.

2. Materials and Methods

2.1. Reagents and General Procedures

To prevent premature melanogenesis, DA solutions were prepared immediately before each
experiment. Solutions used were physiologically-relevant and included intracellular fluid (ICF)
consisting of: 125.0 mM KCl, 10.0 mM HEPES, 2.0 mM MgCl2, and 0.5 mM CaCl2 and extracellular
fluid (ECF) consisting of: 124.0 mM NaCl, 2.0 mM KCl, 1.25 mM NaH2PO4, 24.0 mM Na2HCO3,
12.0 mM Glucose, 1.2 mM MgSO4, and 2.0 mM CaCl2). Both ICF and ECF were bubbled with
95% O2/5% CO2 to help maintain pH 7.3–7.4. In some experiments, Ca2+ was either not added or
added at different concentrations, as discussed in the Results section. The concentration of DA was
30 µM in all experiments, except when otherwise specified. Although ECF and ICF were used as
buffers to mirror extracellular and intracellular conditions, the focus of this study was to monitor the
chemical reaction of DA conversion to melanin within physiologic parameters, thus the role of metal
ions in DA melanogenesis was evaluated at concentrations across their known cellular ranges.

All reagents were purchased from the suppliers and were used at the concentrations indicated
in the Results: 3-hydroxytyramine (DA; Sigma-Aldrich, St. Louis, MO, USA), sodium ascorbate
(Spectrum Chemical, New Brunswick, NJ, USA); glutathione (GSH; Sigma-Aldrich, St. Louis, MO, USA);
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hydrogen peroxide (Fisher Scientific, Pittsburgh, PA, USA); desferrioxamine (Sigma-Aldrich, St. Louis,
MO, USA); transferrin (Lee Biosolutions, Maryland Heights, MO, USA).

2.2. Preparation of Dopamine Solutions

To ensure that there was no iron contamination in the solutions, molecular biology grade water was
treated with 10 µM CO3

2− and 10 µM transferrin. Carbonate facilitates iron loading onto transferrin,
which is a protein that binds Fe3+ higher than 1020 M−1 and has a molecular weight of 80 kDa [21,22].
After a 15 min incubation, the solutions were loaded into Amicon Ultra-4 Centrifugal Filter Units with
Ultracel-10 membrane, with a molecular cut-off at 10 kDa (EMD Millipore) and spun in a centrifuge
at 4000 rpm for 15 min. The transferrin was retained in the upper chamber of the filter and the
filtrate (purified water) was recovered from the flow-through of the filter and used for experiments.
Transferrin-treated water was used in all solutions except for determining the role of the initial
concentration of DA and the effect of Fe3+ and desferroxamine (DES) on the rate of melanogenesis.

2.3. UV-Vis Spectrophotometry and the 480 nm Assay

Samples were placed into standard 10 mm light path quartz cuvettes (US Solid, Oakland, CA, USA)
and the full spectrum was scanned (200–900 nm) in a Thermo Scientific Biomate 3S UV-Visible
Spectrophotometer (Waltham, MA, USA). For experiments that were required to be iron-free,
two-sided plastic disposable cuvettes (VWR) were used in place of quartz. An initial scan of the sample
was taken immediately after sample preparation and collections continued every 10 min for two hours
(inclusive, 13 collections total). These experiments, and those of others [23,24], have demonstrated
that the process of melanogenesis of catecholamines can be closely monitored in its early stages by the
formation of an absorbance peak at 480 nm.

2.4. Animal Subjects

Male C57BL/6 mice (PND 60-90) were bred and cared for in accordance with the National Institutes
of Health Guide for the Care and Use of Laboratory Animals. At weaning (PND 21), animals were
housed on a reverse light/dark cycle (lights on from 8 p.m. to 8 a.m.) in groups of 2–5/cage and given
ad libitum access to food and water. Experimental protocols were approved by the Brigham Young
University Institutional Animal Care and Use Committee (IACUC # 18-1202, approved 10/29/2020).

2.5. Brain Slice Preparation

Mice were anesthetized with isoflurane (5%), decapitated, and brains were rapidly dissected and
sectioned into 400 µm slices into artificial cerebrospinal fluid (ACSF) consisting of (in mM): 124 NaCl,
2 KCl, 1.25 NaH2PO4, 24 NaHCO3, 12 Glucose, 1.2 MgSO4, 2 CaCl2, pH 7.3, which was bubbled with
95% O2/5% CO2 and maintained at 34–36 ◦C. Slices were then transferred to a recording chamber with
continuous ACSF flow (2.0 mL/min) maintained at 34–36 ◦C. The NAc was visualized at the level
of the anterior commissure under low magnification with Nikon Diaphot inverted microscopes in
the transmitted light mode and Olympus X51 microscopes with transmitted infrared Dodt gradient
contrast imaging.

2.6. Carbon Fiber Electrodes, Calibration, and Fast Scan Cyclic Voltammetry

For fast scan cyclic voltammetry (FSCV) recordings, carbon fiber electrodes were prepared as
previously described [25]. Briefly, a 7.0 µm diameter carbon fiber was inserted into borosilicate glass
capillary tubing (1.2 mm outer diameter; A-M Systems, Sequim, WA, USA) under negative pressure
and subsequently pulled on a vertical pipette puller (Narishige, East Meadow, NY, USA). The carbon
fiber electrode (CFE) was then cut under microscopic control with 150 µm of bare fiber protruding from
the end of the glass micropipette. The CFE was back-filled with 3 M KCl. The CFE’s were regularly
calibrated with known concentrations of DA. With the CFE positioned in the solution in a closed
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system of extracellular fluid (ECF) bubbled with 95% O2/5% CO2, a known concentration of DA was
superfused at a high flow rate (5 mL/min) past the electrode and the maximum nA signal produced by
DA was observed. These DA calibrations were averaged to convert a nA signal of DA oxidation to µM
concentration of DA.

To observe melanogenesis of DA utilizing FSCV, 3.0 mL of ECF was placed in a chamber
(Warner Instruments, Hamden, CT, USA) that was modified to prevent leakage (i.e., static flow system)
and bubbled with 95% O2/5% CO2 gas to maintain pH at 7.2–7.4. Both a reference electrode and
the CFE were positioned well below the surface of the fluid, but off the bottom of the chamber for
in vitro recordings of DA melanogenesis and 100–200 µm below the surface of the tissue slice for
ex vivo recordings. The electrode potential was linearly scanned as a triangular waveform from
−0.4 to 1.2 V vs. Ag/AgCl using a scan rate of 400 V/s and a 1 Hz collection frequency for 1.5–2 h.
Cyclic voltammograms were recorded at the CFE every 1 s by means of a ChemClamp voltage clamp
amplifier (Dagan Corporation, Minneapolis, MN, USA). Voltammetric recordings were performed
and analyzed using LabVIEW (National Instruments, Austin, TX, USA)-based customized software
(Demon Voltammetry [26]). The recording was initiated without DA being present in solution (to allow
for an appropriate baseline recording—FSCV is a background-subtracted technique). Dopamine was
added to the bath chamber from a stock solution (10 mM in 0.1 N perchloric acid) after 5.0 min of
baseline recording at a volume to produce 30 µM in 3.0 mL of ECF for in vitro recordings and the tissue
was stimulated first with local electrical stimulation to assure a DA signal and then by depolarization
with 100 mM KCl.

2.7. NMR Studies

For NMR experiments, 30 µM DA was pipetted into standard Norrell NMR tubes
(Landisville, NJ, USA). The samples were analyzed using a Varian NMR-System 500 MHz
(Agilent Technologies, Santa Clara, CA, USA). Solutions were prepared in D2O (Cambridge Isotope
Laboratories, Andover, MA, USA) to minimize solvent noise.

2.8. Statistical Analyses

The results were compiled from spectrophotometers and the rate of melanogenesis was calculated
from the slope of the absorbance versus time. For FCSV experiments, peak DA oxidation currents
measured via FSCV were isolated and compiled. The means were then grand-averaged across trials.
Values were expressed as means ±SEM for cumulated data. Between-subject group comparisons were
analyzed via one-way ANOVAs. The criterion of significance was set at p < 0.05 (*), p < 0.01 (**),
p < 0.001 (***), and p < 0.0001 (#). All statistics were calculated with IBM SPSS Statistics 21
(Armonk, New York, NY, USA).

3. Results

3.1. Role of Initial Substrate in Rate of Melanin Formation

Dopamine in aqueous solution converts to melanin spontaneously over time and can be tracked by
measuring the change in absorbance at 480 nm (Figure 1A,B). To determine if the formation of melanin
was dependent on the initial concentration of DA, the rate of melanogenesis was examined at 0.3, 3.0,
and 30 µM DA (Figure 1C). These concentrations are significantly lower than vesicle concentrations
of 190–300 mM [27,28], but are comparable to intracellular and synaptic concentrations. The results
demonstrated that the rate of melanin formation was directly proportional to the initial concentration
of DA in solution, with higher concentrations of DA resulting in faster rates of melanin formation.
This relationship had a strong linear correlation (R2 = 0.987). As the 30 µM concentration gave a faster
and obvious change that could be easily monitored in a reasonable timeframe, this concentration
was utilized in further experimentation. The rate of melanogenesis (rate of growth of the 480 nm
absorbance peak) produced by DA to that of melanins produced by tyrosine, l-DOPA, epinephrine,
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and norepinephrine was compared at equimolar concentrations (30 µM). Dopamine showed the fastest
rate of melanogenesis when compared with the related compounds (Figure 1D; one-way ANOVA:
F(4,19) = 30.734, p < 0.0001). Tukey post-hoc analysis did not demonstrate any significance between any
groups aside from DA (p > 0.05).

To verify that the 480 nm peak measured with spectrophotometry was melanin or a melanin
precursor (such as 5, 6-dihydroxyindole or dopaminochrome), we performed proton nuclear magnetic
resonance (H-NMR) experiments of the DA solution in ECF buffer (to minimize solvent noise, D2O was
used instead of H2O). Using H-NMR with Fe3+ (10 µM) present to maximize melanogenesis, a kinetic
study was performed. A comparison of the NMR peaks showed that the predominant species in
solution at both time zero and 2 h was DA (melanin is inherently insoluble and precipitates out of
solution upon formation) (Supplemental Figure S1). This indicated that the colorimetric change tracked
with the 480 nm assay was either melanin or an immediate precursor to melanin.

Melanin formation

Figure 1. Spectrophotometric characterization of DA melanogenesis, sensitivity to initial substrate
concentration, and comparison with DA precursors and metabolites. (A) Waterfall plot of full spectrum
(190–900 nm) absorbance demonstrating the progressive melanogenesis of DA at 30 µM. The 480 nm
peak indicated with an * represents DA melanogenesis. (B) This graph summarizes the kinetics of the
480 nm peak (n = 8) over two hours representing an increase in the DA melanogenesis. (C) The rate
of growth (∆ Abs/min) of DA melanogenesis (given by the growth of an absorbance peak at 480 nm
over a two-hour collection interval as determined by linear regression) was dependent on initial DA
concentration. (D) This graph compares the rate of growth of DA melanogenesis to that produced
by its amino acid precursors and metabolic derivatives (all at 30 µM concentration): tyrosine (Tyr);
l-dopa; norepinepherine (NE); and epinephrine (EPI). While all species tested show melanogenesis,
DA polymerizes to melanin at a significantly faster rate. Values in parentheses represent n values.
Hashtag # indicates significance level p < 0.0001. Data is presented as mean ±SEM.

3.2. Role of Fe3+ in Rate of Dopamine Melanogenesis

It has been proposed previously that NM may act as an iron chelation agent in DA neurons
and NM contains two iron chelation sites [29,30]. Thus, evaluation was performed of the rate of DA
melanogenesis in the presence of FeCl3 at five concentrations (1.0, 10.0, 0.1, 1.0, and 10.0 µM; Figure 2)
mixed with the reaction mixture (transferrin-treated ddH2O + 30 µM DA). Iron significantly increased
the rate of DA melanogenesis in a concentration-dependent manner (Figure 2A,B), whereas 100
and 500 µM DES, an iron-specific chelating agent, decreased the rate of melanogenesis (Figure 2C;
F(5,20) = 90.812, p < 0.0001). All conditions compared against the DA control by one-way ANOVA
showed significance between DA vs. iron (1.0 µM) as well as DA vs. DES (100 µM; Figure 2D;
F2,12 = 27.12, p < 0.0001).
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Figure 2. Effects of Fe3+ levels on DA melanogenesis. (A) Fe3+ increased the DA melanogenesis in a
concentration-dependent manner in transferrin-treated, iron-free water, as untreated ECF has a trace
of Fe3+. (B) Dose-response curve for growth rates of DA melanogenesis based on Fe3+ concentration.
The curve is roughly sigmoidal with a precipitous rise between 0.01 and 0.1 µM and with an EC50 of
~0.03 µM Fe3+. (C) Comparison of DA melanogenesis rates of 1.0 µM Fe3+ and 30 µM DA (Control) vs.
100 µM and 500 µM DES (iron chelator) vs. no polyvalent cations. (D) Fe3+ significantly increased the
rate of melanogenesis while DES decreased it. Values in parentheses represent n values. Asterisks ***
indicate significance level p < 0.001. Data is presented as mean ±SEM.

3.3. Role of Ca2+ in Rate of Dopamine Melanogenesis

Like Fe3+, Ca2+ is known to form coordinate bonds with the hydroxyl groups of catechols [31]
and is present in chemically-relevant amounts in the striatum. Thus, six concentrations of Ca2+ were
tested (0.1, 1.0, 10.0, 100, 1.0, and 10.0 mM) in transferrin-treated solutions to determine Ca2+ induction
of melanogenesis. Calcium did not significantly induce melanogenesis, and was significantly reduced
compared to the Fe3+ exposed controls (Supplementary Figure S2; F(6,19) = 25.63, p < 0.0001).

3.4. Effects of Pro-Oxidants and Antioxidants in Rate of Dopamine Melanogenesis

To confirm that oxidative agents can drive the conversion of DA to melanin, we added H2O2

(500 µM) into the reaction mixture. This concentration of H2O2 increased the rate of melanogenesis
by 54.6% (Figure 3A,B; F(1,10) = 27.422, p = 0.0004). To provide a correlate for the experiment
with the pro-oxidant H2O2, the effects of the antioxidants ascorbate (ASC) and glutathione (GSH)
on the rate of DA melanogenesis were tested. Ascorbate suppressed the formation of melanin at
10 µM or higher concentrations (Figure 4A,B; F(3,16) = 36.009, p < 0.0001), with clear concentration
dependent effects and an approximate IC50 of 10 µM. Individual dose comparisons demonstrated
that 10 µM ASC, 100 µM ASC, and 500 µM ASC were each significant when compared against the
non-antioxidant control (Dunnett’s multiple comparison; respectively, q = 7.406, p < 0.001; q = 7.886,
p < 0.001; q = 7.921, p < 0.001). Glutathione had a similar, but more efficient, suppressing action on DA
melanogenesis at concentrations (Figure 4C,D; One way ANOVA; F(2,13) = 37.89, p < 0.0001) as low as 5
and 10 µM (Dunnett’s multiple comparison; 5 µM: q = 7.116, p < 0.001); 10 µM: q = 7.099, p < 0.001),
and ineffective at lower concentrations (1–3 µM) from a separate set of experiments (Supplementary
Figure S3; F4,19 = 12.69, p < 0.0001). Neuromelanin is found inside DA neurons. Since the previous
experiments were run in ECF buffer, we validated the effects of 10 µM Fe3+ and 5 µM GSH by replicating
them using an ICF buffer. Melanogenesis was observed in ICF buffer (F(2,9) = 228.715, p < 0.0001),
thus melanogenesis happens under ICF and ECF conditions.
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Figure 3. The pro-oxidant H2O2 promotes melanogenesis of DA. (A) Hydrogen peroxide (500 µM)
increased DA melanogenesis compared to 30 µM DA alone. (B) Hydrogen peroxide significantly
increased the rate of DA melanogenesis. Values in parentheses represent n values. Asterisks *** indicate
significance level p < 0.001. Data is presented as mean ±SEM.

Figure 4. Effects of anti-oxidants on melanogenesis of DA. (A) Concentration response demonstrating
that increased ascorbic acid (ASC) concentrations reduce and block DA melanogenesis. (B) Ascorbate
significantly reduced the rate of DA melanogenesis. (C) Glutathione markedly reduced DA
melanogenesis. Note that these concentrations are three orders of magnitude lower than those
of ASC, and much lower than GSH levels normally seen in cells. (D) Glutathione significantly reduced
the rate of DA melanogenesis. Values in parentheses represent n values. Asterisks *, **, *** indicate
significance level p < 0.05, p < 0.01 and p < 0.001 respectively. Data is presented as mean ±SEM.

3.5. Fast-Scan Cyclic Voltammetry of Dopamine Melanogenesis

To confirm the spectrophotometric recordings of the conversion of DA to melanin and the role of
select antioxidants, replication of previous findings was performed using FSCV. The voltage ramp was
sufficient to measure both the concentration of DA and the concentration of melanin simultaneously
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(Figure 5A). Two conditions were run to confirm the previous spectrophotometry findings. First,
DA was added into 3 mL of ECF buffer for a resulting concentration of 30 µM and monitored for
the conversion of DA to melanin over 1–2 h (Figure 5A). The DA signal reached a peak in seconds
and slowly decayed over time concomitantly with an increase in melanin formation (Figure 5B).
When GSH (100 µM) was combined with 30 µM DA in ECF buffer, the DA signal did not decrease over
time and melanin formation was markedly reduced (Figure 5C). Glutathione significantly reduced
melanogenesis (Figure 5D; F(1,11) = 117.7, p = 7.5 × 10−7) without having a significant effect on peak
DA levels (p > 0.05). To confirm that melanin can form from DA in biological systems as opposed
to synthetic DA in vitro, we evaluated the effects of GSH in a static system ex vivo containing ACSF.
Five minutes into the collection, we added 100 mM KCl to evoke massive DA release from DA terminals
by depolarization. This level of KCl evoked DA release at concentrations ranging from 10–30 µM ex
vivo (Figure 6A; red). Just as we observed with chemically manufactured DA, we observed a DA peak
arise early and decay as a melanin peak rose later in the collection (Figure 6A; green). When GSH
(100 µM) was combined with 30 µM DA, the KCl-evoked DA signal peaked and decreased over time
(Figure 6B; red) and melanin formation was markedly reduced (Figure 6B; green). Unlike in vitro,
GSH did not prevent DA decrease over time likely due to uptake in the slice by the DA transporter.
Glutathione significantly reduced melanogenesis (Figure 6C; F(1,15) = 15.1, p = 0.002) without having a
significant effect on peak DA levels (p > 0.05).

C
ur

re
nt

 (n
A)

Figure 5. Fast-scan cyclic voltammetry of melanogenesis of DA in vitro. (A) Insets show representative
cyclic voltammograms at the points indicated on the graph during equilibration (Aa) of DA (30 µM) and
following partial conversion of DA to melanin (Ab) in a closed system (3 mL of ECF). The characteristic
oxidation peak at 0.5 V and reduction peak at −0.38 V are evidence of DA (Aa). The DA redox peaks
are still visible (0.5 V and −0.38 V) more than 2 h after equilibration (Ab), but significantly reduced,
indicating that DA is still in solution, but the redox signal slowly decays as the signal from melanin grows
(a broad peak extending from−0.02 V and a sharper peak at−0.4 V). The colorplot below shows currents
on the color z-axis for cyclic voltammograms over time at 1 Hz sampling rate. The voltammograms in
Aa and Ab were taken at the times a,b indicated on the plot, demonstrating the peak and fall of DA and
the progressive emergence of melanin. (B) This graph shows the current over time for DA vs. melanin
in the same example shown in A. (C) In this representative example, 100 µM GSH not only blocked
the formation of melanin by 30 µM DA but the decay in DA over time. (D) Cumulative comparison
of spontaneous melanogenesis as measured by FSCV. GSH significantly reduced DA melanogenesis.
Significance marker # denotes p < 0.0001. Data is presented as mean ± SEM.
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Figure 6. Fast-scan cyclic voltammetry of melanogenesis of DA in the NAc slice preparation ex vivo.
(A) This graph shows the current over time for DA vs. melanin after depolarization of DA terminals
in the NAc produced by infusion of 100 mM KCl into the closed system. (B) In this representative
example, 100 µM GSH reduced the formation of melanin by KCl but not the decay in DA over time,
likely due to ongoing re-uptake of DA at DA terminals in the striatum. (C) Cumulative comparison
of spontaneous melanogenesis as measured by FSCV. GSH significantly reduced DA melanogenesis.
Significance marker ** denotes p < 0.01. Data is presented as mean ±SEM.

4. Discussion

Dopamine spontaneously polymerizes into melanin, with the rate of formation having a positive
linear correlation with initial DA concentration. This corresponds with the in vivo experiments done by
Sulzer et al., indicating that the intracellular synthesis of NM is dependent on the cytosolic concentration
of DA (DA not sequestered in vesicles) [32]. Dopamine and chemically similar molecules such as
DA precursors tyrosine and l-Dopa, as well as the catecholamines norepinephrine and epinephrine
also undergo spontaneous melanogenesis, but at a much slower rate than DA. Important chemical
characteristics appear to be the combined presence of a catechol and a primary amine located on an
alkane chain of at least two carbons (corresponding with a high degree of molecular flexibility).

Using UV-visible spectrophotometry, we initially developed a spectrophotometric assay that
measures the progressive formation of melanin by quantifying the rate of polymerization based
on the absorbance over time at 480 nm. Next, the optimal chemical environment for spontaneous
melanogenesis of DA was examined, focusing on the possible role of the catechol functional group of
DA-coordinating cations, specifically free electrons and Fe3+ and Ca2+ as both these ions are easily
coordinated by catechol groups [33]. Pro-oxidants Fe3+ and H2O2 increased the rate of melanogenesis,
whereas Ca2+ had no effect on melanogenesis. Furthermore, antioxidant species such as ascorbate and
GSH blocked melanogenesis, indicating that there is a strong radical component to melanogenesis
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and that coordination chemistry alone (through the redox-inactive Ca2+) is insufficient to drive
melanogenesis, and this interaction is specific to DA over other catecholamines and tyrosine.

In DA neurons, NM deposits have a significant amount of Fe3+ bound in a non-reactive state [13,34].
Based on this observation, it was estimated that Fe3+ may speed up the rate of melanogenesis, but
not as a catalyst, as free Fe3+ would be consumed in the reaction. The results indicated that Fe3+ ions
significantly increased the rate of melanogenesis (EC50 = 50 µM), and that chelation of free Fe3+ by DES
correspondingly decreased melanogenesis. Interestingly, not only can Fe3+ coordinate the catechol of
DA, but it can also generate free electron radicals via the Fenton reaction, lipid peroxidation, and by
catalyzing superoxide formation [35,36]. This indicates that Fe3+ may facilitate melanogenesis by
simply aggregating DA molecules (the coordination structure of Fe3+ affords near perfect geometry
for coordinating three catechols [37,38]), initiating a radical polymerization cascade, or potentially
a combination of coordination and radical chemistry. Dopamine metabolism generates hydroxyl
radicals and DOPAL when degraded by monoamine oxidase A [39,40], and the SNc contains higher
levels of iron as compared to other brain areas [35]. These iron deposits are found in the midbrain
as well as in DA cell culture [41], indicating that iron is localized in DA somata and not just in glia.
Iron is a significant source of oxidative stress, particularly when combined with H2O2 produced from
DA metabolism, creating hydroxyl radicals via the Fenton reaction [42]. The natural metabolism
of DA by monoamine oxidase generates H2O2 [43], highlighting the potential importance of NM
acting as an antioxidant. Neuromelanin possesses a stable radical, enabling direct radical-quenching
properties [44,45], and it is able to bind and inactivate redox-active iron ions [13], preventing hydroxyl
radical production [34]. Neuromelanin has been shown to be a powerful chelator of neurotoxic metals
and has both a high affinity and a low affinity chelation site for Fe3+, a high affinity and low affinity
site [46]. In fact, NM appears to contain the largest reservoir of iron in catecholaminergic cells [29,30].

Ca2+ is another cation that coordinates catechols [33], but unlike Fe3+, does not initiate radical
formation and did not drive melanogenesis. While it remains unclear if Ca2+ could disrupt/induce
melanogenesis at abnormally high concentrations, the present results indicate that at physiologically
relevant Ca2+ concentrations, melanogenesis is not dependent or enhanced by Ca2+. Interestingly,
a key difference between DA cells in the ventral tegmental area (VTA) vs. SNc is that VTA DA cells
have less cytosolic Ca2+ than do SNc DA cells due to calcium-based pacemaker channels [47], meaning
that increased cytosolic Ca2+ is at least correlated with NM deposits. Furthermore, Lebedev et al. have
given evidence for Ca2+ driving some forms of melanogenesis [48]. This appears to contrast with our
data. However, our system largely isolated DA and Ca2+ from oxidative species and other sources for
electron radicals. In the Mosharov study, cells were alive in in vivo conditions, which includes oxidative
species [47], and in the Lebedev study, reactions were deliberately treated with potassium superoxide
to initiate polymerization. Fe3+ can drive melanogenesis alone and Ca2+ can also drive melanogenesis,
but only in the presence of an oxidizer. Thus, we propose that aggregation of DA around a coordinating
cation and an oxidizer or radical are important components of spontaneous melanogenesis.

Like Fe3+, the pro-oxidant H2O2 increased the rate of melanogenesis. While high concentrations
of H2O2 (~1 M) are able to degrade NM [34], the present concentration (500 µM) was below that
threshold, potentially avoiding decomposition of melanin. While it appears that aggregation of DA
molecules is important, it seems that with a high enough concentration of radicals, polymerization can
proceed. Furthermore, this indicates that melanogenesis may function as an antioxidant in cells with
free DA in the cytosol. Simply adding H2O2 is not enough to confirm that the presence of oxidative
species can drive melanogenesis. H2O2 is particularly volatile and decomposes quickly and measuring
accurate concentrations of H2O2 is difficult under reaction conditions.

Antioxidants are very stable in solution and easy to measure accurately. Ascorbate and GSH
(natural antioxidants found in striatal tissue) both attenuated the rate of melanogenesis. Ascorbate is
found throughout the brain in varying quantities dependent on anatomical location, with particularly
high quantities in the striatum and in lower quantities in the midbrain tegmentum where DA neurons
originate [36]. This suggests that in areas with high DA release and transport (i.e., striatum), there is
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also a high concentration of a melanogenesis blocker, potentially promoting DA recovery for re-release
by preventing extracellular DA from turning into melanin in the synaptic cleft or in the cytosol of the
terminal. This may explain why NM appears to form in greater amounts in cell bodies (tegmentum),
but not in terminal areas (striatum). Glutathione is a small molecule that can function as a chemical
antioxidant through its thiol group, spontaneously forming a disulfide bond with another GSH molecule
in an oxidative environment, or as a substrate for the enzyme GSH peroxidase, which enzymatically
joins two glutathione molecules through the same disulfide bond. Glutathione oxidation has been
heavily implicated in DA cell health [49], indicating that DA cells are under a base load of oxidative
stress and in need of managing concentrations of oxidative molecules. In fact, DAergic neurons require
a higher baseline level of GSH (35 ± 3 nmol/mg in DAergic cells as compared to 8 ± 0.4 nmol/mg) for
normal function [50].

We corroborated the effects of antioxidants on DA melanogenesis with FSCV in vitro and in the
NAc of mouse brain slices ex vivo. Voltammetry enables high resolution spatiotemporal analysis of DA
release with spatial resolution in the micrometer domain and temporal resolution in the sub-second
time domain. Dopamine melanogenesis was observed in vitro with the same concentration used in the
spectrophotometry studies. Voltammetry studies indicated that the oxidation current associated with
infusion of 30 µM DA peaks quickly in a static system and then decays logarithmically over 1–2 h.
If DA was not converted to melanin, it would equilibrate in a static system, which explains why the
melanin current increases while DA current decreases over a 1–2 h period. Glutathione markedly
reduced the formation of melanin and the progressive decrease in DA in vitro, suggesting that it is
disrupting melanogenesis via its antioxidant properties. Second, in order to evaluate the physiological
relevancy of these in vitro findings, we studied the effects of KCl on DA release and melanin formation
in the NAc core region of mice using FSCV. The dose of KCl used to depolarize axon terminals in
the NAc slice markedly enhanced DA to levels approaching that of synthetic DA in vitro. However,
the variability was greater ex vivo, likely due to more variables associated with the biological tissue
including the buffering and re-uptake of DA through the DA transporter (DAT). It is well known that
drugs like cocaine or methylphenidate (Ritalin) that block the DAT or amphetamines that reverse the
DAT markedly enhance DA release and that the DAT is operational in the slice preparation. Indeed,
we have shown in multiple publications that cocaine and METH markedly enhance basal and evoked
DA release [51–58], which is blocked by select antioxidants like ascorbate and GSH. The decrease in
DA produced by KCl provides further evidence that the DAT was operational and that there was
considerable DA re-uptake occurring in the face of melanogenesis. Indeed, although melanogenesis was
evident, it was not as great as that produced by similar concentrations of DA in vitro. Notwithstanding
differences in degree, GSH significantly reduced melanin formation produced by KCl-evoked DA
release. However, it did not block the decrease in DA concentration over time as with 30 µM DA
in vitro because of the ongoing uptake and reuptake of DA in the presence of tissue buffering and an
operational DAT.

We propose a model for DA melanogenesis (Figure 7). For the parameters investigated in this
study, we speculate that DA molecules aggregate around a coordinating cation. Then, a radical
can travel between the molecules, creating covalent bonds. This polymerization continues, creating
chains of covalently-linked DA molecules (in varying states of oxidation), coordinated around Fe3+.
Radical scavenger antioxidants would effectively block the polymerization catalyzed by Fe3+. While it
is difficult to equate what happens in a test tube to the intricacies of the intracellular/extracellular
environment, we propose that if there is a small volume of free DA in the cytosol of DA cell bodies, it will
naturally aggregate around unsequestered Fe3+. Once aggregated, the spontaneous melanogenesis
of DA to NM will occur when oxidative stress levels exceed a threshold, helping the cell to manage
oxidative stress. Since melanins are insoluble, vacuoles will naturally pick up this polymer along
with junk peptides, but will not be able to decompose it, resulting in vacuoles being filled with both a
melanin and peptide component [59]. Over time, the number of these vacuoles increases in the cell,
effectively pigmenting the entire cell body.
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Figure 7. Proposed model for DA melanogenesis. To produce optimal formation of melanin, two factors
are necessary: chelation and free-radical polymerization. Dopamine molecules chelate iron by the
catechol group, positioning the DA molecules to allow for quick radical polymerization between the
benzene rings, with block by radical scavenging antioxidants like ascorbate and GSH. The proposed
model is that dopamine chelation of iron forms a dopamine aggregate around iron, bringing the
benzene rings in close proximity to each other to allow for radical induced polymerization. While this
may be the building block of neuromelanin, it should be noted that in vivo neuromelanin will include
junk peptides, amino acids, and other biomolecules that will have been incorporated through proximity
to radical polymerization.

A growing body of literature identifies NM as a neuroprotective polymer [34], likely due to
nascent antioxidant properties. For example, in models of PD, DA cells containing less NM are more
susceptible to death than cells with increased NM pigmentation [11,12]. In this study, we demonstrate
that melanin can spontaneous form from DA, especially in an environment that contains oxidative
stress or Fe3+. We suggest that DA neurons use the unique chemistry of DA to manage oxidative stress.
Oxidative stress from Fe3+ is minimized as once it is bound up in NM is redox-inactive [46,60,61] and,
thus unable to catalyze the Fenton reaction. Oxidative stress formed as a byproduct of DA metabolism
is prevented as excess DA is polymerized into NM instead of being degraded by monoamine oxidase.
Finally, mature melanin is a functional free radical scavenger [34,44] and can directly decrease external
sources of oxidative stress.

5. Conclusions

In this study, we have characterized the spontaneous polymerization of DA into a melanin
chemically similar to NM. This chemical process is optimized in the presence of Fe3+ (but not Ca2+) or
in the presence of pro-oxidative species such as H2O2 and is inhibited by antioxidants. Both Fe3+ and
Ca2+ are known to aggregate DA molecules by chelating the catechol functional group, but only Fe3+

produced the polymerization. Through the Fenton reaction, Fe3+ drives the formation of oxidative
species, indicating that oxidative species are necessary for DA melanogenesis and that DA aggregation
while chelated around a polyvalent cation is insufficient to trigger spontaneous melanogenesis. Finally,
when aggregated and in the presence of an oxidative species, DA polymerizes into a melanin in a
rapid, thermodynamically stable reaction. Melanization occurs in ex vivo conditions which is blocked
by antioxidants. Although the effects of melanization in vivo are still not fully understood, the present
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results indicate that melanization requires pro-oxidants. Thus, melanization may more relevant
under conditions where iron has breached the blood brain barrier, such as ischemia, or increases
in local H2O2, which has been implicated as a retrograde signaling molecule but is also present in
intracellular compartments.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3921/9/12/1285/s1,
Figure S1: H-NMR spectra showing that the dominant species at the (A) beginning of the reaction is dopamine,
and (B) still dopamine at the end of the reaction. (C) Overlay of the spectra in (A) and (B) demonstrating that
the peaks match perfectly, Figure S2: Calcium does not contribute to dopamine (DA) melanization, Figure S3:
The antioxidant GSH reduces dopamine melanogenesis in a concentration dependent manner.
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DA Dopamine
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