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ABSTRACT: We derive a low-scaling G0W0 algorithm for
molecules using pair atomic density fitting (PADF) and an
imaginary time representation of the Green’s function and describe
its implementation in the Slater type orbital (STO)-based
Amsterdam density functional (ADF) electronic structure code.
We demonstrate the scalability of our algorithm on a series of
water clusters with up to 432 atoms and 7776 basis functions and
observe asymptotic quadratic scaling with realistic threshold
qualities controlling distance effects and basis sets of triple-ζ
(TZ) plus double polarization quality. Also owing to a very small
prefactor, a G0W0 calculation for the largest of these clusters takes only 240 CPU hours with these settings. We assess the accuracy of
our algorithm for HOMO and LUMO energies in the GW100 database. With errors of 0.24 eV for HOMO energies on the
quadruple-ζ level, our implementation is less accurate than canonical all-electron implementations using the larger def2-QZVP
GTO-type basis set. Apart from basis set errors, this is related to the well-known shortcomings of the GW space-time method using
analytical continuation techniques as well as to numerical issues of the PADF approach of accurately representing diffuse atomic
orbital (AO) products. We speculate that these difficulties might be overcome by using optimized auxiliary fit sets with more diffuse
functions of higher angular momenta. Despite these shortcomings, for subsets of medium and large molecules from the GW5000
database, the error of our approach using basis sets of TZ and augmented double-ζ (DZ) quality is decreasing with system size. On
the augmented DZ level, we reproduce canonical, complete basis set limit extrapolated reference values with an accuracy of 80 meV
on average for a set of 20 large organic molecules. We anticipate our algorithm, in its current form, to be very useful in the study of
single-particle properties of large organic systems such as chromophores and acceptor molecules.

1. INTRODUCTION

Spectroscopy provides fundamental insights into the optical
and electronic properties of matter and thus plays a decisive
role in chemistry and material science.1−5 The great potential
of computational spectroscopy is leveraged increasingly to
complement and understand spectroscopic experiments.6−15

Still, no existing computational method can be applied
routinely to systems of hundreds of atoms and simultaneously
predict the outcome of a spectroscopic experiment with
satisfactory accuracy.15 For ground state properties, Kohn−
Sham (KS)16 density functional theory (DFT)17−19 has been
proven to be very accurate for many weakly correlated
molecular systems.20−26 Excited particles, however, interact
strongly with other electrons and semilocal or hybrid
approximations to the exact functional of KS-DFT do not
capture this physics correctly.27−36 Consequently, they fail to
adequately describe single-particle excitations, which are
necessary to understand and predict phenomena like trans-
port,37−39 tunneling,40−42 or photoemission.43−48

The many body perturbation theory (MBPT)49−51 based on
Hedin’s equations describes the correlation of the excited
electron with its surrounding by an expansion in powers of the
response of the system’s total classical potential to an external
perturbation.52−54 In the GW approximation,51,55 this

expansion is truncated after first order, which accounts for
the major part of electron correlation.46,54,56,57 The GW
approximation makes MBPT computationally tractable, greatly
improves over DFT for the description of single-particle
excitations,46,53,58 and also paves the way toward accurate
optical spectra using the Bethe-Salpeter equation formal-
ism.59,60 Large numbers of computational material science
codes48,56,61−72 feature GW implementations, and also in the
quantum chemistry community, it has acquired some
momentum over the last years.58,73−93

The downside of the GW method is its huge operation
count compared to KS-DFT, preventing its routine application
to large systems. A popular approach to reduce the prefactor,
frequently outperforming self-consistent approaches for
charged excitations,58,94 is the so-called G0W0 approximation
in which the self-energy is calculated using a mean-field
Green’s function. Still, the operation count of a G0W0
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calculation increases as N4 as a function95 of system size N, and
compared to KS-DFT, GW quasi-particle (QP) energies
converge significantly slower with the size of the single-particle
basis.46,96,97 Consequently, the last years have witnessed some
effort to reduce time-to-solution further, which resulted in
massively parallel implementations optimized for state-of-the-
art supercomputers98,99 but also in notable algorithmic
developments, including stochastic approaches,100−102 imple-
mentations avoiding the explicit summation over empty
electronic states in the polarizability, P103−106 low-rank
approximations to the dielectric function ϵ64,97,107 or the
screened interaction W,108,109 and basis set error (BSE)
correction schemes.110−112

In ab initio calculations on molecular systems, atom centered
localized atomic orbitals (AOs) are commonly employed.113 In
this representation, the dimensions of W and P grow as N2,
making the evaluation of W an N6 operation. One can employ
an implicit low-rank approximation to both quantities by
transforming them to a smaller auxiliary basis. Such trans-
formations, most importantly density fitting (DF)114−126 and
Cholesky decomposition (CD)127−131 techniques, have been
employed in quantum chemistry for nearly half a cen-
tury,114−116 and they are routinely used in GW implementa-
tions for molecules70,132−139 where their accuracy is well-
documented.82,135 Using these techniques, the evaluation of W
becomes an N3 operation with a sufficiently small prefactor.
However, the transformations from the product basis to the
auxiliary basis and back, usually implicit in the evaluation of P
and the self-energy Σ, respectively, still scale as N4.
This issue can in principle be avoided by constructing a

sparse transformation matrix using local DF approximations
(LDF).140−143 However, conventional GW calculations are
performed in frequency space, necessitating a representation of
the Green’s function in the MO basis where the sparsity of the
transformation matrix is lost. From this perspective, the
Green’s function is more conveniently represented in
imaginary time29,144−148 since the energy denominator in P
factorizes and the relevant equations can be transformed to the
AO basis where LDF might be used efficiently.
LDF techniques have originally been proposed to evaluate

the Fock matrix in generalized KS (gKS) and Hartree−Fock
(HF) calculations in a low-scaling fashion.115 This is fortunate
since, in imaginary time, the evaluation of Σ is equivalent to
calculating the exact exchange contribution to the Fock matrix.
In the most extreme LDF variant, each AO-pair product is
expanded in a set of auxiliary basis functions (ABF) centered
on the same two atoms as the target pair of primitives. We refer
to this approach as pair atomic density fitting (PADF) and
note that also the names concentric DF, pair-atomic resolution
of the identity (PARI), and RI-LVL are encountered in the
literature. It was introduced by Baerends et al. in the 1970s115

and subsequently employed in pure149 and hybrid140,150 DFT
calculations. As an efficient way to construct the Fock matrix, it
has received renewed attention over the last years151−157 and
its strengths and shortcomings for this task have been analyzed
in detail.158,159 It has also been applied to correlated methods
and shown to be very accurate when appropriate auxiliary fit
sets are used.160−163

For the GW space-time approach147 to be useful in practice,
small grids not only in imaginary time but also in imaginary
frequency as well as an efficient way to switch between both
domains are needed to avoid potentially prohibitive prefactors
and storage bottlenecks. How to address these technical issues

has been shown by Kresse and co-workers,164,165 who
subsequently presented cubic scaling GW implementations
for periodic systems,166,167 and also low-scaling space-time
RPA168,169 and GW99 implementations for molecular systems
have been realized in the last years.
It has already been anticipated160 that PADF is especially

well-suited to implement GW in a low-scaling fashion. Against
this background, we herein derive a GW space-time algorithm
whose asymptotic cost associated with the calculation of P and
Σ is reduced to N3, independent of system size, and to N2

when distance effects are exploited. We only discuss our G0W0
implementation here while self-consistent GW will be
discussed in a future publication. However, we stress that
within the herein presented framework quasi-particle170,171 and
fully self-consistent GW is readily implemented as we always
evaluate the complete self-energy matrix instead of only its
diagonal in the MO basis.
We implemented our algorithm in the Slater type orbital

(STO)-based Amsterdam density functional package
(ADF).172,173 Thus, our work is the first production level
implementation of a GW method using STOs. While we do
not aim at a comparison of different types of localized basis
functions, we consider our implementation as a necessary first
step toward a better understanding of the possible benefits of
STOs in MBPT and also as a demonstration that they can be
used efficiently in GW calculations. We also emphasize that the
herein presented formalism is independent of the actual choice
of basis functions, provided that they are local. We already note
at this point that similar ideas have been presented by Wilhelm
et al.99 and implemented in the CP2K package.48 We will start
the following discussion in Section 2 by defining the basic
quantities in real space (RS) and imaginary time, discretize
them using an AO basis and imaginary time grids, and
transform them to an auxiliary basis. From this starting point,
we outline our algorithm and its implementation before we
investigate its accuracy and computational efficiency in Section
3. Finally, Section 4 concludes this work with a summary and
perspectives on further research.

2. THEORY
2.1. G0W0 in Real Space and Imaginary Time. We start

this section by briefly outlining the G0W0 approximation to
Hedin’s equations in the random phase approximation
(RPA).53 Using the molecular orbitals ϕn and corresponding
orbital energies ϵn obtained from solving


∫ϕ ϕ[ − ϵ ] + ′ ′ ′ =r r r r r rh V( ) ( ) d ( , ) ( ) 0n n n

(0)
xc3 (1)

with a single-particle Hamiltonian h(0) and a potentially local
exchange-correlation (xc) potential Vxc, the irreducible single-
particle time-ordered Green’s function in imaginary time is
given as

τ τ τ τ τ′ = Θ ̲ ′ − Θ − ̅ ′r r r r r rG i G i G i( , , ) ( ) ( , , ) ( ) ( , , )
(2)
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being the hole and particle Green’s functions, respectively, i, j,
.... (a, b, ...) labeling occupied (virtual) orbitals, ϵF being the
Fermi energy, and Θ being the Heavyside step function. The
independent-particle polarizability P in the RPA is defined as

τ τ τ′ = − ′ ′ −r r r r r rP i iG i G i( , , ) ( , , ) ( , , ) (4)

and using (2) and (3) can be written as

∑ ∑τ ϕ ϕ ϕ ϕ′ = − * ′ ′ * τ τ−|ϵ −ϵ | −|ϵ −ϵ |r r r r r rP i i e e( , , ) ( ) ( ) ( ) ( )
i a

i i a a

occ virt
a iF F

(5)

The polarizability is the kernel of a Dyson equation relating the
reducible (or screened) Coulomb interactionW(r, r′, iτ) to the
bare Coulomb potential V(r, r′) = V′(r, r′, iτ)δ(τ − τ′) (see,
e.g., ref 174 or 108)

∫
τ τ

τ τ τ τ τ

′ − ′ = ′

+ − ′ − ′

r r r r

r r r r r r r r

W i i V

V P i i W i i

( , , ) ( , )

d d d ( , ) ( , , ) ( , , )4 3 4 3 3 4 4 4 4

(6)

which takes the simpler form148

ω ω′ = ′ − ′− −r r r r r rW i V P i( , , ) ( , ) ( , , )1 1 (7)

in the imaginary frequency domain. From this quantity, the
irreducible self-energy Σ can be constructed,53 which is most
conveniently split into a static and a dynamic contribution, Σ =
Σx + Σc. The former is the HF exchange kernel and is given as

τΣ ′ = ̲ ′ = ′r r r r r riG i V( , ) ( , , 0) ( , )x (8)

and the latter is given as

τ τ τΣ ′ = ′ ̃ ′r r r r r ri iG i W i( , , ) ( , , ) ( , , )c (9)

where we have introduced ̃ = −W W V . In a self-consistent
procedure, G would be updated by solving another Dyson
equation containing Σ as its kernel. In a G0W0 calculation, Σc is
transformed to the imaginary frequency axis from where it is
analytically continued to the complex plane.175,176 The QP
energy ϵn

QS is the ω which fulfills

ω ω= − ϵ − ⟨ | Σ + Σ − | ⟩n Re V n0 ( ( ))n
c

x xc (10)

where ⟨n|O|m⟩ denotes the matrix elements of an operator O in
the molecular orbital basis.
2.2. G0W0 in a Local Basis. 2.2.1. Discretization of Real

Space. Assuming we have represented the imaginary time and
frequency dependence of all quantities through suitable grids,
we use a set of real STOs {χ} to discretize RS so that

∑ϕ χ=
μ

μ μr rb( ) ( )n n
(11)

The insertion of this definition into eqs 2 and 3 gives

∑ ∑τ χ χ̲ ′ = ′
μν

μ μ
τ

ν ν
−|ϵ −ϵ |r r r rG i b e b( , , ) ( ) ( )

i
i i

i F

(12)

∑ ∑τ χ χ̅ ′ = ′
μν

μ μ
τ

ν ν
|ϵ −ϵ |r r r rG i b e b( , , ) ( ) ( )

a
a a

a F

(13)

and from the identity

∑τ χ χ′ = ′
μν

μ μν τ νr r r rG i G( , , ) ( ) ( ),
(14)

we obtain the representation of the particle and hole Green’s
function in the STO basis

∑̲ =μν τ μ
τ

ν
−|ϵ −ϵ |G b e b

i
i i,

i F

(15)

∑̅ =μν τ μ
τ

ν
|ϵ −ϵ |G b e b

a
a a,

a F

(16)

which for each discrete iτ can be seen as an energy-weighted
density matrix.177 While Σ also transforms as a 2-point
correlation function,

∫ χ τ χΣ = ′ Σ ′ ′μν τ μ νr r r r r rid d ( ) ( , , ) ( ), (17)

all 2-electron operators transform as 4-point correlation
functions,178

= ̲ ̅μκνλ τ μν τ κλ τP iG G, , , (18)

∫ χ χ χ χ= ′ ′ ′ ′μνκλ μ ν κ λr r r r r r r rV Vd d ( ) ( ) ( , ) ( ) ( )
(19)

∫ χ χ τ χ χ̃ = ′ ̃ ′ ′ ′μνκλ τ μ ν κ λr r r r r r r rW W id d ( ) ( ) ( , , ) ( ) ( ),

(20)

The calculation of the screened interaction (20) using P and V
requires the inversion of a matrix in the AO product space

χ χ= { } ⊗ { }μ ν for all frequency points (either of W−1 as in

(7) or of the dielectric function ϵ, which is calculated from P
and V) whose dimension scales as N2 with the system size.
Hence, the matrix inversion scales as N6.
This scaling does not reflect the systems physics and is

simply an artifact of the chosen representation. The Eckard−
Young theorem guarantees the optimal rank-r approximation
M(r) to some matrix M to be given by the first r terms in the
sum on the r.h.s. of

∑ σ σ σ= ⊗ ≥ +M v u ,r

i

r

i i i i i
( )

1
(21)

where σ is a singular value and vi and ui are vectors of the
matrices V and U from the singular value decomposition
(SVD) of M. In this way, one can indeed show that the ranks
of P, V, and W should only grow linearly with the system
size179 and using (21) one might decompose P, V, and W
(given that they are symmetric) as

∑= [ ] = ̃μνκλ μν κλM C Z C M P V W, , ,
pq

p pq
T

q
(22)

where Z is the diagonal matrix of singular values and C collects
the left singular vectors of M. An explicit SVD would scale as
NAO

4r and is prohibitive in practice.179 Instead, it is common
practice to represent V and W in a predefined auxiliary basis

= { }f , whose size is growing linearly with the system size.
Expanding all AO-pair products in terms of ,

∑χ χ =μ ν μνr r rC f( ) ( ) ( )
p

p p
(23)

where Greek lowercase letters label AOs and the Roman
lowercase letters p, q, ... refer to ABFs, V and W̃ can be
expressed as

∫= ′ ′ ′r r r r r rV f V fd d ( ) ( , ) ( )pq p q (24)
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∫̃ = ′ ̃ ′ ′r r r r r rW f W fd d ( ) ( , ) ( )pq p q (25)

and with (22) and (23), the equations to be solved in a G0W0
calculation become

= = − ̲ ̅τ μν μνκλ τ κλ μν μκ τ νλ τ κλP C P C iC G G Cpq p q p q, , , , (26)

= + = [ − ]ω ω ω ω
− −W V V P W V Ppq pq pr rs sq pq, , ,

1
,

1
(27)

∑ ∑Σ = ̲μν
κλ

κλ τ μκ νλ=i G C V Cx

pq
q pq p, 0

(28)

∑ ∑Σ = ̃μν τ
κλ

κλ τ μκ τ νλi G C W Cc

pq
q pq q, , ,

(29)

replacing eqs 5 and 7−9. In this set of equations, (26) is the
computational bottleneck. While the basis transformation in
the first equation (26) would scale as N5, also using the second
equation one (27) ends up with a scaling of N4. The same is
actually true for (8) and (9); however, since in a G0W0
calculation only the diagonal elements of Σ in the MO basis
are needed, the computational effort reduces to N3.
Improvements over the N4 scaling can be achieved in

essentially two ways. The first way relies on the asymptotically
exponential decay of the density matrix.180−182 Ochsenfeld and
co-workers exploited the resulting sparsity in G̲ and G̅183 to
calculate correlation energies in the second-order Møller−
Plesset perturbation theory (MP2)184−186 and RPA.187−190 It
is an obvious drawback of the approach that in 3D systems the
density matrix is less sparse as one would hope for,191−193

especially for large AO basis sets with many diffuse functions,
which are commonly employed in GW calculations. The
second way is to construct a sparse map from to . How
this can be achieved will be discussed in the next paragraph.
2.2.2. Local Density Fitting Approximations. Given some

target precision ϵ, the two main goals of DF are first to find a
matrix M′ with dimension Naux for which

− ′ < ϵM M (30)

with Naux as small as possible and M defined by (22) and
second to improve over the unfavorable scaling of eqs 26, 28,
and 29 by constructing C in a way that it becomes sparse. Both
goals are in principle in conflict with each other. In DF, one
minimizes the residual function

∑χ χ μ ν= − ∀μν μ ν μνr r r rr C f( ) ( ) ( ) ( ) ,
p

p p
(31)

with respect to some appropriate norm. In the RI-V approach,
the Coulomb repulsion of r is minimized,

∫∂
∂

′ ′ ′ =
κλ

κλ μνr r r r r r
C

r V rd d ( ) ( , ) ( ) 0
q (32)

and it follows that

∫∑ χ χ= ′ ′ ′μν μ νr r r r r r rC V V fd d ( ) ( ) ( , ) ( )
p

p pq q
(33)

I.e., the error in the low-rank approximation of V is quadratic
in r since the terms linear in C vanish. Of course, a similar
conclusion can not be drawn for P and consequently also not
forW. Still, it seems that this metric is an excellent choice if the
goal is to fulfill (30) with Naux as small as possible and use
auxiliary fit sets from standard libraries. As shown by van

Setten et al., QP HOMOs and LUMOs only deviate by a few
meV from the ones obtained from the calculations without any
low-rank approximation82,135 when appropriate auxiliary fit
sets125,194 are used.
On the other hand, RI-V is a very bad choice in the sense

that the slow decay of the kernel of the Coulomb operator
ensures that C will be dense. In the RI-SVS approach,118,121

(31) is minimized with respect to the L2 norm, which requires
larger Naux to fulfill (30) but results in a C with the number of
nonzero elements increasing only linearly with the system size
for exponentially decaying basis functions. It has been shown
by Wilhelm et al. that this approach results in tremendous
speedups in the evaluation of eqs 26, 28, and 29 without
requiring too large of an Naux to make the evaluation of (27)
problematic for systems of more than 1000 atoms.99 However,
for rather small systems with a 3D structure, the number of
nonzero elements in C will not be much different from NAO

2 ×
Naux. Thus, due to the usually larger Naux compared to RI-V,
the method will only be advantageous for sufficiently large
systems.99

In LDF approximations, this shortcoming is addressed by
building in sparsity into the fitting procedure a priori. In PADF,
an expansion of the pair-density χμ(r)χν(r) of the form

∑χ χ μ ν= ∀ ∈ ∈μ ν μν
∈ ∪

r r rC f A B( ) ( ) ( ) ,
p A B

p p
(34)

is employed so that the number of nonzero elements in C
scales at the most quadratic with the system size. In our
implementation, we also define thresholds dμν for each AO
product and assume Cμνp = 0 if |RA − RB| > dμν so that the
number of nonzero elements in C only increases linearly.162

For each atom, we also reorder all AOs from the most diffuse
to the least diffuse one so that all nonzero elements in C are
grouped in dense blocks. Equation 31 becomes

∑χ χ μ ν= − ∀ ∈ ∈μν μ ν μν
∈ ∪

r r r rr C f A B( ) ( ) ( ) ( ) ,
p A B

p p
PADF

(35)

which is minimized with respect to the Coulomb metric.
Solving

∫∂
∂

′ ′ ′ =
κλ

κλ μνr r r r r r
C

r V rd d ( ) ( , ) ( ) 0
q

PADF PADF

(36)

does not lead to an equation of the form (33) as the terms
linear in C do not vanish. Thus, determining C by solving (33)
for all (nearby) atom pairs (A, B) leads to errors for V linear in
r (the same holds for DF in the RI-SVS approach). It has been
concluded that the resulting errors are too large for the method
to be useful in HF calculations.123,124,156 This might be true
when standard auxiliary fit sets are used, which are optimized
for global DF. In principle, the error of the expansion (23) can
always be made arbitrarily small when an appropriate fit set is
used although this is highly nontrivial. Simply increasing the
number of ABFs does not always result in reduced errors and
might even lead to numerical instabilities in the fitting
procedure due to an increase of the linear dependencies in
the auxiliary basis set.162

Another difficulty arises from the presence of diffuse
functions in the AO basis set. To understand the source of
the problem, we recall that very large AO basis sets with many
diffuse functions might be locally overcomplete, which causes
an almost linear dependence of a subset of basis functions.
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These lead to numerical instabilities in the SCF195 during
canonical orthonormalization when the condition number of
the AO-overlap matrix approaches infinity.196 To restore
numerical stability, one projects out the almost linearly
dependent part from the basis by removing eigenvectors
from the transformation matrix corresponding to eigenvalues
of the AO-overlap matrix that are smaller than some threshold
ϵD,

197 effectively diminishing the basis set size. This is not a
severe restriction in practice since numerical instabilities
usually do not occur when all eigenvalues are larger than ϵD
= 10−6−10−7.198−200
Using PADF, numerical instabilities can already occur when

all eigenvalues are considerably larger as has, e.g., been
observed for linear-response TDDFT with augmented basis
sets201 and MP2/QZ calculations.162 The reason for this
behavior is that individual fitting coefficients can become quite
large for diffuse products from AOs centered on distant atoms.
Note that this is a fundamental difference to global DF. As a
qualitative example, consider a linear alkane chain CnH2n+2 and
the pair product of diffuse AOs on C1 and Cn, respectively. The
AOs will only have some (small) overlap in the middle of the
chain. In global DF, this pair product could possibly be
described very well with only a small set of ABFs centered on
atoms in this region. In PADF, this overlap needs to be
described with the asymptotic tails of diffuse ABFs on C1 and
Cn. When there is no appropriate ABF in the auxiliary basis,
this will lead to very large fitting coefficients for some (diffuse)
ABFs. In the transformation of the Coulomb potential from
the auxiliary basis to the AO product basis, these large fitting
coefficients must cancel with contributions with an opposite
sign, which is numerically unstable.202 Thus, relatively small
errors might accumulate during the SCF and lead to an
erroneous (hole) density matrix and potentially wrong
eigenvalues.
To summarize, projecting out parts of the basis during

canonical orthonormalization plays a dual role when PADF is
used in the SCF. First, it ensures numerical stability of the
SCF, and second, as a side-effect, it removes the part of the
basis that potentially results in diffuse AO products, which are
potentially difficult to fit. This nicely illustrates that the
appropriate choice of the auxiliary basis and the problem of
linear dependencies are intertwined. The addition of more
diffuse functions to the auxiliary basis pair product in our
example can be better approximated; the fitting coefficients
become smaller, and the linear dependency problem is
extenuated. This means the number of AOs that need to be
removed becomes smaller and larger basis sets can be used in
practice.
In the present work, we employ auxiliary fit sets that have

been optimized for gKS calculations with PADF. Using these
fit sets, we have shown recently162,163 that the accuracy of
PADF-MP2 is similar to global DF-MP2 with GTOs for basis
sets of up to triple-ζ (TZ) quality. On the other hand, using
quadruple-ζ (QZ) and also smaller basis sets augmented with
diffuse functions sometimes result in unreliable PADF-MP2
ground state energies. It is clear that the same issues will arise
in GW calculations.
For correlated methods, we observed that a value of ϵD =

10−3, corresponding to a drastic truncation of the basis, seems
to provide a good trade-off between accuracy and numerical
stability for all basis sets beyond TZ quality and also
augmented basis sets. However, while this truncation prevents
collapse to artificially low QP energies, it also leads to

deteriorated results compared to the default of ϵ = 10−4. When
the basis set is increased more and more, larger and larger parts
of the virtual space need to be projected out, which ultimately
prevents us from reaching the complete basis set (CBS) limit
for the correlated methods. We expect, however, that carefully
optimized auxiliary fit sets will enable the numerically stable
application of PADF to these methods with larger basis sets.
Before we discuss the accuracy of the present approach in
Section 3, we will describe in some detail how PADF can be
used to implement eqs 26−29 efficiently.

2.3. GW Equations with Pair Atomic Density Fitting.
In this section, we outline how the sparsity of the map from
to can be exploited to implement GW in a low-scaling
fashion.

2.3.1. Imaginary Time and Frequency Grids. After the
calculation of the Coulomb potential and its inverse in the
basis of ABFs and the basis transformation matrix C as
described in Section 2.2, we calculate imaginary frequency and
imaginary time grids, {ωk}k=1, ...Nω

, {τk}k=1, ...Nτ
, respectively. As

outlined by Kresse and co-workers,164 they can be evaluated by
minimizing either the L∞ (Chebyshev) or L2 norm of
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(37)

with respect to the parameter sets α, β, where x ∈ [ϵmin, ϵmax],
where ϵmin (ϵmax) denotes the smallest (largest) KS orbital
energy difference. Imaginary time and imaginary frequency
domains are connected through Laplace transforms (see also
Canceś et al.175)

∫τ
π

ω ω ωτ ωτ= +f i
i

f i i( )
2

d ( )(cos( ) sin( ))
(38)

∫ω τ τ ωτ ωτ= − −f i i f i i( ) d ( )(cos( ) sin( ))
(39)

For our purpose, it is sufficient to treat them as Fourier
transforms. To avoid potentially inaccurate interpolation to
equidistant grids in order to use discrete Fourier transforms,
we discretize (39) as

∑ω γ ω τ τ τ

γ ω τ τ τ

= − { + −

− − − }

τ

f i i f i f i
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( ) cos( )( ( ) ( ))
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kj
s

k j j j

( )
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(40)

where the weights γkj
(c) and γkj

(s) account for the nonuniformity of
the grids. They are chosen to minimize the L2 norm of the
error introduced by (40) for f(iτ) = e−x|τ|, x ∈ [ϵmin, ϵmax] with
respect to the exact transformation eq 39. By inverting the
matrices γkj

(c) cos(ωkτj) and γkj
(s) sin(ωkτj), respectively, one can

use the same relation to transform f from the imaginary
frequency to imaginary time. To calculate the imaginary time
grid, we minimize the L∞ norm of (37) as implemented by
Helmich-Paris et al.,203,204 and in imaginary frequency, we
minimize the L2 norm on a logarithmic grid using a
Levenberg−Marquardt algorithm.205,206 Both algorithms re-
quire pretabulated values to converge to an acceptable local
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minimum. For the imaginary time domain, we use the values
distributed with the source-code of Helmich-Paris et al.,207 and
for the imaginary frequency domain, we tabulated our own
values that we include in the Supporting Information.
2.3.2. Polarizability. After the Green’s function [(15) and

(16)] has been constructed, P can be evaluated. In this section,
we use μ, ν, κ, and λ to denote AOs and α, β, γ, and δ to
denote ABFs and the convention that (μ, α) ∈ A, (ν, β) ∈ B,
(κ, γ) ∈ C, and (λ, δ) ∈ D, where A, B, C, and D label atoms.
We denote the three-leg tensor collecting all fitting coefficients
corresponding to all products formed from AOs centered on A
and B and to ABFs centered on B as CABB, i.e., CABB contains
only coefficients corresponding to fit functions centered on B.
Consequently, the fitting coefficient tensor corresponding to all
products formed from AOs on A and B and to ABFs centered
on A and B is split into CABB + CBAA. We also define

= ̃
δ+C CABB ABB1

1 AB
to avoid complications from double

counting. The contribution of each atom pair (A, B) to P,
eq 26, is given as the sum of four contributions

= − + + +αβ τ αβ τ αβ τ αβ τ αβ τP i P P P P( )AB AB I AB II AB III AB IV
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As G̲ and G̅ are symmetric, the symmetry of the Kronecker
product implies that P is symmetric as well and consequently
PAB,III = [PBA,II]T and PAB = [PBA]T. Also note that Re(P) = 0.
With the definition of the intermediates

∑̲ = ̲μνβ τ
κ

μκ τ κνβF G CABB AC CBB
, ,

(43)

∑̅ = ̅μνβ τ
κ

μκ τ ν νβ′F G CABB AC CBB
, ,

(44)

∑̲ = ̲ ̅μκβ τ
ν

μνβ τ νκ τH F GACB ABB BC
, , ,

(45)

∑̅ = ̅ ̲μκβ τ
ν

μνβ τ νκ τH F GACB ABB BC
, , ,

(46)

eq 42 is most conveniently evaluated as
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(47)

We parallelize the outermost loop over all atoms and
perform all tensor contractions using level-3 BLAS. No step
involves more than three atomic centers, and since tensor
contractions corresponding to distant centers (for which all
elements in C are zero) can be skipped, the operation count
scales asymptotically as N2. We always evaluate the
intermediate eqs 43−46 on the fly since the storage of 2-

center quantities with more than 2 indices would quickly
become prohibitive.

2.3.3. Screened Coulomb Interaction. Having evaluated P
for all atom pairs, W̃ can be evaluated. After transforming the
matrix P (which is even in imaginary time) to the imaginary
frequency axis using (40), the screened interaction W̃ω is
obtained by inversion

̃ = [ − ] −ω ω
− −W V P V1 1

(48)

For all ω,W is stored in distributed memory. Note that, on the
imaginary frequency axis, Im(P) = 0 and thus Im(W̃) = 0 as
well. To evaluate (48), the dielectric function is not
constructed explicitly as it would not be symmetric and its
inversion would be computationally demanding. We invert V−1

− Pω (and V which only needs to be done once) using an LU
decomposition with partial pivoting as implemented in
SCALAPACK. Note that inversion using CD would be
numerically unstable since C might not be full-rank and thus
does not necessarily conserve positive semi-definiteness. We
subsequently transform W̃ back to imaginary time.

2.3.4. Self-Energy. Next, the contributions to Σ for all atom
pairs

Σ = Σ + Σ + Σ + Σμν τ μν τ μν τ μν τ μν τi( )c AB AB I c AB II c AB III c AB IV
,

,
,
,

,
, ,

,
, ,

,
, ,

(49)

are evaluated, where ΣAB,III = [ΣBA,II]T and ΣAB = [ΣBA]T. Also,
Re(Σc) = 0, since Re(G) = 0 and Re(W̃) = 0. We only give here
the equations for Σc(iτ) as Σx is obtained in exactly the same
way by replacing W̃ with V and using G̲(iτ = 0). As Σ is an
uneven function in imaginary time, we also need to evaluate
Σ(−iτ) to be able to Fourier transform it to the imaginary
frequency axis. The corresponding equations can be retrieved
from the ones for Σ(iτ) by simply exchanging G̲ with G̅ and
replacing upper bars with lower bars in all the intermediates.
To express the individual contributions to Σ, we define the
intermediate

= ̃μνγ τ μνβ βγ τI C WABC ABB BC
, , (50)

and together with (44) and (43) we obtain
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(53)

As for P, we parallelize the outermost loop over all atoms and
perform all tensor contractions using level-3 BLAS routines.
Due to its prefactor of NAO,l

2 × Naux,l
2, where Naux,l (NAO,l)

denotes the number of ABFs (AOs) on on atomic center, the
calculation of I is the most expensive step. The asymptotic
operation count can be reduced significantly since the screened
interaction W̃ decays exponentially as a direct consequence of
the exponential decay of the Green’s function, unlike the bare
Coulomb interaction. In our current implementation, we do
not fully exploit this property as we essentially treat W̃ like the
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bare Coulomb potential in the calculation of Σx. In the same
way as for C, we can skip all tensor contractions for
approximately non-Coulomb-interacting atom pairs. For
weakly interacting pairs, we rely on multipole expansion of
the Coulomb potential to reduce the prefactor of all
contractions involving W (and V for Σx) considerably so that
Σ can also be evaluated with a quadratic operation count only.
When one fully exploits the exponential decay of W̃, the
asymptotic scaling can possibly be reduced further.
2.3.5. Quasi-Particle Equations. Σc is subsequently trans-

formed to the MO basis and its diagonal elements, to the
imaginary frequency space. With (40),

∑

∑

γ ω τ

γ ω τ
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(54)

which we use to solve the QP equations (eq 10). We
analytically continue (AC) Σnn

c to the real frequency axis using
a Pade-́approximant of order Nω as described by Vidberg and
Serene208 and solve (10) for all states of interest using the
bisection method. While the present approach is not applicable
to core level excitations,45−47 it predicts QP energies in the
valence region with good accuracy in cases where the QP
solution is sufficiently distant from any pole of the self-
energy.46,133,209,210 This is always the case for molecules with a
large KS HOMO−LUMO gap. Note that in these cases small
imaginary frequency grids are sufficient to ensure good
accuracy for particle and hole states in the valence region.
To summarize this section, a pseudocode of our

implementation together with the theoretical asymptotic
scaling with the system size is given in Chart 1.

3. RESULTS
3.1. Computational Details. All calculations have been

performed with a locally modified development version of
ADF172,173 in which the herein described PADF-G0W0
algorithm has been implemented. In all gKS calculations,
PADF has been used to evaluate Coulomb and exchange

terms.149,150,211 We performed PADF-G0W0@PBE and PADF-
G0W0@PBE0 calculations for all molecules in the GW100
database82 as well as PADF-G0W0@PBE0212,213 calculations
for selected molecules from the GW5000 database.214 For
GW100, we used the structures as published in the original
work,82 except for vinyl bromide and phenol for which we used
the updated structures.215 To preclude potential confusion, we
emphasize that all results from the other codes we refer to
herein have been taken from the literature and have not been
calculated by us.
We herein use several all-electron (AE) STO-type basis sets

of double-ζ (DZ), TZ, and QZ size. The prefix “aug-” denotes
augmentation of a basis set with an additional shell of diffuse
functions for all angular momenta l = 0, 1, and 2. For
augmented QZ basis sets, an additional diffuse shell of f-
functions is added as well. Augmentation of the basis set with x
additional shells of polarization functions is denoted by xP. We
employ two different QZ basis sets: the even-tempered
QZ3P216 basis set and the larger QZ4P217 basis set. For a
detailed description of the basis sets, see van Lenthe and
Baerends.217 It should be noted, however, that all basis sets are
not correlation consistent (CC) and unsuitable for CBS limit
extrapolation. Also note that QZ3P and all augmented basis
sets are only available for the first 4 rows of the periodic table.
In the case of QZ3P, we will use QZ4P for all heavier elements,
and in the case of the augmented basis sets, we use the
respective basis set without augmentation.
If not indicated otherwise, we used the Normal auxiliary fit

set,218 Good quality for numerical integration,211 Normal
quality for thresholds controlling distance effects, and standard
numerical settings otherwise. We use imaginary time and
frequency grids with up to Nω = Nτ = 18 points each219 for
GW100 and Nω = Nτ = 16 points each for GW5000 and use a
pade-́approximant of order Nω to model the self-energy on the
real frequency axis. In all G0W0@PBE0 calculations on
GW5000, we used the unscaled Zero Order Regular
Approximation (ZORA).220−223

During orthonormalization of the Fock matrix in the SCF,
we remove columns of the transformation matrix when the
corresponding eigenvalues of the AO-overlap matrix are
smaller than some threshold ϵD.

196 As explained above, we
have adjusted this value to ϵD = 10−3 in all calculations using
QZ4P or augmented basis sets. Otherwise, the default of
ϵD = 10

−4 has been used.
3.2. Benchmarks. 3.2.1. The GW100 Database. The size

and type of the single-particle basis are the most crucial factors
influencing the results of a GW calculation.82 Using localized
basis functions, even on the QZ level, BSEs for HOMO and
especially LUMO QP energies can exceed several hundred
meV, necessitating a CBS limit extrapolation to obtain very
accurate reference values.46,82,214 Using localized AOs, one
needs to rely on heuristics since the expansion of MOs in this
basis does not converge uniformly, unlike expansions in terms
of PW224 or finite elements in RS.225 HOMO QP energies
obtained with these basis set types are generally in good
agreement with the original ones by van Setten et al.,82 while
differences for unbound LUMO energies often exceed 1
eV.210,226,227

Thus, it is not straightforward for our purpose to chose
appropriate reference values, and we will therefore use more
than one reference in the following. As a primary reference for
GW100, we use RS results228 by Gao and Chelikowsky.227

While these results are not extrapolated to the CBS limit, they

Chart 1
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are carefully converged and should be a very reliable reference.
This choice is mainly motivated by the large differences
between plane-wave and GTO implementations for unbound
LUMO energies. It has been argued by Kresse and co-
workers226 that the GTO-type basis sets of the def2 family
might not be flexible enough to adequately describe these QP
energies and lead to significantly overestimated unbound
LUMO energies. As also pointed out in ref 226, CC GTO-type
basis sets are much more suitable in this respect; however,
since we are not aware of reference values for GW100, this is
not an option for benchmarking. On the other hand, the
nanoGW results deviate to WEST/VASP by only 134/122
meV for GW100, only excluding all noble gases and H2 but
including all other molecules with unbound LUMOs.227 While
in comparisons between different codes these systems are often
excluded,210 we decided to retain them in this work. However,
we excluded from our analysis all noble gases and H2 since for
these molecules the discrepancies between RS, PW-pseudo-
potential, and AE codes often exceed 2 eV.82,210,226,227 We also
excluded CI4, KBr, NaCl, BN, O3, BeO, MgO, Cu2, and CuCN
for which there are multiple solutions for the HOMO when the
QP equation (10) is solved. This leaves us with a set of 85
molecules that we will discuss in the following. In Section
3.2.2, we benchmark our implementation against reference
results obtained with GTOs for a large number of organic
molecules with bound LUMOs.
The histograms in Figure 1 summarize the results of our

benchmarks on GW100 and show errors obtained with our

implementation and different basis sets with respect to the
nanoGW reference. For individual QP energies, we refer to the
Supporting Information. Figure 2 shows mean absolute
deviations (MAD) for the HOMO QP energies between
different codes and basis sets. Since we are not able to perform
basis set extrapolation, the QZ4P results are the best ones
attainable for us. We observe MADs of 0.24 eV with respect to
the nanoGW229 results and of 0.32 eV to the CBS limit
extrapolated (CBSLE) FHI-AIMS68,69,134 QP energies. With
respect to both, the RS and the FHI-AIMS CBS limit, QZ4P
yields an accuracy comparable to TURBOMOLE230 with the
smaller def2-TZVP basis set (sixth and seventh column in the
heatmap in Figure 2). QZ4P does not give significant

improvements over QZ3P, and with a MAD of 0.12 eV with
respect to the nanoGW reference, def2-QZVP performs
considerably better than QZ4P. The fact that the former one
has more polarization functions (e.g., (7s, 4p, 3d, 2f, 1g) vs (7s,
4p, 2d, 2f) for second row elements231) might explain part of
the discrepancy. Furthermore, the excessive truncation of the
QZ4P basis in the canonical orthonormalization procedure
during the SCF effectively diminishes the size of the virtual
space. This might also explain why QZ4P only improves
moderately over the significantly smaller TZ2P basis set (0.46
vs 0.32 eV) while going from def2-TZVP to def2-QZVP
reduces the MAD with respect to both CBS limits by roughly
50%. Also, a visual inspection of the error distributions for the
QZ3P and QZ4P QP HOMO energies in Figure 1 reveals that
the QZ4P errors show a larger spread and more often exceed
0.5 eV than those for QZ3P.
For the LUMO QP energies shown in the upper part of

Figure 1, aug-TZ2P, QZ3P, and QZ4P show comparable
MADs of 0.55, 0.56, and 0.52 eV, respectively, and thus
improve significantly over TZ2P with a MAD of nearly 1 eV
(see Table 1). For TZ2P and both QZ basis sets, the MAD of

the LUMO QP energies with respect to the RS reference
values is more than twice as large than for the HOMO, which
results in a rather poor description of the HOMO−LUMO
gap. This behavior is similar to the performance of the def2
family of GTO-type basis sets for GW100 for which the errors
for the LUMO are on average roughly twice as large than for
the HOMO.82 aug-TZ2P overestimates HOMO and LUMO

Figure 1. Error distributions (in eV) for G0W0@PBE with four
different STO-type basis sets for the HOMO (bottom) and LUMO
QP energies (top) in the GW100 database with respect to the
nanoGW reference. Due to its error larger than 3 eV, CO2 is not
included in the upper left plot.

Figure 2. MADs (upper triangle) and maximum absolute deviations
(lower triangle) in eV of QP HOMO energies computed with
different codes and basis sets, specified on the axes for G0W0@PBE.215

Table 1. MADs of the G0W0@PBE HOMO and LUMO QP
Energies Corresponding to Figure 1 and HOMO−LUMO
Gaps with Respect to the CBS Limit for Four Different
STO-Type Basis Setsa

TZ2P aug-TZ2P QZ3P QZ4P

HOMO 0.37 0.37 0.27 0.24
LUMO 0.94 0.55 0.56 0.52
gap 0.59 0.26 0.34 0.35

aAll values in eV.
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QP energies most symmetrically and consequently, with a
MAD of 0.26 eV, describes the HOMO−LUMO gap
significantly better than both QZ basis sets. The situation is
well-known from augmented GTO-type basis sets,73,209,232−235

which usually converge considerably faster to the CBS
HOMO−LUMO gap than the nonaugmented basis sets,209

although the individual HOMO and LUMO levels are often
not converged at all.
Finally, we investigate some LUMO QP energies with

exceptionally slow convergence to the CBS limit in more detail
and see whether convergence can be attained using larger basis
sets, keeping in mind the restrictions imposed by the PADF as
explained in Section 2; reaching the basis set limit is only
possibly for us for very small systems. While the CO2 LUMO
QP energy deviates from the CBS limit by more than 3 eV, also
for F2, CF4 C3H3, and CnH2n+2 for n = 1, ..., 4, the TZ2P
LUMO QP energies deviate between 1.7 and 1.4 eV from the
CBS limit. We investigate the convergence with respect to the
basis set size for these molecules (except for propane and
butane) in Figure 3 by adding diffuse functions to the QZ3P
basis set.

For all molecules except F2, our aug-QZ3P results agree very
well with the RS reference values. This is a little surprising
since the GTO-type basis set CBSLE results differ by more
than 1 eV for CH4, C2H6, and C3H3. In fact, we observe not
only for these systems that our unbound LUMO energies are
generally closer to RS and PW than to GTO references. While
being out of the scope of this work, this is an interesting
observation that deserves further investigation. For F2, the
extrapolated CBS limits from different codes are in good
agreement and the errors from aug-QZ3P are still hard to
explain with BSEs alone, although van Setten et al. found a
BSE of 0.53 eV for the LUMO energy using def2-QZVP.82

3.2.2. The GW5000 Database. We now turn our attention
to systems large enough for local approximations to take effect
and discuss the HOMO and LUMO energies of 20 organic
molecules with in between 85 and 99 atoms from the GW5000
database.214 These tests are crucial for our purpose. First, they
allow us to assess the effect of the values of the thresholds
controlling distance effects. As explained in detail elsewhere,162

we essentially rely on three thresholds in our implementation,
which we organize in three tiers, denoted as Basic, Normal, and
Good. For the exact values of these thresholds, we refer to the
Supporting Information.
The convergence with respect to the threshold tiers for

HOMO and LUMO QP energies is shown in Figure 4. As
shown in the lower panel, the HOMO energies from different
threshold tiers agree within 0.1 eV, and the HOMO energies
from the Normal and the Good threshold tier usually agree

within an accuracy of 60 mEV. Using the Basic threshold tier,
the LUMO QP energies show a maximum deviation of roughly
0.15 meV with respect to the Good tier. On the other hand, the
LUMO energies from the Normal and Good tier are in even
better agreement than the corresponding HOMO energies.
Thus, using the Normal tier ensures an internal precision of
our implementation of 60 meV for HOMO and LUMO QP
energies. In case only the HOMO level is of interest, sufficient
precision is already attained using the Basic threshold tier.
Second, the applicability of our implementation to the small

molecules in GW100 does not automatically imply the same
for larger systems. In fact, this is true for any method exploiting
locality in any form. Due to the reasons outlined in Section 2,
we refrain from reporting results with QZ and large augmented
basis sets for these systems. Instead, we want to investigate the
accuracy attainable using the TZ2P and aug-DZP basis sets for
which no numerical problems can be expected also for large
molecules.
We compare our results for QP HOMO and LUMO levels

as well as the HOMO−LUMO gap for the 20 selected
molecules to accurate reference values calculated with
numerical GTOs with the FHI-AIMS code in Figure 5.

MADs for these quantities with respect to the CBS limit are
given in Table 2. We observe that the TZ2P HOMO QP
energy never deviates from def2-TZVP by more than 0.1 eV
and the MAD of 0.39 eV is only 50 meV higher than the one
found for def2-TZVP. For the LUMO energy, the situation is
different. While def2-TZVP yields a MAD of 0.40 eV for this
quantity, TZ2P performs considerably worse with 0.56 eV.

Figure 3. Deviations of G0W0@PBE LUMO QP energies to the CBS
limit for six selected molecules from the GW100 database for different
STO-type basis sets (all values in eV).

Figure 4. Deviations of the Basic and Normal threshold tiers with
respect to the Good tier for HOMO (bottom) and LUMO (top) QP
energies on the G0W0/PBE0 level of theory (all values are in eV).

Figure 5. Deviations of LUMO (upper panel) QP energies, HOMO
(middle panel) QP energies, and HOMO−LUMO QP gaps (lower
panel) for the TZ2P (Normal thresholds) as well as the GTO-type
def2-TZVP and def2-QZVP basis sets with respect to the CBS limit
for the HOMO energies of the 20 large molecules from the GW5000
database. HOMO−LUMO QP gaps from aug-DZP are shown as well.
All values are in eV.
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This has a profound effect on the description of the HOMO−
LUMO gap. Since def2-TZVP overestimates the LUMO level
not much more than the HOMO QP energy, the HOMO−
LUMO gap shows a MAD of 0.06 eV, which is in excellent
agreement to the CBS limit, while TZ2P yields a MAD of 0.17
eV. On the other hand, using the smaller aug-DZP basis set, we
find a MAD of 0.08 eV, in good agreement with the CBS limit.
As might be inferred from Table 2, this success results mainly
in a poorer description of the HOMO level compared to
TZ2P, and the error cancellation between HOMO and LUMO
is not always reliable, which can be seen from systems #8 and
#9 whose HOMO−LUMO gap differs from the CBS limit by
0.2 eV. It should also be noted that aug-DZP calculations are
slightly slower than TZ2P ones for medium and large systems
since more AO-pair products need to be considered.
Finally, we investigate the accuracy of our algorithm as a

function of the system size. To this end, we randomly selected
250 molecules from the GW5000 database and sorted these
systems from smallest (12 atoms) to largest (99 atoms). Figure
6 shows the deviations from the CBS limit of our G0W0@PBE0

results for the HOMO, LUMO, and HOMO−LUMO QP gap
with the TZ2P and aug-DZP basis sets as well as FHI-AIMS
results using the def2-TZVP and def2-QZVP basis sets.214

Additionally, we performed linear fits as implemented in
Numpy,236 which are also shown in Figure 6. Essentially, we
obtain the same picture as for the 20 large molecules: TZ2P
performs nearly as good as def2-TZVP for the HOMO QP
energies and considerably worse for the LUMO level, which
translates into a worse description of the HOMO−LUMO gap.
While it is observed that the STO results show a larger spread

than their GTO counterparts especially for LUMO energies,
we also observe that the deviation from the CBS limit
decreases with increasing system size for all basis sets. For all
subplots in Figure 6, the TZ2P fit is more or less parallel (also
see the fit parameters in the Supporting Information for
comparison) to the GTO fits, while the slope in the aug-DZP
fit for the HOMO−LUMO gap is slightly more negative. In
the same way as for the subset of 20 large molecules, aug-DZP
produces HOMO−LUMO gaps that on average agree with the
CBSLE reference within 0.15 eV for systems larger than a few
tens of atoms. However, in some cases the errors can still be
rather large (e.g., larger than 0.4 eV in 7 out of 250 cases),
while the def2-QZVP BSE practically never exceeds 0.1 eV.
The decreasing errors are most likely due to basis set

superposition, which leads to a more complete basis when the
system increases, and the assumption that this effect is more
pronounced for basis sets with many diffuse functions such as
aug-DZP is reasonable. Thus, we can conclude that the
accuracy of our algorithm is not negatively affected when the
system size is increased . We note that local overcompleteness
and the associated numerical issues can already be encountered
for very small systems like the ones on the left side of the plots
in Figure 6. On the other hand, it is highly unlikely that they
become more pronounced for larger systems due to the locality
of the AOs.

3.3. Representative Timings. In order to analyze the
asymptotic scaling of our algorithm, we present G0W0@PBE/
TZ2P calculations on a series of water clusters237 using the
same numerical settings as for GW5000, the Basic and Normal
tiers of thresholds, and 12 imaginary time and imaginary
frequency points. All calculations presented in this subsection
were performed on 2.2 GHz intel Xeon (E5-2650 v4) nodes
(broadwell architecture) with 24 cores and 128 GB RAM each
(bw nodes in short). Figure 7 shows the wall times for the

G0W0 part of the calculations and the exponents of the
polynomials describing the asymptotic scaling of these
calculations with increasing system size. The information on
CPU time and asymptotic scaling of the key steps of the
algorithm for the largest of these systems are given in Figure 8.
The largest water cluster here comprises 432 atoms with

7776 AOs and 36 576 ABFs. Using the Normal threshold tier,
the whole G0W0 calculation takes 5 h on two nodes. As shown
in Figure 8, the most expensive step is the calculation of Σ,
which is responsible for about half of the wall time of the
whole calculation, followed by the evaluation of P. The
evaluation of Σ is also the step that is accelerated most when
the thresholds are loosened. This is due to the contractions (eq

Table 2. MADs of HOMO Energies, LUMO Energies, and
HOMO−LUMO Gaps with Respect to the CBS Limit for
the 20 Considered Molecules from the GW5000 Database
for Different Basis Setsa

def2-TZVP def2-QZVP TZ2P aug-DZP

HOMO 0.34 0.14 0.39 0.46
LUMO 0.40 0.17 0.56 0.53
gap 0.06 0.03 0.18 0.08

aThe Normal tier of the thresholds has been used in all PADF-G0W0
calculations. All values are in eV.

Figure 6. Errors with respect to the CBS limit for HOMO (left) and
LUMO QP energies (middle) as well as HOMO−LUMO QP gaps
(right) with different basis sets for 250 randomly selected molecules
from the GW5000 database (dots) as well as linear fits, f(x) = a × x +
b. The systems have been sorted according to increasing size.

Figure 7.Wall times in hours for G0W0@PBE/TZ2P calculations on a
series of water clusters and a linear alkane chain (excluding the
preceding SCF). All calculations have been performed on 2 bw nodes.
The exponent of the polynomial describing the asymptotic scaling of
the algorithm is given on the right of each plot.
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50), which are tremendously accelerated when the multipole
approximation is used for an increasing number of atom pairs.
Consequently, the asymptotic scaling of this step is decreased
from N2.34 to N2.15. Also, the asymptotic scaling of P is reduced
considerably (from N2.19 to N2.05), so that the wall time of the
total calculation can be reduced to less than 4 h. Note that the
evaluation of W is not affected by changing the thresholds and
asymptotically scales as N3. However, even for the largest water
cluster considered here, the timings are clearly dominated by P
and Σ and the calculation ofW can not be expected to become
a bottleneck even for much larger systems.
Water clusters are very compact systems due to their

spherical shapes. For low-dimensional systems, the asymptotic
scaling is actually worse (since N3 steps become more
important) while the overall calculations are considerably
faster. The timings for a series of linear alkane chains is given
for comparison in Figure 7. With the same thresholds, the
G0W0 calculation for C160H322 takes roughly 2.5 h, only half the
time as the one for (H2O)144 even though the former system is
larger. In fact, P is calculated in less than half an hour, which is
less wall time than is required for the calculation of W̃.
Next, we investigate scaling with respect to the single-

particle basis at a fixed system size. As shown in Figure 9, even

for the small (H2O)32 cluster, our algorithm scales quadrati-
cally with the size of the single-particle basis when non-
augmented basis sets are used. Using augmented basis sets, the
asymptotic scaling is worse owing to the large number of basis
functions with a very slow decay with the distance to the nuclei
on which they are centered, leading to a smaller number of
negligible AO products. High scaling with respect to the single-
particle basis is a general shortcoming of AO-based algorithms
compared to MO-based ones, and it is difficult to envisage how
our algorithm might be modified to overcome this issue.

Finally, we comment on the parallel performance of our
algorithm. Figure 10 shows the speedup with increasing

number of cores. We achieve a parallel efficiency of 66% when
going from 1 to 24 cores. The deviation from the ideal speedup
is partly due to small fractions of the serial code in our
algorithm but also due to unnecessary network communica-
tion. Also due to the latter factor, the parallelization over
multiple nodes is less efficient. At the moment, our algorithms
for the calculation of P and Σ communicate a lot of data, an
aspect that we have not optimized yet.
For completeness, we also mention the large memory count

of our algorithm increasing as N2 with the system size.
However, the practical memory bottleneck is rather the storage
of C. Although only linearly scaling, we store it in shared
memory, which prevents the scalability of our algorithm to
even larger systems. The memory requirements are reduced for
low-dimensional systems for which C becomes smaller;
however, it is clear that the systems much larger than the
ones presented herein can not be treated any more. Still, for
systems of hundreds of atoms for which conventional
implementations require a supercomputer,98,99 G0W0 calcu-
lations with our algorithm can be performed in a routine
fashion, which puts its application in mainstream computa-
tional spectroscopy within reach.

4. CONCLUSION
In this work, we have presented a PADF-based G0W0
implementation using STOs and relying on an imaginary
time representation of the single-particle Green’s function. Our
algorithm combines quadratic scaling in memory and
operation count with a very small prefactor due to a sparse
map from the ABF space to the AO product space. Using
realistic numerical settings, a G0W0 calculation for a spherically
shaped water cluster with 432 atoms, 7776 AOs, and 36 576
ABFs takes 240 CPU hours. Using slightly looser thresholds,
the same calculation is done in 180 CPU hours and the G0W0
calculations for a linear alkane chain with the same number of
AOs takes only about 100 CPU hours. Thus, our algorithm is
at least 1 order of magnitude faster than the fastest state-of-the-
art canonical implementations.99,209

The accuracy of our algorithm for the calculation of the
HOMO and LUMO QP energies in the GW100 database has
been investigated by comparison to accurate RS reference
values. We found MADs of 0.37 eV for TZ2P and 0.24 eV for
QZ4P for the HOMO and 0.94 eV for TZ2P and 0.52 eV for
QZ4P for the LUMO energies, respectively. For the HOMO
level, FHI-AIMS/def2-QZVP only deviates from the CBS limit
by 0.12 eV on average and TURBOMOLE/TZVP deviates by

Figure 8. Contributions to total G0W0 wall times from different key
steps for a series of water clusters using the TZ2P basis set. Left bar in
each group: Basic threshold quality; right bar in each group: Normal
threshold quality. All calculations have been performed on 2 bw
nodes.

Figure 9. Timings (in seconds) and the asymptotic scaling of our
algorithm with basis sets of increasing size for (H2O)32 with the same
settings as described above (Normal thresholds) using a single bw
node.

Figure 10. Speedup for (H2O)64 (the same settings as described
above, Normal thresholds) with the number of CPUs.
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0.24 eV. Thus, for GW100, our algorithm is only slightly more
accurate on the QZ4P level as canonical implementations
using def2-TZVP (where one should keep in mind that QZ4P
is smaller than def2-QZVP) while it is difficult to make a
definite statement about the quality of our LUMO energies
due to large discrepancies between different codes.82,210,226,227

Larger basis set errors aside, two factors are responsible for
the relatively poor performance of our algorithm for GW100.
First, for many systems with QP solutions close to the poles of
the self-energy, our frequency treatment with AC is inaccurate
and we often observe large differences with respect to the
reference. This feature is also observed within other closely
related schemes.99,226 As expected,210 this issue is mostly
avoided when a gKS reference is used. Certainly, using a more
sophisticated algorithm to generate larger imaginary frequency
grids than the present ones, which are limited to a maximum of
19 points, will also improve our algorithm for systems with a
small KS HOMO−LUMO gap and/or low-lying core states for
which generally higher resolution on the frequency axes is
required.238

Second, to also retain numerical stability of the PADF
approach for large basis sets, parts of the unoccupied space
need to be projected out during the SCF, which effectively
diminishes the size of the basis set, especially when the basis
set comprises many diffuse functions. This shortcoming can be
traced back to the intrinsic difficulty of representing highly
delocalized AO-pair densities using ABFs centered on two
atoms only. With our auxiliary fit sets having been optimized
for gKS calculations, this can lead to very large fitting
coefficients, which in turn cause numerical instabilities. This
issue is of a technical nature and can possibly be resolved by
adding more diffuse functions with high angular momenta to
our current auxiliary basis sets.160 Employing auxiliary basis
sets optimized for correlated methods, as it is common practice
in global DF,239−245 seems to be a promising route to approach
the accuracy of canonical G0W0 also for large QZ basis sets and
large systems.
Using smaller basis sets of augmented DZ and TZ quality,

we calculated the HOMO and LUMO energies of a set of 250
organic molecules between 12 and 99 atoms from the GW5000
database and observed that the deviation from the FHI-AIMS
CBSLE reference, not only within our scheme but also within
the canonical scheme using the GTO-type basis sets, is actually
decreasing with an increasing system size. Thus, we conclude
that PADF-G0W0 calculations on the augmented DZ and TZ
level can safely be performed for large systems as well. For
another subset of GW5000 comprising 20 large molecules with
in between 85 and 99 atoms, the aug-DZP HOMO−LUMO
gap deviates by only 0.08 eV on average from the CBS limit,
which is comparable to the FHI-AIMS/def2-TZVP reference.
To summarize, it is clear that further technical improve-

ments of our algorithm are needed. Nevertheless, the examples
in this work demonstrate that already in its current form it
enables accurate G0W0 calculations for large systems of
hundreds of atoms with TZ and augmented DZ basis sets in
a routine fashion. Not only its scalability, but also its very small
prefactor make it amenable to quasi-particle and fully self-
consistent GW calculations, which are possible with
straightforward extensions of our algorithm since we construct
the complete Σ instead of only its diagonal in the MO basis.
Due to the usually consistent overestimation of QP energies,
BSEs often compensate each other to a large extent in
calculations of HOMO−LUMO gaps, and in the past, many

GW calculations with augmented DZ basis sets have provided
important insights into the electronic properties of practically
relevant systems.73,209,232−235 This indicates that our algorithm
might prove to be useful in practice already in its current form,
e.g., in the study of large organic chromophores in solution or
donor−acceptor systems, and we think that its computational
efficiency outweighs its current limitations to reach the CBS
limit with guaranteed accuracy.
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(243) Schütz, M.; Manby, F. R. Linear scaling local coupled cluster
theory with density fitting. Part I: 4-external integrals. Phys. Chem.
Chem. Phys. 2003, 5, 3349−3358.
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