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Transposable elements are regulated by context-
specific patterns of chromatin marks in mouse
embryonic stem cells
Jiangping He1,2,3,4, Xiuling Fu5, Meng Zhang1,2,3,4,6, Fangfang He5, Wenjuan Li2,6, Mazid Md. Abdul1,2,3,4,6,

Jianguo Zhou1,2,3,6, Li Sun5, Chen Chang5, Yuhao Li5, He Liu1, Kaixin Wu1, Isaac A. Babarinde5, Qiang Zhuang5,7,

Yuin-Han Loh8,9, Jiekai Chen 1,2,3, Miguel A. Esteban 1,2,3,6 & Andrew P. Hutchins 5

The majority of mammalian genomes are devoted to transposable elements (TEs). Whilst

TEs are increasingly recognized for their important biological functions, they are a potential

danger to genomic stability and are carefully regulated by the epigenetic system. However,

the full complexity of this regulatory system is not understood. Here, using mouse embryonic

stem cells, we show that TEs are suppressed by heterochromatic marks like H3K9me3, and

are also labelled by all major types of chromatin modification in complex patterns, including

bivalent activatory and repressive marks. We identified 29 epigenetic modifiers that sig-

nificantly deregulated at least one type of TE. The loss of Setdb1, Ncor2, Rnf2, Kat5, Prmt5,

Uhrf1, and Rrp8 caused widespread changes in TE expression and chromatin accessibility.

These effects were context-specific, with different chromatin modifiers regulating

the expression and chromatin accessibility of specific subsets of TEs. Our work reveals the

complex patterns of epigenetic regulation of TEs.

https://doi.org/10.1038/s41467-018-08006-y OPEN

1 Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cell and Regenerative
Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China. 2 Joint School of Life Sciences,
Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 511436 Guangzhou, China. 3 Guangzhou
Regenerative Medicine and Health-Guangdong Laboratory (GRMH-GDL), 510530 Guangzhou, China. 4 University of Chinese Academy of Sciences, 100049
Beijing, China. 5 Department of Biology, Southern University of Science and Technology, 1088 Xueyuan Lu, 518055 Shenzhen, China. 6 Laboratory of RNA,
Chromatin, and Human Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China. 7 State Key
Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 300071 Tianjin, China. 8 Epigenetics and Cell Fates Laboratory,
A*STAR Institute of Molecular and Cell Biology, 61 Biopolis DriveProteos, Singapore 138673, Singapore. 9 Department of Biological Sciences, National
University of Singapore, Singapore 117543, Singapore. Correspondence and requests for materials should be addressed to
A.P.H. (email: andrewh@sustc.edu.cn)

NATURE COMMUNICATIONS |           (2019) 10:34 | https://doi.org/10.1038/s41467-018-08006-y |www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0001-5168-7074
http://orcid.org/0000-0001-5168-7074
http://orcid.org/0000-0001-5168-7074
http://orcid.org/0000-0001-5168-7074
http://orcid.org/0000-0001-5168-7074
http://orcid.org/0000-0002-1426-6809
http://orcid.org/0000-0002-1426-6809
http://orcid.org/0000-0002-1426-6809
http://orcid.org/0000-0002-1426-6809
http://orcid.org/0000-0002-1426-6809
http://orcid.org/0000-0001-7784-2255
http://orcid.org/0000-0001-7784-2255
http://orcid.org/0000-0001-7784-2255
http://orcid.org/0000-0001-7784-2255
http://orcid.org/0000-0001-7784-2255
mailto:andrewh@sustc.edu.cn
www.nature.com/naturecommunications
www.nature.com/naturecommunications


The modification of histones is an elaborate system to reg-
ulate gene expression, and provides an epigenetic land-
scape for the cell-type-specific interpretation of the

genome. Yet, the major class of genomic elements in the cellular
genome are not genes, but transposable elements (TEs), including
endogenous retroviruses (ERVs)1. TEs were originally thought of
as genetic parasites with roles in human disease2, but TEs are now
understood to contribute to normal biological processes3. There
are many examples of exapted TEs that have become host cell
genes, such as the RAG enzymes which are essential for antibody
and T cell receptor recombination, or the Syncytin genes which
are involved in placental development3,4. TEs can be transcribed
to produce RNA, and have contributed to the evolution of long
non-coding RNAs, microRNAs, and circular RNAs5. In addition,
TEs often mimic host cell functions by incorporating cis-
regulatory elements6, which can recruit transcription factors
(TFs) to promote TE activity. This was initially observed for the
TF repressor REST7, but has since been observed for a wide-range
of TFs8–10. TEs copy themselves in the genome and are co-opted
to form new regulatory elements1,11,12, and contribute to the
rewiring of gene regulatory networks6. However, much of this
data on exaptation of TEs is derived from genomic data and there
is argument over how much is functional6.

TEs/ERVs are silenced by a range of molecular mechanisms,
including heterochromatin formation13–15, mRNA editing16, and
DNA methylation17. DNA methylation is thought to be the
dominant suppressive mechanism in somatic tissues17. However,
DNA is globally demethylated during early embryonic develop-
ment, and TEs are released from repression in a controlled, stage-
specific manner18,19. The TEs are then free to compete with the
epigenetic suppression mechanisms to duplicate themselves and
enter the germ line20. Consequently, there is a delicate balance
between the beneficial effects of TEs, and their deleterious effects
on genome integrity6,21,22.

TEs are suppressed in embryonic cells in a process that is well
described for ERVs. Zinc-finger proteins (ZFPs) bind to specific
sequences in ERVs23, recruit the adaptor protein TRIM28/KAP1,
and the histone H3K9me3 methyltransferase SETDB1 to silence
TEs13,24–28. In addition to H3K9me3, there are other modes of
epigenetic suppression of TEs29, such as the methylation of
H4K20me330, H3K27me331, and H4R3me220, the biotinylation
and sumoylation of H2A, H3, and H4 histones32,33, and the
deposition of the histone variant H3.334. It is clear that the epi-
genetic system is regulating TEs4,29,35–38, however, there are at
least 1100 distinct types of TE, comprising millions of genomic
copies, for which the epigenetic regulation is unclear.

Here, we reveal that TEs are marked by chromatin modifica-
tions in complex patterns. Of the 32 chromatin marks we
explored, 22 were enriched on at least one TE type. We find
evidence not only of repressive marks, but widespread marking of
TEs by activatory marks, including bivalent marking of TEs by
repressive H3K9me3, and activatory H3K27ac chromatin marks.
When we knocked down a panel of chromatin regulators, 29 of 41
led to the deregulation of expression of at least one type of TE.
The loss of Setdb1, Ncor2, Rnf2, Kat5, Prmt5, Uhrf1, and Rrp8 led
to widespread changes in the expression of TEs, and a corre-
sponding change in chromatin accessibility. Finally, we explore
the consequences of these observations by showing that the loss
of chromatin modifiers induces a gene expression program
similar to totipotent 2 cell (2C) embryos, characterized by the
upregulation of MERVL TEs and 2C-specific genes. Overall, our
data suggests that the chromatin modifying system manages the
expression of TEs by context-specific deposition of chromatin
marks that regulate the chromatin state and expression level
of TEs.

Results
TEs are marked by overlapping patterns of chromatin marks.
To explore the chromatin code for the suppression of TEs,
we uniformly reanalyzed mouse ESC ChIP/epigenetic-seq data
for 32 chromatin marks, including histone methylation, acetyla-
tion, ubiquitination, and variant histones, along with DNA
5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC),
and Assay for Transposase-Accessible Chromatin (ATAC)-seq
(Supplementary Data 1). Data was quality controlled by remo-
ving poorly correlating biological replicates (See Methods and
Supplementary Figure 1a). A concern in the analysis of repeats is
the use of multimapped reads. In our analysis, for multimapped
reads only the highest scoring alignment was kept, and was
randomly assigned to a TE copy. To reduce bias due to random
distribution of reads across TE copies we considered TEs as
metagenes that describe the entire set of TE copies across the
genome. Below, we show some example genomic views, but it
should be kept in mind that the analysis of individual TE copies
can be ambiguous.

The ChIP-seq data comes from serum+ LIF grown ESCs,
which have relatively high levels of DNA methylation, particu-
larly at Intracisternal A-particle (IAP) TEs38–40. However, many
TEs have demethylated DNA, and ESCs use DNA methylation-
independent mechanisms to suppress TEs. Knockout of all three
DNA methyltransferases led to upregulation of mostly IAP-
family TEs only40, and this upregulation is rapidly compensated
for by small RNA and polycomb-mediated repression38,40.
Indeed, only 65/679 TE types had >2-fold enrichment of 5mC
DNA methylation, and most of the methylated TEs were IAP or
IAP LTRs (Long terminal-repeats), and a mixture of other ERVs,
for example, BGLII_Mus (Fig. 1a, b, Supplementary Figure 1b
and Supplementary Data 2).

The second major mechanism for the regulation of TEs in
ESCs is the formation of heterochromatin, mediated by
H3K9me3 and H4K20me314,41,42. We found that 87/679 TE
types were > 2-fold-enriched with H3K9me3, and 72/679 were
marked by H4K20me3. H3K9me3 and H4K20me3 tended to co-
occur, and they both marked 58/679 TE types (Supplementary
Data 2). Examples are shown for the ERVK IAPLTR4_I, and
IAPEY-int which were enriched for H3K9me3 and H4K20me3
(Fig. 1a, b).

Of the remaining TEs, some had simple patterns of chromatin
modifications, such as MERVL TEs that were enriched only for
H3K56ac (Fig. 1b). In total 41/679 TE types were enriched with a
single chromatin mark (Supplementary Data 2). The most common
pattern was for multiple chromatin marks on the TEs, as 117/679 had
2 or more chromatin marks, and, at a relaxed enrichment threshold
of >1.5 fold, 198/679 TE types were enriched with at least 2 chromatin
marks (Supplementary Data 2). Examples include RLTRETN_Mm,
which was enriched for 14 of the 32 chromatin marks we profiled
(Fig. 1a, b). Interestingly, TEs were marked by chromatin patterns
associated with other genomic features. Many TEs were enriched with
chromatin marks indicative of enhancers, such as H3K4me1 which
marked 23/679 TE types. For example, a 3.0 fold-enrichment of
H3K4me1 was found on the ERVK RLTR9D2 (Supplementary
Data 2). The promoter mark H3K4me3 was enriched at 14/679 TEs,
including the LINE (long interspersed nuclear element) L1Md_Gf
(7.2-fold-enriched), and the ERVK RLTRETN_Mm (2.9 fold-
enriched) (Fig. 1a, b and Supplementary Data 2). ERVKs/ERV1s
were enriched with activatory chromatin marks, including histone
acetylations, such as H3K27ac (RLTR13G >6.2-fold-enriched) and
H2B120ac (MMERGLN_LTR >4.6 fold-enriched) (Fig. 1a, c). In total
75/679 TE types were marked by one or more acetylated histone
mark and 42/679 by H3K27ac. To gain a global view of TE
chromatin, we clustered the patterns of chromatin marks on TEs
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(Supplementary Figure 1c). We could identify 6 major clusters of
chromatin marks, including: a heterochromatic-cluster (H4K20me3,
H3K9me3, H3.3), a H4Rme2-cluster (H4R3me2, 5mC, H1D, H1C), a
transcriptional elongation-cluster (H3K36me3, H3K36me2), a var-
iant/histone-polycomb-cluster (H3K27me3, H3K27me2, H3.1 and
H3.2), a promoter-cluster (H3K4me3, H3K9ac), and an enhancer-like
cluster (H3K4me1, H3K27ac, ATAC, H2BK20ac) (Supplementary

Figure 1c). Overall, of the 32 chromatin marks we analyzed 22
were enriched >2 fold on at least one TE type, and 27 were enriched
>1.5 fold (Supplementary Data 2), indicating broad and complex
patterns of chromatin marks on TEs.

LINE elements are a special case as they occupy 18% of
the mouse genome4, and are increasingly recognized for
their important roles in embryogenesis and chromatin
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Fig. 1 TEs are marked by TE-type-specific epigenetic signatures. a Heatmap of 32 chromatin marks in normal serum-grown ESCs and their fold-enrichment
at the indicated TE types. The RPKM (reads per kilobase of TE per million library sequence reads) was measured for all copies of that TE type, and each TE
type was treated as a metagene. Fold-enrichment over background was calculated by measuring the RPKM for each TE type, taking the maximum binned
value, and comparing this to size matched, randomly selected genomic regions. A chromatin mark was considered enriched if it was > 2-fold enriched
(marked with an asterisk). Those TE types > 4 fold-enriched are indicated with a cyan asterisk. See Supplementary Data 1 for detailed sample information.
The full heatmap and table for all TE types is in Supplementary Figure 1b and Supplementary Data 2. b Read count tag density pileups (In RPKM) of the
indicated chromatin marks for the selected TEs. The TEs were scaled to the same size, and the flanking 5 kb regions are shown. n= indicates the number of
TEs used in that pileup, for this and all subsequent pileup figures. c, d Native-ChIP-qPCR using antibodies against H3K27ac and H3K9me3 for selected TEs,
measured as percent of input. The location of the primer pairs are indicated with red lines in the genomic views in (c). See Supplementary Data 7 for the
primer pair sequences. Genomic locations are from the mm10 mouse assembly, for this and all other genomic figures. The scale of the profiles ranges from
a baseline of 0 up to the indicated value, in normalized arbitrary units, for this and all subsequent genome views. Native-ChIP-qPCR (d) was performed
three times in biological replicate each with three technical replicates, the open circles indicate the mean of the technical replicates, the red bar is the mean
of the biological replicates, and the error bars are the standard error of the mean. Source data are provided as a Source Data file
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organization14,43,44. The analysis of LINE TEs suggests that they
are mainly enriched with H4R3me2 (Fig. 1a and Supplementary
Data 3). However, LINEs can be divided into longer near-intact
elements and shorter truncated versions. We split the LINE1
elements into long (>5 kb) and short (<5 kb), and measured
the chromatin mark enrichment at the two classes of LINEs.
Whilst both long and short LINEs were enriched for H4R3me2,
the long LINEs were enriched for 15/32 chromatin marks
(Supplementary Figure 1d). This included chromatin marks
representing many genomic elements, including enhancers
(H3K4me1, H3K27ac), promoters (H3K4me3), activatory regions
(acetylated histones), DNA methylation (5mC and 5hmC), and
heterochromatin (H3K9me3, H4K20me3). The chromatin marks
tended to be located at the 5′ end of the LINEs (Supplementary
Figure 1e). The chromatin at LINEs nonetheless remains difficult
to analyze as LINEs occupy so much of the mouse genome. They
are frequently close to other regulatory elements, and this can
bias the chromatin patterns. Nonetheless, the pattern of
chromatin marks on LINEs is complex, and highlights their roles
in recruiting TFs10, in chromatin organization43, and cell type
control44.

We noticed that many TE types had both an activatory and a
repressive chromatin mark. For example, 16/679 TE types had
both H3K9me3 and H3K27ac (Supplementary Data 2). One
explanation for the overlapping patterns of activatory and
repressive chromatin marks is that individual TE copies have
discreet chromatin marks. However, genome views and pileup
heatmaps suggested that the chromatin marks were simulta-
neously marking the TE copies (Supplementary Figure 1f, g).
These observations come with two important caveats. The first is
that the ChIP-seq data was generated from pooled cells, and the
marks could separately label different cells. The second caveat is
related to uncertainty in mapping reads to specific TE copies due
to the repetitive nature to TEs. To address the latter issue, we
performed native-ChIP-qPCR for a selection of TEs, using primer
pairs that amplified unique regions of the genome close to the
TEs (Fig. 1c). As controls, we used primer pairs for IAPEZ-int,
ETnERV-int, IAPLTR1a_Mm and RLTR10B2 (marked only by
H3K9me3), and RLTR13E and RLTR13D6 (marked only by
H3K27ac). In agreement with the genomic views, the TEs,
L1Md_A/T, LTR9E, RLTR1B, RLTRETN_Mm, and LTRIS3, were
indeed enriched for both H3K9me3 and H3K27ac, as measured
by native-ChIP-qPCR (Fig. 1d). Overall, the native-ChIP-qPCR
results closely matched the genome views (Fig. 1c), and indicated
that, at least for this limited set of TEs, they are marked by both
activatory and repressive chromatin marks.

Chromatin modifiers are recruited to TEs. TEs can function as
regulatory elements, recruiting TFs and chromatin modifiers
(CMs)3,9,45. To explore the role of CMs in depositing chromatin
marks at TEs we collected 91 publically available ChIP-seq
datasets for CMs in ESCs (Supplementary Data 1 and 3). In
agreement with the patterns of chromatin marks at TEs, CMs
were also bound to TEs in specific patterns (Fig. 2a). All 91 CMs
were enriched >2 fold on at least 1 TE type, and 174/691 TE types
were enriched with at least 1 CM, and of those, 134/174 were
enriched with 2 or more CMs (Supplementary Data 3), for
example RLTR46, which was bound by HCFC1, KANSL3, CHD8,
and YY1 (Supplementary Figure 2a). TEs often contain DNA-
binding motifs for TFs8, which can recruit CMs. To explore the
TF binding motifs inside TEs, we performed de novo motif dis-
covery. TEs were rich in DNA-binding motifs (Supplementary
Figure 2b), and most types of DNA-binding motif are repre-
sented. We noticed that the YY1 and REST motifs were enriched
in our analysis. The YY1 motif was enriched at LINE, IAP, and

MERVL TEs, as previously reported46, and ChIP-seq data for
YY1 showed that YY1 was bound to IAPLTR2b (Supplementary
Figure 2c). The REST motif was identified as enriched in
RMER21A TEs, and ChIP-seq data indicated REST was binding
to RMER21A (Supplementary Figure 2c). One motif that inter-
ested us was the NR5A2 motif, which was in almost all copies of
RLTR13B2 (Supplementary Figure 2d). NR5A2 is interesting as it
can reprogram primed EpiSCs to naive ESCs47. ChIP-seq data
indicated that NR5A2 was bound to RLTR13B2 TEs (Supple-
mentary Figure 2e), and RLTR13B2 was marked by a pattern of
chromatin marks reminiscent of enhancers (H3K27ac, H3K4me1,
and other activatory marks) (Supplementary Figure 2f). In
addition to NR5A2 binding, there was a range of CMs bound,
including mediator complex proteins, MED1, MED12, and
NIPBL, and several co-activator/repressor complex proteins,
including ASH2L, BRD4, HDAC1/2, KDM1A, P300, and
SMARCA4 (Supplementary Figure 2g). Importantly, RNA-seq
and ATAC-seq data indicated that Nr5a2 and RLTR13B2 were
specifically expressed in naive ESCs, and that the RLTR13B2 TEs
had open chromatin only in the naive ESCs (Supplementary
Figure 2h, i). This analysis suggests that RLTR13B2 is under the
epigenetic control of NR5A2, and may be acting as a cis-
regulatory element for NR5A2. These results highlight the
interactions between TEs, TFs, and CMs.

To interrogate the global arrangement of CMs, chromatin
marks and TEs, we generated a relational network. Edges were
drawn between the nodes (TEs/gray, chromatin marks/pink, or
CM/green), if the chromatin mark or CM was enriched >2 fold
on the TE type (Fig. 2b). One major group in the network was the
IAP-family TEs which were marked by heterochromatic marks,
such as H3K9me3, and H4K20me329,30 and the CMs SETDB1,
SUV39H1/2, TRIM28, and ZFP809 (Fig. 2b–d). Many of the IAPs
also had methylated DNA48,49, and were bound by MBD-family
proteins50 (Fig. 2a). The chromatin structural protein CTCF was
bound to RLTR46 TEs9, along with its known protein partners
RAD21, STAG1, and STAG251 (Fig. 2c). We also observed other
CMs enriched at RLTR46 TEs, including HCFC1, KANSL3,
CHD8, and YY1 (Supplementary Figure 2a; Supplementary
Data 3). The widespread binding of CMs to a TE is similar to
the pattern observed for LINE L1s in human cancer cell lines,
which are bound by a large number of TFs/CMs, including
CTCF10. Interestingly, we did not observe CTCF bound to L1, in
agreement with a previous report9, suggesting CTCF binding to
L1 is species-specific.

Global co-correlation of the binding patterns of all CMs and
chromatin marks on TEs revealed several clusters of co-occurring
CMs/marks (Supplementary Figure 3). We annotated the clusters
based on the function of known CM members. There were two
supergroups which we designate the Heterochromatin group and
the Active/Open group, supplemented by several smaller groups
that were distinguished by known regulators/binders of TEs, such
as DAXX52, REST7, or CTCF9,10. Amongst the Active/Open
super-group were several subgroups which could be distinguished
based upon their major members, such as the P300/mediator, or
Pol II, along with groups that had patterns resembling enhancers
(H3K4me1). One of the subgroups contained CHAF1A, a histone
chaperone involved in depositing the variant histone H3.3, both
of which have been implicated in TE control24,34. Finally, the
Heterochromatin supergroup contained many factors specific for
silencing, particularly SETDB1, MBD proteins and the chromatin
marks H3K9me3 and H4K20me3. Overall, TEs were bound by a
wide-range of CMs associated with both repressive and activatory
chromatin (Fig. 2a, c, d and Supplementary Data 3), and these
results demonstrate the interconnected binding patterns of
the TEs by CMs through chromatin marks. However, although
CMs bind promiscuously to TEs in a complex chromatin

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-018-08006-y

4 NATURE COMMUNICATIONS |           (2019) 10:34 | https://doi.org/10.1038/s41467-018-08006-y | www.nature.com/naturecommunications

www.nature.com/naturecommunications


0 3
Log

2 
(fold enrichment)

c

IAPLTR2b 5Kb
0

10

20

30 SETDB1

Input

R
P

K
M

0
RLTR46IAPLTR4

1

3

5

7

5Kb

SUV39H1
SUV39H2

RLTR13D6
0
5

10
15
20
25

RLTR10E
0
5

10
15
20
25

Input

0

4

8

12

16

RLTRETN_Mm

d

H4K20me3
H3K9me3

SETDB1
SUMO2
TRIM28
ZFP809

IAPLTR2b

chr1:53713888-53729976

H4K20me3
H3K9me3
SUV39H1
SUV39H2

IAPLTR4 IAPLTR4

chr13:12819524-12841460

STAG2

RLTR46

RAD21
CTCF

STAG1

chr2:87419977-87458013

H3K27ac
H2BK20ac
H3K4me1

ATAC
SMARCA4

MED12
ELL3

ASH2L

RLTR13D6

chr2:51434042-51462633

NELFA
Pol II

Pol II Ser5P

RLTRETN_Mm

chr9:95513524-95534033

b

a

RLTR6

RLTR46
RLTR41B

IAPs

RLTR9D
RLTR9E

RLTR9A
RLTR13

RMER12B RMER12B

H4K20me3

H3K9me3

SUV39H1

SUV39H2

SETDB1

TRIM28

SUMO2

ZFP809

MECP2
MBD1A
MBD1B

MBD4

MBD2A
MBD2T

5mC
5hmC

H3K56ac

H3.3

H3K27ac

H3K4me1

H3K4me2

H2BK20ac

H4R3me2

H2A.Z
H2A.Zac MED1

MED12
CBP
ASH2L
BRD4
P300
SMARCA4
ELL3
CHD7

Pol II
Pol II Ser5P
NELFA
EP400

CTCF
STAG1
STAG2
RAD21

JARID2
EZH2
CBX7
RING1B

H3K27me3

PHF19
SUZ12

ERV1

ERVK

LINE

ERVL

IAPEY2_LTR
IAPEY2_LTR

IAPEY_LTR

RMER21A

30
45

10

10
10

30
45

100
50

43

60
56
18

60
69

70
94

146

163
96

46
30

24
16

15

GRCm38/mm10

n = 923 n = 574 n = 187 n = 122 n = 660 n = 1208

M
B

D
1A

M
B

D
1B

C
B

X
5

S
U

V
39

H
1

S
U

V
39

H
2

S
U

M
O

2
Z

F
P

80
9

M
B

D
2A

M
B

D
4

M
B

D
2T

M
E

C
P

2
T

R
IM

28
E

S
E

T
A

T
F

7I
P

C
B

X
3

U
H

R
F

1
C

T
C

F
R

A
D

21
S

T
A

G
1

S
T

A
G

2
IN

O
80

N
A

P
1

Z
IC

3
C

X
X

C
1

N
C

O
A

3
C

H
D

9
T

O
P

2A
M

T
F

2
JA

R
ID

2K
11

6m
e2

E
Z

H
2

JA
R

ID
2

N
E

LF
A

E
P

40
0

P
O

LI
I5

P
P

O
LI

I
C

17
O

R
F

96
R

E
S

T
H

E
Y

1
H

E
Y

2
D

N
M

T
3A

D
N

M
T

3B
K

D
M

5C
R

Y
B

P
R

O
N

IN
U

S
P

16
A

T
R

X
D

A
X

X
D

Z
IP

3
K

D
M

2A
W

D
R

5
S

IN
3A

K
D

M
5B

O
G

T
K

A
T

5
C

B
X

7
R

N
F

2
S

U
Z

12
D

P
Y

30
C

H
D

8
K

A
T

8
M

S
L1

P
H

F
19

N
S

L1
S

M
C

1
T

E
T

1
M

S
L2

K
D

M
4C

M
C

R
S

1
R

X
R

A
F

F
4

E
LL

2
Z

C
3H

11
A

K
A

T
2A

M
LL

2
C

A
P

D
3

C
A

P
G

JA
R

ID
1A

C
O

R
E

S
T

T
B

P
C

T
R

9
S

P
T

5
Y

Y
1

K
D

M
4B

R
A

D
23

B
M

A
F

K
Z

N
F

38
4

H
D

A
C

1
H

D
A

C
2

G
9A

C
A

P
H

2
M

B
D

3A
T

A
F

3
T

D
G

C
H

D
4

K
A

N
S

L3
K

D
M

1A
N

IP
B

L
H

C
F

C
1

C
H

A
F

1A
A

S
H

2L
M

E
D

12
B

R
D

4
M

E
D

1
C

B
P

P
R

D
M

4
C

H
D

7
M

B
D

3
S

M
A

R
C

A
4

Z
IC

2
E

LL
3

P
30

0
M

LL
4

H3K9me3
H4K20me3 SUMO2

TRIM28
ZFP809

–5Kb –5Kb 5Kb–5Kb 5Kb–5Kb 5Kb–5Kb 5Kb–5Kb

H3K9me3
H4K20me3 5hmC

5mC

MBD1B
MBD1A
MBD2T
MBD2A
MBD4
MECP2

80

60

40

20

CTCF
RAD21
STAG1
STAG2
IgG

H2BK20ac
H3K27ac
H3K4me1
ATAC

SMARCA4
MED12

ELL3
ASH2L

GFP

NELFA
Pol II Ser5P
Pol II

Input

Fig. 2 TEs are marked by type-specific patterns of chromatin modifiers. a The fold-enrichment of CMs bound to TEs was measured, as in Fig. 1a. The data
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environment, it is unclear if they are directly regulating the
expression and chromatin state of these TEs.

Chromatin modifiers regulate type-specific TE expression. To
explore how CMs control TE expression, we selected a panel of
reader, writer, and eraser CMs53 (Supplementary Figure 4a) to
knockdown, based on the clusters we detected in Fig. 2a, b and
Supplementary Figure 3. As cells can compensate for the dere-
pression of TEs by activating alternative suppressive
mechanisms38,40, we chose to knockdown over a short time period
of four days. This decision has two benefits. First, it allowed us to
study those CMs that are lethal if knocked down for a prolonged
time. Second, it should minimize changes in cell fate which would
complicate the results, as the cells reconfigure their chromatin in
response to differentiation. In total, we knocked down 41 CMs, and
subjected them to RNA-seq. To rule out a change in cell fate
we measured the expression of a panel of pluripotency and
differentiation marker genes. Their expression indicated that
most knockdowns had little influence on cell fate (Supplementary
Figure 4b, c and Supplementary Data 4). Principal component
analysis gave similar results, as the knockdown samples did not
diverge from the control samples (Supplementary Figure 4d).
Analyzing the number of differentially expressed genes came to a
similar conclusion, as minimal numbers of genes were differentiated
in each knockdown (Supplementary Figure 4e). There was, how-
ever, two notable exceptions. Knockdown of Mcrs1 showed an
upregulation of chromatin-related genes and a loss of germ cell
character, and Chd4, which showed signs of differentiation towards
the immune system (Supplementary Figure 4f). We include Chd4
and Mcrs1 in the analysis below, but it should be noted that these
two knockdowns are differentiating, and interpretation of their
effect on TEs is complicated. For all other knockdowns, there was
little evidence of differentiation, and no loss of pluripotency. This
data set provides a system to look at the short-term deregulation of
TEs when CMs are lost, in the absence of major cell type changes.

We next explored if these CM knockdowns can deregulate
TE expression. We aligned the RNA-seq data to LINE, SINE
(short interspersed nuclear element), LTR (ERV), and DNA class
TEs (See Methods). On average 1–5% of reads would map to
TEs (Supplementary Figure 5a), and we observed higher
percentages of reads mapping to TEs in the knockdown samples
(most >2% versus 1.6% in the shLuc control), suggesting a higher
level of TE-derived RNA (Supplementary Figure 5a). As expected,
knockdown of Setdb1 caused a robust upregulation of many types
of TE (Fig. 3a, b). In addition, 29/41 other CM knockdowns
significantly up or down-regulated at least 1 type of TE (Fig. 3a),
and 8 knockdowns upregulated at least 1 type of TE >4 fold
(Fig. 3b). We used RT-qPCR to validate a selection of TE
expression changes in knockdowns with shRNAs against Rnf2,
Setdb1, Ncor2, Prmt5, and Ash2l (Supplementary Figure 5b).

We selected eight CM knockdowns (and shNcor1, as a control)
that deregulated 20 or more types of TE for further analysis.
Western blotting for the pluripotency proteins OCT4 and
NANOG confirmed that the eight selected knockdowns were
not inducing differentiation (Supplementary Figure 5c). Knock-
down of these eight CMs led to a variety of effects on the
expression of TEs. Knockdown of Setdb1 deregulated only a few
TE types, but it led to the largest change in the magnitude TE
expression. Conversely, knockdown of Ncor2 or Rnf2 deregulated
more types of TE, but the magnitude of upregulation was reduced
(Figs. 3a, b). There was surprisingly little overlap in the TE types
that were upregulated, and most TE types were specific to a single
knockdown (Supplementary Figure 5d, e).

TEs can span a wide-range of evolutionary time, and some TEs
are active, or recently active, whilst others are inactive and

ancient. Importantly, young and old TEs are regulated differ-
ently12. We measured the evolutionary age of TEs, and found that
younger TEs tended to have higher enrichment of chromatin
marks, although the correlation was modest (Supplementary
Figure 1b). Younger TEs were more likely to be deregulated in a
CM knockdown, although, again, the correlation was modest
(Supplementary Figure 5f). These results suggest that younger
TEs are more likely to be under active epigenetic regulation.

We next investigated the relationship between TE expression
changes and chromatin marks. There was no global alteration in
the levels of histone modifications, with the exception of the Rnf2
knockdown, which reduced H2AK119ub and H3K27ac (Fig. 3c).
This indicated that the changes in histone modifications were
context-specific, as we saw previously with the overexpression of
HDAC3 in ESCs which did not alter global H3K27ac levels, but
did alter context-specific H3K27ac sites54. There was a direct
relationship between CMs and chromatin mark. For example,
knockdown of Setdb1 led to significant upregulation of TEs high
in H3K9me3, whilst knockdown of the DNA methylation
cofactor Uhrf1 led to upregulation of TEs high in 5mC,
particularly IAPs (Fig. 3d, e, and Supplementary Figure 5g).
Knockdown of Prmt5 has previously been demonstrated to
upregulate LINE L1 and IAP elements in primordial germ cells,
and ground state 2i+ LIF ESCs20, and we observe the same in
serum+ LIF grown ESCs (Fig. 3f, g, h). The LINE and IAP TEs
upregulated in the Prmt5 knockdown were enriched with
H4R3me2, the catalytic target for PRMT5, indicating a link
between PRMT5 and H4R3me2 at TEs (Figs. 1a, 3g, and
Supplementary Figure 1b, d, e). In addition to these associations,
we also found new links between CMs and chromatin marks.
Knockdown of Hdac2 and Hdac5 upregulated TEs enriched with
H3K56ac, H3K9me3, and H4K20me3, and knockdown of Ncor2
upregulated TEs enriched with H3K9me3 and H3K56ac (Supple-
mentary Figure 5g, h). NCOR2 is a co-repressor54, so the
knockdown of Ncor2 activating TEs may seem unusual, but it is
not uncommon for co-repressors to have activatory function. For
example, the co-repressor SIN3A, a binding-partner for NCOR2,
can function as a co-activator in ESCs55. Overall, these
observations indicate a complex code of CMs regulating sets of
TEs by altering chromatin marks.

Chromatin modifiers alter chromatin accessibility at TEs. The
loss of CMs leads to context-specific deregulation of TEs, which
in many cases was associated with specific chromatin marks.
However, whilst many CMs are specific epigenetic writers/erasers
(e.g., SETDB1 writes H3K9me3, RNF2 writes H2AK119ub), they
are also members of large multi-protein complexes involved in
multiple regulations (e.g., RNF2 is part of polycomb repressor
complex 1), or there is substantial redundancy (e.g., SETDB1 and
SUV39H1 both target H3K9me3). Consequently, the number of
potential chromatin mark changes caused by the loss of any single
CM can be large. To gain an overview of changes in chromatin
in response to the knockdown of a CM, we used ATAC-seq56,57,
to probe TE chromatin accessibility after knockdown. Of the
142,119 non-redundant peaks in the ATAC-seq data, we could
detect changes in 15,076 loci (Supplementary Figure 6a, b).
Chromatin that became accessible in each shRNA knockdown
showed matching upregulation of genes within 10 kb of the
ATAC-seq peak (Supplementary Figure 6c, d). The changes in
chromatin accessibility were also reflecting chromatin marks. For
example, ATAC peaks that became accessible when Prmt5 was
knocked down were enriched for H4R3me2. A similar pattern
was observed for Setdb1 knockdown and H3K9me3 (Supple-
mentary Figure 6e). These results show that changes in accessi-
bility are a suitable proxy for chromatin changes.
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We measured the chromatin accessibility at TEs. 153 TE types
showed an increase in chromatin accessibility (Fig. 4a, Supple-
mentary Data 5). These changes were mainly specific to a single
knockdown, as 108 TE types were uniquely upregulated, whilst 42
TE types were upregulated by more than one shRNA knockdown
(Fig. 4a, b, and Supplementary Data 5). Importantly, opening of
chromatin at TEs, was matched by significant upregulation of the

corresponding RNA expression (Fig. 4c). This pattern extended to
individual types of TE, for example, the chromatin opened and
RNA was expressed at MT2_Mm, when Rnf2 was knocked down
(Fig. 4d). Similarly, at LINE1 L1Md_F2 TEs, chromatin opened
and expression was upregulated when Prmt5 was knocked down
(Fig. 4d, e). This suggests a direct relationship between L1Md_F2,
and regulation of expression by PRMT5 through modification of
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type. TE types significantly upregulated > 4 fold are indicated in red and the number is marked. c Western blot of chromatin marks, from the indicated
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f MA-scatter (log-fold-change, mean average expression) plot showing shPrmt5 knockdown relative to shLuc. Blue dots are significantly different genes or
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Fig. 4 Loss of CMs opens chromatin at specific TEs. a Heatmap of the fold-changes in chromatin accessibility (measured by ATAC-seq) at TE types. The
list of TE types are those that have 20% more or 20% less open or closed chromatin. Selected TE types are indicated, and the full table of all TE chromatin
changes is in Supplementary Data 5. b Bar chart of the number of TE types that acquire open chromatin in a unique shRNA knockdown (left), or in more
than one shRNA knockdown (right). c Boxplots showing the relationship between chromatin (ATAC-seq, top rows) and expression (RNA-seq, bottom
rows). The boxplots contain all TE types that acquire open chromatin, for the selected shRNA knockdowns. P values were derived from a Mann–Whitney
U test. d Boxplots of the levels of ATAC-seq (top rows, dark gray) and RNA-seq (bottom rows, light gray) for selected TE families for the indicated CM
knockdown, for the indicated type of TE. P values were from a Mann–Whitney U test. e Example genome views of individual genomic TEs showing specific
chromatin marks, expression (RNA-seq), and chromatin accessibility (ATAC-seq). The examples show TEs that acquire open chromatin and expression in
the indicated shRNA knockdown. Examples include the LINE1 elements (L1Md_T, L1Md_A), ERVL (MERVL-int), MT2_Mm, ERVKs (RLTR13B1, ETnERV2-int,
and MMERVK10C-int). f Enrichment of chromatin marks at TE types that become open in response to the indicated shRNA knockdown. Significance is
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H4R3me2 (Supplementary Figure 1d). A similar relationship was
observed for the H3K9me3 enriched ETnERV2-int which
acquired open chromatin and RNA expression when Setdb1
was knocked down (Fig. 4d, e). To explore these relationships, we
measured the correlation between the chromatin marks and
changes in accessibility (Fig. 4f). The clearest relationships were
between shSetdb1 and heterochromatin marks H3K9me3 and
H4K20me3, and other repressive marks, H3.3 and 5mC (Fig. 4f).
Knockdown of Rnf2 also correlated with repressive epigenetic
marks (Fig. 4f). Overall, these results demonstrate that the loss of
CMs leads to the alteration of chromatin at TEs, and a matching
upregulation of the expression of TEs. There is a relationship
between the CMs target, and the chromatin modifications
marking the TEs, although due to the nature of CMs as members
of multi-protein complexes, a direct relationship was not always
observable.

Knockdown of CMs activates early embryonic gene expression.
TEs are expressed and their chromatin is regulated in a phase-
specific pattern in the early embryo18,58. TE expression has
become a useful marker for early embryonic gene expression

programs in ESCs, as MERVL expression marks a small sub-
population of 2C-like cells, that have totipotent properties26, a
capability ESCs lack. Knockdown of CMs can increase the frac-
tion of these cells15,59, but the relationship between CM, chro-
matin, MERVLs, and the 2C gene expression program remains
unclear.

To shed light on the regulatory network controlling 2C-like
cells, we interrogated our shRNA knockdowns for activation of a
2C-like gene expression program. Downregulation of Rnf2, Brd7,
and Hdac5 led to the upregulation of MERVLs, and a
corresponding increase in 2C-stage embryonic genes, such as
Zscan4c (Fig. 5a, b). To assess the type of embryonic gene
program being activated we measured the expression of the
significantly upregulated genes in each of the knockdowns,
against RNA-seq data from a range of embryonic stages60. Genes
upregulated in the Rnf2, Hdac5, and Brd7 knockdowns were
significantly highly expressed in 2C embryos, but not in other
embryonic stages (Fig. 5c). Knockdown of Setdb1 did not have
this effect (Fig. 5c). This pattern could be confirmed by measuring
the expression level of the top 200 upregulated genes (versus
ESCs) in 2C embryos (Fig. 5d). A characteristic of the 2C stage is
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Fig. 5 Knockdown of chromatin modifiers activates a 2C-like gene expression program. a RNA-seq expression level of the 2C-related gene Zscan4c in the
indicated knockdowns (left), and a boxplot showing the level of MERVL TEs in the same knockdown RNA-seq data. Bar chart values indicate the mean of
the two biological replicates (shHdac5 or shRnf2), or a biological singlicate (shBrd7), relative to shLuc control knockdown. The boxplot shows the Log2
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level of expression of the knockdown-specific genes, in those cell types. d Upregulation of a 2C-related gene signature by the indicated CM knockdowns. A
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expression of those top 200 2C genes was then measured in the indicated knockdowns, relative to shLuc control. e MA-scatter plots showing the
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deregulation of Trim28 or Kdm1a, two known MERVL regulators. For the boxplots in this figure, the midline indicates the median, boxes indicate the upper
and lower quartiles and the whiskers indicate 1.5*interquartile range

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-018-08006-y ARTICLE

NATURE COMMUNICATIONS |           (2019) 10:34 | https://doi.org/10.1038/s41467-018-08006-y |www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


the splicing of MERVL TEs into genes on the same strand
orientation61, a pattern we observed only in the Brd7, Hdac5, and
Rnf2 knockdowns (Supplementary Figure 7a, b). These results
showed that the 2C gene expression program was only seen in the
shBrd7, shHdac5 and shRnf2 knockdowns (Fig. 5d).

We next sought to understand how these knockdowns were
activating a 2C gene expression program. Our analysis indicates
that MERVLs are enriched for the activatory H3K56ac chromatin
mark, but are not enriched for H2AK119ub (Fig. 1a and
Supplementary Data 2). This is interesting as RNF2 catalyses
the deposition of H2AK119ub, and BRD7 and HDAC5 can both
target histone acetylation. These observations suggest two path-
ways for the activation of the 2C gene expression program; one
direct, and one indirect, pathway. The direct pathway involved
the acetylation of histones, as knockdown of the histone
deacetylase Hdac5, and knockdown of the histone acetylation
binder Brd7 could upregulate MERVLs and 2C genes (Fig. 5a, c).
Conversely, upregulation of MERVLs in the Rnf2 knockdown,
suggests an indirect pathway, as MERVLs are not enriched with
H2AK119ub, but downregulation of H2AK119ub is a require-
ment for 2C-like cells62. The TF GATA2 has been implicated in
driving cells to a 2C-fate61, and in our data only knockdown of
Rnf2 could activate Gata2 (Fig. 5e). Interrogating ChIP-seq data
for RNF2 and H2AK119ub63, indicated that they are both
enriched at the Gata2 locus (Supplementary Figure 7c). These
results suggest that 2C-like cells can emerge by the manipulation
of two pathways, one pathway involving H3K56ac, HDAC5, and
BRD7, and an indirect pathway involving H2AK119ub, RNF2,
and Gata2. These pathways complement other factors known to
activate the 2C-like state, including Chaf1a/b, Chd5, Rif1, Kdm1a,
Ehmt2, Yy1, Rybp, and miR-34a15,26,28,61,64. These results suggest
that there are multiple convergent pathways that can drive cells to
a 2C state, although whether all of these factors are converging on
the same pathway or act independently remains unclear.

Discussion
TEs are the single most prevalent genomic element, more
numerous than coding genes or other regulatory units. Although
potentially dangerous for genome integrity they are nonetheless a
pool of potential regulatory sequences, chromatin control ele-
ments, and protein coding genes, and they can function as a
substrate for evolutionary processes3,9,21. During early embryonic
development there is extensive chromatin remodeling58, and the
activation of TE expression18. Consequently, a careful balance is
maintained between the potential benefits of TEs, versus their
deleterious aspects, and this control is carried out by the epige-
netic regulatory system.

Heterochromatin formation is a major mechanism for the
suppression of TEs, and we find that many TEs are marked by
heterochromatic histone modifications. However, data suggests
that, at least for LINEs and IAP-family TEs, TEs are repressed by
the loss of activatory marks, rather than through the gain of
repressive heterochromatin19. Our data indicate that TEs are
marked by many activatory marks, like histone acetylations. We
also observed bivalent marking of TE chromatin by H3K9me3
and H3K27ac, which may help to explain why we only observed a
limited number of downregulated TEs in response to CM
knockdown. This was surprising, as ESCs express over 200 TE
types at levels comparable to many genes. Bivalent marking may
mean that these TEs are kept in partially activated and repressed
states.

TEs are increasingly implicated in a wide-range of biological
functions in embryonic cell types. It has long been known that
there is reverse transcriptase activity (indicative of TE activity), in
developing mouse embryos65, and HERVK-derived viral-like

particles have been observed in normal human embryos66. TEs
are expressed in a stage-specific pattern in both human and
mouse embryos18,19, and their expression in ESCs is associated
with alternative properties. For example, MERVL expression
marks the 2C stage of embryonic development as well as 2C-like
cells in ESCs26, and the inhibition of MERVLs, or MERVL-
containing lincRNAs, impairs the transition from the zygote to a
4C embryo stage67,68. LINE1 RNA is transiently required for 2C
stage embryos to exit to the 4C stage, and in ESCs LINE1 is
required for self-renewal, and chromatin remodeling43,44. It is
increasingly clear that TEs are involved in normal biological
processes.

In conclusion, our study reveals the complexity of epigenetic
regulation of TEs in ESCs. TEs are marked not only by repressive
chromatin marks, but are also widely marked by activatory
chromatin marks, including patterns of simultaneous marking by
activatory and repressive marks. We show that the loss of CMs
caused specific changes in TE expression and chromatin acces-
sibility, and these effects are not limited to the formation of
heterochromatin or DNA methylation, but encompass a large
fraction of known chromatin modifications. This work suggests
that the regulation of TEs is a function of overlapping epigenetic
pathways, and that a major task of the epigenetic system is to
manage the expression of TEs.

Methods
Cell lines and cell culture medium. All experiments were performed in mouse
E14 ESCs (RRID:CVCL_C320), to avoid any differences in genetic background that
may influence the number of TEs. Mouse ESCs were grown in serum+ LIF
medium: DMEM-HIGH GLUCOSE (SH30022.01, HyClone), 15% (v/v) fetal
bovine serum (S1580–500, Biowest), 1% (v/v) L-Glutamine (35050-061, GIBCO),
1% (v/v) sodium pyruvate (25-000-CIR, Corning), 1% (v/v) non-essential amino
acids (25-025-CI, Corning), 0.5% (v/v) penicillin-streptomycin solution (SV30010,
HyClone), 0.1 mM 2-mercaptoethanol (21985-023, GIBCO), and 1000 U/ml mLIF
(ESG1107, Millipore).

Chromatin modifier knockdowns. CMs were knocked down in serum+ LIF
medium using pLKO.puro lentiviral system as previously described27,41. Briefly,
pLKO.puro lentiviruses were added to ESCs and the medium was changed after
8 h. Cells were selected with 2 μg/ml puromycin (Gibco) for 2 days, and harvested
after a further 2 days. Sequences for the shRNAs are in Supplementary Data 6.

Western blot. Histone proteins were extracted by acid precipitation. Briefly, cells
from a 6-well dish were scraped, washed with PBS and resuspended in extraction
buffer (PBS, 0.5% Triton-X-100 (9002-93-1, Sigma-Aldrich), 5 mM sodium buty-
rate (B5887, Sigma-Aldrich)), and allowed to extract for 20 mins. The extract was
centrifuged at 14,000× g for 20 mins and the supernatant was discarded. The pellet
was resuspended in 0.2 N HCl and left at 4 °C overnight. The mixture was vortexed,
and the pH was neutralized with 1 M Tris-HCl pH 8.0. Western blots were per-
formed using typical laboratory procedures with the antibodies: anti-H3K9me3
(1:1000; ab8898, abcam), anti-H3K4me3 (1:1000; ab8580, abcam), anti-H3K4me1
(1:1000; ab8895, abcam), anti-H3K27me3 (1:1000; 07-449, Millipore), anti-H3ac
(1:1000; 06-599, Millipore), anti-H4K12ac (1:1000; ab46983, abcam), anti-H4ac
(1:1000; 06-886, Millipore), anti-H3K27ac (1:1000; ab4729, abcam), anti-
H2AK119ub (1:1000; 8240, Cell Signaling Technology), anti-H3 (1:1000; ab1971,
abcam), anti-OCT4 (1:10,000; SC-8628, Santa Cruz), anti-NANOG (1:1000; A300-
397A, Bethyl), and anti-GAPDH (1:10,000; MAB374, Millipore). Uncropped raw
images of the Western blot membranes are in Supplementary Figure 8.

RNA-seq and RT-qPCR experimental protocols. RNA-seq was performed as
described69. Briefly, a 6-well dish of ESCs was scraped and lysed in TRIzol (RN190-
200, Invitrogen). RNA was extracted according to the manufacturer’s instructions,
and 1 μg was submitted for sequencing. All RNA-seq was sequenced to a depth of
50 M tags, and 150 bp paired-end. For RT-qPCR RNA was extracted using TRIzol
(RN190-200, Invitrogen), cDNA was prepared with reverse transcriptase kit
(RR36B, Takara), and RT-qPCR was performed with SYBR Green Master kit
(RR820B, Takara). RT-qPCR primers are described in Supplementary Data 7.

ATAC-seq and native-ChIP-qPCR experimental protocols. ATAC-seq was
performed as described57,70. A total of ~50,000 cells were washed once with 50 μl of
cold PBS and resuspended in 50 μl lysis buffer (10 mM Tris-HCl pH 7.4, 10 mM
NaCl, 3 mM MgCl2, 0.2% (v/v) IGEPAL CA-630). The suspension of nuclei was
then centrifuged for 10 min at 500 × g at 4 °C, followed by the addition of 50 μl
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transposition reaction mix (25 μl TD buffer, 2.5 μl Tn5 transposase and 22.5 μl
nuclease-free H2O) of Nextera DNA library Preparation Kit (96 samples) (FC-121-
1031, Illumina). Samples were then PCR amplified and incubated at 37 °C for
30 min. DNA was isolated using a MinElute Kit (Qiagen). ATAC-seq libraries were
first subjected to five cycles of pre-amplification. To determine the suitable number
of cycles required for the second round of PCR, the library was assessed by
quantitative PCR70, and the library was then PCR amplified for the appropriate
number of cycles. Libraries were purified with a Qiaquick PCR (Qiagen) column
and were quantified using a KAPA Library Quantification kit (KK4824, Kapa
Biosystems) according to the manufacturer’s instructions. Library integrity was
checked by gel electrophoresis. Finally, the ATAC library was sequenced on a
NextSeq 500 using a NextSeq 500 High Output Kit v2 (150 cycles) (FC-404-2002,
Illumina) according to the manufacturer’s instructions.

Native-ChIP-qPCR was performed as described71. Ten million cells were
centrifuged and resuspended in Buffer 1 (0.32 M Sucrose, 60 mM KCl, 15 mM
NaCl, 5 mM MgCl2, 0.1 mM EGTA, 15 mM Tris-HCl pH 7.5, 0.5 mM DTT,
0.1 mM PMSF, 1:1000 protease inhibitor cocktail (Sigma-Aldrich)), along with 2 ml
of Buffer1+ 0.1% IGEPAL. The resulting 4 ml of nuclei were layered on top of 8 ml
of Buffer 3 (Same as Buffer 1, but with 1.2 M Sucrose) and centrifuged at 10,000 × g
for 20 min at 4 °C unbraked. Nuclei were resuspended in Buffer A (0.34 M
sucrose, 15 mM Hepes [pH 7.4], 15 mM NaCl, 60 mM KCl, 4 mM MgCl2, 1 mM
DTT, 0.1 mM PMSF, 1:1000 protease inhibitor cocktail (Sigma-Aldrich)) and
digested for 10 mins at 37 °C with MNase (Affymetrix) in buffer A supplemented
with 3 mM CaCl2. The reaction was stopped with 5 mM EGTA, centrifuged at
13,500 × g for 10 min, and chromatin resuspended in (10 mM EDTA [pH 8.0],
1 mM PMSF, 1:1000 protease inhibitor cocktail) and rotated at 4 °C for 2–4 h.
The mixture was adjusted to 500 mM NaCl, allowed to rotate for another 45 min
and then centrifuged at 13,500 × g for 10 mins. Chromatin supernatant was
diluted to 100 ng/µl with buffer B (20 mM Tris [pH 8.0], 5 mM EDTA, 500 mM
NaCl, 0.2% Tween 20) and incubated for 20 mins at 4 °C with 60 µl protein G
beads (GE Healthcare). Antibody was added and rotated overnight at 4 °C. A
volume of 100 µl of Protein G beads were added and the sample was rotated for
a further 3 h at 4 °C. The beads were washed three times with buffer B, and
once with buffer B without Tween 20. The DNA was eluted with 300 µl of elution
buffer (20 mM Tris [pH 7.5], 20 mM EDTA, 0.5% SDS, 500 µg/ml Proteinase K)
and incubated for 4 h at 56 °C. The resulting samples were extracted with phenol-
chloroform followed by purification using a Qiagen MinElute columns, according
to the manufacturer’s instructions. Antibodies used: anti-H3K9me3 (5 μg;
ab8898, abcam), anti-H3K27ac (5 μg; ab4729, abcam). qPCR was performed with
SYBR Green Master kit (RR820B, Takara). Primer pairs are described in
Supplementary Data 7.

RNA-seq and TE RNA-seq computational analysis. As a quality control step the
RNA-seq data was analyzed for normal gene expression, using the method
described60,69. Briefly, reads were aligned to the genome using bowtie272 and
RSEM73, with the settings ‘—bowtie2—bowtie2-sensitivity-level very_sensitive—
no-bam-output—estimate-rspd’ using an index built against the ENSEMBL v81
transcriptome, and normalized using EDAseq74 (v2.4.1) (which= ‘full’). Samples
that did not closely correlate with other replicate samples, clustered closer to
unrelated samples, or were outliers (R2 correlation < 0.6), were deleted from the
analysis.

For the analysis of TEs, reads were mapped to the mouse genome (mm10) using
the STAR aligner75, with the options:—readFilesCommand zcat—
outFilterMultimapNmax 100—winAnchorMultimapNmax 100—
outMultimapperOrder Random—runRNGseed 777—outSAMmultNmax 1—
outSAMtype BAM—outFilterType BySJout—alignSJoverhangMin 8—
alignSJDBoverhangMin 1—outFilterMismatchNmax 999—alignIntronMin 20—
alignIntronMax 1000000—alignMatesGapMax 1000000. Tags mapping to genes
and TEs were counted using TEtranscripts76 with the option:—mode multi. GTF
files for gene annotation were downloaded from GENCODE (M9). GTF files for TE
annotations were downloaded from the TEtranscripts website (mm10_rmsk_TE.
gtf.gz). For the quantification of genes and TEs, samples were normalized using
EDAseq74 (v2.4.1) (which= ‘full’). The GC content for TEs was generated by
taking the average for all TEs. TEs were normalized at the same time as the genes.
This has the effect of suppressing the magnitude of the fold-changes, however the
fold-changes reported here are similar to those reported in other studies that used
knockdowns40. Differential expression was called using DESeq275, with a P value <
0.05 (Benjamini-Hochberg-corrected) and an absolute fold-change > 2. Gene
ontology analysis was performed using goseq (v3.2.5)77. Other analysis was
performed using glbase78.

The age of TEs was calculated as in8,11. Briefly, the average divergence between
the TE repeats and the consensus (milliDiv from RepeatMasker UCSC track) was
calculated for each TE type, and the Jukes-Cantor method with a substitution rate
of 4.5e-9 per base per year was applied. This gave an estimate for TE age in years.
The results were broadly consistent with other estimates of TE age8,11.

The list of 2C-related genes was generated by calculating the fold-change of 2C
genes versus ESC genes, and taking the top 200 2C-associated genes. RNA-seq data
was from60. A second approach was used to generate a 2C-associated gene
signature, by taking the top 200 upregulated genes in each CM knockdown, and
then measuring the fold-change of those genes in the 2C sample, relative to the
ESCs.

MERVL-associated genes were defined as those genes that have a MERVL
(either MERVL-int or solo-LTR MT2_Mm) within 10 kb up- or downstream of the
gene body. A gene was annotated as the same orientation (same ori.) if it had a
MERVL in the same strand flanking it, or in the opposite orientation (opposite ori.)
if it had a MERVL element in the opposite strand, as described in61.

Mapping statistics and details of all the samples used in this study are contained
in Supplementary Data 1.

ChIP-seq and ATAC-seq computational analysis. ChIP-seq data for histone
modifications, variant histones, DNA methylation, chromatin accessibility, and a
selection of TFs and chromatin modifiers (Supplementary Data 1), were down-
loaded from GEO/SRA and the reads were aligned to the mouse genome (mm10)
using bowtie2 (v2.2.5)72 with the options: -p 20—very-sensitive—end-to-end—no-
unal. To analyze repetitive sequences, only the best alignment is reported for
multimapped reads, if more than one equivalent best alignment was found, then
one random alignment was reported. Reads mapping to mitochondrial DNA or
unassigned sequences were discarded. For pair-end sequence data, only con-
cordantly aligned pairs were kept. Alignment bam files were transformed into
read coverage files (bigwig format) using deepTools79 with the RPKM (Reads
Per Kilobase per Million mapped reads) normalization method. For analysis
of TEs, coordinates and annotations of TEs were downloaded from the UCSC
Genome Browser (GRCm38/mm10) version of RepeatMasker. TEs shorter than
300 bp or those TE types with less than 50 copies were deleted from the analysis.
For TE enrichment analysis, as many ChIP and ATAC signals were not evenly
distributed across TEs, we divided the TEs into evenly spaced 500 bp bins. The
coverage signal on each bin was extracted using deeptools, and the bin with the
maximum signal was used as the observed value. For the expected background
value, random genomic regions of the same number as the TE type and the same
size as the TE were taken, the coverage signal was measured, and the maximal bin
was taken as the randomly expected background. Enrichment was calculated by
taking the observed over the expected enrichment, and is expressed as log2(fold-
enrichment). Quality control was performed by measuring the reads per kilobase of
TE per million library sequence reads (RPKM) at all TEs, and then combining
replicates where the Pearson correlation was >0.6 (Supplementary Figure 1a).
Outlier samples that did not correlate closely with other ChIP-seq data samples
of the same type were deleted from the analysis. The full data set of ChIP-seq
experiments used in this study is detailed in Supplementary Data 1. Heatmaps
and pileups were generated using deepTools79, motif discovery was performed
using MEME80.

Quantification and statistical analysis. No statistical methods were used to
predetermine sample size, and experiments were not randomized. The investigators
were not blinded to the allocation of experiments, nor the outcome. The number of
biological replicates are described in the figure legends, or in Supplementary
Data 1. Samples were considered statistically significant at P < 0.05, unless indi-
cated. The statistical test used is indicated in the figure legend.

Reporting Summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The datasets supporting the conclusions of this article are available in the Gene
Expression Omnibus (GEO), under accession number GSE108091. The authors
declare that the data supporting the findings of this study are available within the
article and its Supplementary Information files, or from the corresponding author
upon reasonable request. A Reporting Summary for this Article is available as a
Supplementary Information file. The Source Data underlying Figs. 1d, 3h, and
Supplementary Figs 2h and 5b are provided as a Source Data file.
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