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Abstract

To explore if DNA linkers with 59-hydroxyl (OH) ends could be joined by commercial T4 and E. coli DNA ligase, these linkers
were synthesized by using the solid-phase phosphoramidite method and joined by using commercial T4 and E. coli DNA
ligases. The ligation products were detected by using denaturing PAGE silver stain and PCR method. About 0.5–1% of
linkers A–B and E–F, and 0.13–0.5% of linkers C–D could be joined by T4 DNA ligases. About 0.25–0.77% of linkers A–B and
E–F, and 0.06–0.39% of linkers C–D could be joined by E. coli DNA ligases. A 1-base deletion (-G) and a 5-base deletion (-
GGAGC) could be found at the ligation junctions of the linkers. But about 80% of the ligation products purified with a PCR
product purification kit did not contain these base deletions, meaning that some linkers had been correctly joined by T4
and E. coli DNA ligases. In addition, about 0.025–0.1% of oligo 11 could be phosphorylated by commercial T4 DNA ligase.
The phosphorylation products could be increased when the phosphorylation reaction was extended from 1 hr to 2 hrs. We
speculated that perhaps the linkers with 59-OH ends could be joined by T4 or E. coli DNA ligase in 2 different manners: (i)
about 0.025–0.1% of linkers could be phosphorylated by commercial T4 DNA ligase, and then these phosphorylated linkers
could be joined to the 39-OH ends of other linkers; and (ii) the linkers could delete one or more nucleotide(s) at their 59-ends
and thereby generated some 59-phosphate ends, and then these 59-phosphate ends could be joined to the 39-OH ends of
other linkers at a low efficiency. Our findings may probably indicate that some DNA nicks with 59-OH ends can be joined by
commercial T4 or E. coli DNA ligase even in the absence of PNK.
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Introduction

Nicks and breaks in the DNA double helix can result from DNA

replication or DNA damage. DNA ligases are the critical enzymes

participating in the repair of these nicks. A variety of different

DNA ligases have been found, such as T4 DNA ligase, E. coli

DNA ligase, and DNA ligases I, II, III, and IV. They are classified

into two groups based on their cofactors: the ATP-dependent

DNA ligases and the NAD+-dependent DNA ligases. ATP-

dependent DNA ligases are derived from eukaryotic cells, T series

bacteriophages and archaebacteria. NAD+-dependent DNA

ligases were found in eubacteria [1–3]. In 1997, it was found

that ATP-dependent ligase was also expressed in the respiratory

pathogen haemophilus influenzae [4]. In addition, some bacterial

species such as Neisseria meningitidis have been found to encode

both ATP-dependent ligase homologues and NAD+-dependent

ligases simultaneously [5–7].

Each type of DNA ligase possesses different functions. For

example, DNA ligase I is involved in the ligation of Okazaki

fragments and some repair pathways, and DNA ligase IV is

required for V(D)J recombination [2,8]. T4 DNA ligase is an

ATP-dependent ligase that repairs single-strand nicks in duplex

DNA, RNA or DNA/RNA hybrids but has no activity on single-

stranded nucleic acids [9–10]. E. coli DNA ligase is a NAD+-

dependent ligase from Escherichia coli, and it works the best on

cohesive dsDNA ends and is also active on nicked DNA. In the

presence of certain macromolecules such as polyethylene glycol,

E. coli DNA ligase can also catalyze the ligation between DNA

blunt ends [11].

We found occasionally that PCR fragments generated by using

the primers with 59- OH groups could be joined by T4 DNA ligase

when we joined these PCR fragments to form a larger DNA

fragment [12]. Because DNA ligases are important for DNA

replication and injury repair, and some experiments such as

molecular cloning and deep sequencing are involved in the

dephosphorylation of DNA linkers, we wanted to explore whether

DNA linkers with 59- OH ends could be joined by commercial T4

and E. coli DNA ligases.

Methods

Synthesis of DNA Linkers with 59- OH Ends
Two types of DNA linkers with 59-OH ends were synthesized,

without any chemical modifications, by Shanghai Sangon (China)

with an ABI 3900 DNA synthesizer and the solid-phase

phosphoramidite method. After synthesis, these linkers were
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purified by using high affinity purification (HAP) or polyacryl-

amide gel electrophoresis (PAGE) plus high-performance liquid

chromatography (HPLC) methods. Their purity was $98%. Most

of the remaining 2% should be the other oligos with 59-OH ends

because it was impossible that an oligo with 59-phosphate end

could be synthesized with the solid-phase phosphoramidite

method. Type I linkers included linkers A, B, E, F, G and H

containing protruding 59-OH ends. Type II linkers included

linkers C and D containing recessive 59-OH ends. Linkers A, C, E,

and G are complementary to linkers B, D, F, and H, respectively.

Linkers E and F are 58–59 bp long, and the other linkers are 28–

30 bp long. Short linkers can be separated from the ligation

products more easily than the long ones by using a PCR product

purification kit. There is a 1-nucleotide deletion at the 59-ends of

linkers G and H. All of these linkers are showed in Table 1 or

Figure 1.

Ligations between Complementary Linkers
Ligations of the linkers with 59-OH ends. The ligations

of linkers A–B, C–D, and E–F by using T4 DNA ligase were

performed in 100 ml of T4 DNA ligase reaction mixture

containing 1 x T4 DNA ligation buffer (40 mM Tris-HCl,

10 mM MgCl2, 10 mM DTT, and 0.5 mM ATP; pH 7.8 at

25uC), 1 mM of each oligo, and 0.25 Weiss units/ml of T4 DNA

ligase (Fermentas, Lithuania; Promega, USA; and Takara,

Japan). The ligations of linkers A–B, C–D, and E–F by using

E. coli DNA ligase were performed in 50 ml of E. coli DNA

ligase reaction mixture containing 1 x E. coli DNA ligation

buffer (30 mM Tris-HCl, 4 mM MgCl2, 10 mM (NH4)2SO4,

1.2 mM EDTA, and 0.1 mM NAD+; pH 8.0 at 25uC), 1 x BSA

(0.005%), 2 mM of each oligo, and 6 U/ml of E. coli DNA

ligase (Takara). To figure out if the ligation of linkers A–B and

E–F could be inhibited by (NH4)2SO4, the ligation of these

linkers were performed in 100 ml of T4 DNA ligase reaction

mixture containing 7.5 mM (NH4)2SO4. The other ligation

conditions were the same as above. To see if T4 PNK could

use NAD+ as its phosphate donor, oligos 2 and 3 of linkers A–B

were separately preincubated with T4 PNK in 100 ml of E. coli
DNA ligase reaction mixture containing 1 x E. coli DNA ligase

buffer, 1 x BSA, 1 mM of each oligo, and 40 U of T4 PNK

(Takara). This mixture without ATP was incubated at 37uC for

30 min, and then extracted once with an equal volume of fresh

phenol/chloroform (1:1), and once with chloroform/isopentyl

alcohol (24:1). DNA was precipitated with 3 volumes of 100%

ethanol and 1/10th volume of 3 M sodium acetate (pH 5.2) at

220uC for 2 hrs. DNA pellets were washed twice with 300 ml
of 75% cold ethanol, dried at room temperature for about

2 hrs, and resuspended in 4 ml of sterilized ddH2O. The ligation

was then performed in 50 ml of E. coli DNA ligase reaction

mixture containing the resuspended oligos 2 and 3 (4 ml each),
2 mM of each of oligos 1 and 4, and the other components

mentioned above. All of the ligase reaction mixtures mentioned

above and the negative controls without ligase were incubated

at 18uC for 10 hrs.

Ligation of the linkers phosphorylated by T4 PNK. To

compare the ligation products between the linkers with 59-

phosphate ends and the linkers with 59-OH ends, linkers A–B, C–

D and G–H were separately phosphorylated by using T4 PNK.

The phosphorylation reactions for linkers A–B, C–D, and G–H

were performed in 20 ml, 20 ml and 50 ml of the phosphorylation

mixtures, respectively. These phosphorylation mixtures contained

1 x T4 DNA ligation buffer (40 mM Tris-HCl, 10 mM MgCl2,

10 mM DTT, and 0.5 mM ATP, pH 7.8 at 25uC), 2 mM of each

oligo, and 0.5 U/ml of T4 PNK (Takara). They were incubated at

37uC for 30 min, and then extracted once with phenol/

chloroform (1:1), once with chloroform/isopentyl alcohol (24:1),

precipitated with 3 volumes of 100% ethanol and 1/10th volumes

of sodium acetate, washed twice with 100 ml of 75% ethanol, dried

at room temperature for 1.5 hrs, resuspended in 8 ml, 8 ml, and
10 ml of ddH2O for the oligos of linkers A–B, C-D and G–H,

respectively. The ligation of the phosphorylated linkers A–B, C–D,

and G–H were performed in 10 ml, 10 ml, and 100 ml of T4 DNA

ligase reaction mixtures, respectively. These ligase reaction

mixtures contained 1 x T4 DNA ligation buffer, 1 ml of each

phosphorylated oligos of linkers A–B and C–D or 10 ml of each

Table 1. DNA sequences of the linkers.

Linker type Linker Oligo Sequences (59-OHR39-OH) Length(nt)

I A 1 TCGGCATGGACAGGAACCGAGA 22

2 CTCTATTCTCTCGGTTCCTGTCCATGCCGA 30

I B 3 GAATAGAGACTGACTCTCTCTGCCTATT 28

4 AATAGGCAGAGAGAGTCAGT 20

II C 5 CTTAGACCTCACCCTGTGGAGCAAGAGTG 29

6 CTCCACAGGGTGAGGTCTAAG 21

II D 7 TGGCAGGTTGGTATCAAGGTT 21

8 AACCTTGATACCAACCTGCCACACTCTTG 29

I E 9 GAGGTGTCCCACTCCAGATTCACTACTGTCGGCATGGACAGGAACCGAGA 50

10 CTCTATTCTCTCGGTTCCTGTCCATGCCGACAGTAGTGAATCTGGAGTGGGACACCTC 58

I F 11 GAATAGAGACTGACTCTCTCTGCCTATTGGTCTATTTTCCCACCCTTAGGCTGCTGGTG 59

12 CACCAGCAGCCTAAGGGTGGGAAAATAGACCAATAGGCAGAGAGAGTCAGT 51

I G 1 TCGGCATGGACAGGAACCGAGA 22

13 TCTATTCTCTCGGTTCCTGTCCATGCCGA 29

I H 14 AATAGAGACTGACTCTCTCTGCCTATT 27

4 AATAGGCAGAGAGAGTCAGT 20

doi:10.1371/journal.pone.0039251.t001
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phosphorylated oligos of linkers G–H, 1 mM of every other oligo,

and 0.28 U/ml of T4 DNA ligase (Takara). The ligation of the

phosphorylated linkers A–B and C–D were also performed in

10 ml of E. coli DNA ligase reaction mixtures containing 1 x E. coli

DNA ligation buffer, 1 x BSA, 1 ml of each phosphorylated oligos,

1 mM of every other oligo, and 6 U/ml of E. coli DNA ligase

(Takara). The ligase reaction mixtures were incubated at 18uC for

10 hrs, and then 65uC for 10 min. 2.5 ml of ligation products of

the phosphorylated linkers A–B and C–D were loaded on 15%

denature PAGE.

Ligation of linkers A–B treated with calf intestine alkaline

phosphatase (CIAP). Based on the principle of the solid-phase

phosphoramidite method, we supposed that it should be impos-

sible that the oligos with 59-phosphate groups could be synthesized

by using the solid-phase phosphoramidite method without any

chemical modification. Even so, to see if the ligation of linkers A–B

could be inhibited by CIAP, oligos 2 and 3 of linkers A and B were

separately treated with CIAP before ligation. CIAP treatment of

oligos 2 and 3 was performed in 100 ml of CIAP reaction mixture

containing 1 x CIAP buffer (0.01 M Tris-HCl, pH 7.5 at 37uC
and 0.01 M MgCl2), 1 mM of each of oligos 2 and 3, and 0.05 U/

ml of CIAP (Fermentas), incubated at 37uC for 30 min, mixed with

1 ml of 0.5 M EDTA (pH 8.0), inactivated at 85uC for 15–90 min,

and then extracted twice with an equal volume of phenol/

chloroform (1:1), once with chloroform/isopentyl alcohol (24:1),

and precipitated with ethanol as described above. DNA pellets

were resuspended in 10 ml of sterilized ddH2O. The resuspended

oligos were joined by using T4 and E. coli DNA ligases,

respectively. The ligase reaction mixture (50 ml) contained the

resuspended oligos 2 and 3 (5 ml each), 1 mM each of oligo 1 and

4, and the other components mentioned above. A positive control

without CIAP treatment and a negative control without ligase

were included for each ligation reaction. All of the ligase reaction

mixtures and the controls were incubated at 37uC for 1 hr, and

then at 18uC for 10 hrs.

Denaturing PAGE Silver Stain
The ligation products of linkers A–B, C–D, E–F, and G–H were

50, 50, 109, and 49 bp long, respectively. These ligation products

were extracted with phenol/chloroform before PAGE. Briefly, 50–

100 ml of ligation products were extracted once with an equal

volume of fresh phenol/chloroform (1:1), precipitated with ethanol

as described above. DNA pellets were washed once with 300 ml of
75% ethanol, dried at room temperature for about 2 hrs, and

resuspended in 4 ml, 4 ml, 10 ml, or 8 ml of 1 x TE for the ligation

products of linkers A–B, C–D, E–F, or the phosphorylated linkers

G–H, respectively. 4 ml of the resuspended ligation products of

linkers A–B or C–D were mixed with 2 ml of formamide loading

buffer containing 98% (v/v) formamide, 2% (v/v) 0.5 M EDTA,

pH 8.0, and 0.1% (w/v) bromophenol blue, denatured at 95uC for

1 min, cooled quickly on ice. 2 ml of the resuspended ligation

products of linkers E–F were mixed with 1 ml of 1 x TE and 1 ml of
loading buffer containing 40% sucrose and 0.25% (w/v)

bromophenol blue. 1 ml of the resuspended ligation products of

linkers G–H phosphorylated by T4 PNK was mixed with 2 ml of
the resuspended negative control of linkers A–B and 2 ml of

formamide loading buffer, denatured at 95uC for 1 min and

cooled quickly on ice. These ligation products were then loaded on

12% denaturing PAGE gel (1061060.03 cm, A:B = 19:1, 7 M

urea and 0.5 x TBE) or 15% denaturing PAGE gel

(1061060.03 cm, A:B =29:1, 7 M urea and 0.5 x TBE). Oligo

15 (59-GGC AGG TTG GTA TCA AGG TTA CAA GAC AGG

TTT AAG GAG ACC AAT AGA AA-39) was synthesized by

Shanghai Sangon and used as a 50-nt DNA marker. Electro-

Figure 1. Schematic diagram of linkers A–B, C–D and the three-round overlap PCR primers. The arrows represent PCR primers. The
sequences of linkers and PCR primers are listed in Tables 1 and 2, respectively. (A) Linkers A–B and PCR primers. (B) Linkers C–D and PCR primers.
doi:10.1371/journal.pone.0039251.g001
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phoreses were run in 0.5 x TBE, 25uC, 200 V for 1.7 hrs, or

100 V for 3.5–4.3 hrs. Next, the gels were silver-stained [13].

Briefly, the gels were fixed with 50 ml of 50% methanol containing

10% acetic acid for about 2 hrs, and then washed 4 times (2 min

each for the first 2 times, and 5 min each for the last 2 times) with

deionized water (200 ml each), stained with 30 ml of 0.1% AgNO3

containing 45 ml of 37% formaldehyde for 30 min, developed with

30 ml of 3% NaCO3 containing 45 ml of 37% formaldehyde and

30 ml of 2 mg/ml Na2S2O3 until DNA bands appeared clearly,

and then stopped the silver stain with 25 ml of 10% acetic acid.

PCR and DNA Sequencing
The ligation products of linkers A–B and C–D were amplified

by three round overlap PCR, and the third round PCR products

were analyzed by DNA sequencing. PCR and DNA sequencing

primers were synthesized by Shanghai Sangon (Table 2 and

Figure 1). PCR was performed in 10–50 ml of PCR mixture

containing 1 x PCR buffer (10 mM Tris-HCl, pH 8.0 at 25uC,
50 mM KCl, and 0.08% Nonidet P40), 1.5 mM MgCl2,

0.125 mM dNTPs, 0.2 mM of each primer, and 0.1 U/ml of

Taq DNA polymerase (Fermentas). 1 ml of PCR template was

added for every 10 ml of PCR mixture. The ligation products

diluted 1- to 30-fold with sterilized ddH2O were used as the first

round PCR templates. To improve the background of DNA

sequencing, the ligation products (100 ml each) of linkers A–B and

C–D were purified by using a PCR product purification kit

(GK2051, Generay Biotech, China) following the manufacturer’s

instructions. The purified ligation products were then diluted 1- to

30-fold with sterilized ddH2O and used as the first round PCR

template. The previous round PCR products were diluted 10- to

30-fold with sterilized ddH2O and used as the next round PCR

template. To characterize the 50-bp DNA band from the ligation

products of linkers A–B, the band was cut from the denaturing

PAGE gel and used as the first round PCR template. The first and

the second round PCRs were performed at 95uC for 3 min,

followed by 15 cycles of 94uC for 30 s, and 65uC for 40 s. The

third round PCR were carried out at 95uC for 3 min, followed by

33 cycles of 94uC for 30 s, and 65uC for 50 s for Type I linkers or

64uC for 50 s for Type II linkers. 5 ml of PCR products were

checked by 2.5% agarose gel electrophoresis with 0.5 mg/ml

ethidium bromide (EB). The third round PCR products were

sequenced by using a BigDye Terminator v2.0 kit and an

automatic sequencer (ABI PRISM 377-96). To analyze the third

round PCR products from the negative control of linkers A–B cut

from the denaturing PAGE gel, the second round PCR for this

negative control was run 25 cycles to generate enough templates

for the third round PCR, and then the third round PCR products

were sequenced. DNA sequencing data in this research are not

new ones that need to be deposited in GenBank.

Kinase Assay for T4 DNA Ligase
To explore the ligation mechanism of DNA linkers with 59-OH

ends, oligo 11 of linker F were phosphorylated by using [c-32P]
ATP and T4 DNA ligase. The kinase assay for E. coli DNA ligase

was not performed because NAD+ labeled with 32P was not

available for us. The phosphorylation of oligo 11 by T4 DNA

ligase was performed in 25 ml of phosphorylation mixture

containing 40 mM Tris-HCl (pH 8.0), 10 mM MgCl2, 10 mM

DTT, 0.6 mCi/ml of [c-32P] ATP, 4 mM of oligo 11, and 0.5

Weiss units/ml of T4 DNA ligase (Fermentas). 2 negative controls

and 1 positive control were set for each reaction. One of 2 negative

controls was without oligo 11 and another one was without ligase.

The positive control was oligo 11 phosphorylated by T4 PNK.

25 ml of the positive control mixture contained 1 x PNK buffer A

(50 mM Tris-HCl, pH 7.6 at 25uC, 10 mM MgCl2, 5 mM DTT,

0.1 mM spermidine and 0.1 mM EDTA), 2 mM of oligo 11,

0.6 mCi/ml of [c-32P] ATP, and 0.6 U/ml of T4 PNK

(Fermentas). These mixtures were incubated at 37uC for 1–

2 hrs. The positive control was then diluted 10-fold with 1 x TE.

Added 25 ml of 1 x TE and 5 ml of 10% SDS to the

phosphorylation products generated by T4 DNA ligase and the

negative controls, and then, extracted twice with an equal volume

of phenol/chloroform (1:1), and once with chloroform/isopentyl

alcohol (24:1). DNA was precipitated with 3 volumes of 100%

ethanol and 1/10th volume of sodium acetate at 220uC for

10 hrs. DNA pellets were washed 3 times with 300 ml of 75%
ethanol, dried at room temperature for about 2 hrs and

resuspended in 4 ml of ddH2O. 4 ml of the resuspended DNA

were mixed with 0.5 ml of 6 x DNA loading dye (Fermentas), and

0.5 ml of the positive control diluted 10-fold were mixed with 2 ml
of ddH2O and 0.5 ml of 6 x DNA loading dye (Fermentas). These

mixtures were then loaded on a 15% denaturing PAGE gel

(1061060.03 cm, A:B = 29:1, 7 M urea, 0.5 x TBE). Electro-

phoresis was run in 0.5 x TBE at 100 V and 25uC for 3 hrs. The

gel was fixed with 50 ml of 50% methanol containing 10% acetic

acid for about 2 hrs, washed twice with 250 ml of dH2O for

10 min, and then dried between two semipermeable cellulose

acetate membranes at 45uC for 2–3 hrs, and radioautographed at

220uC for 1–3 days.

To check if the phosphorylation of oligo 11 by T4 DNA ligase

could be inhibited by CIAP treatment, oligo 11 was incubated

with CIAP in 100 ml of CIAP reaction mixture containing 1 x

CIAP buffer (50 mM of Tris-HCl, pH 9.0, 1 mM of MgCl2),

2 mM of oligo 11, and 0.4 U/ml of CIAP (Takara), at 37uC for

30 min, added 2 ml of 0.25 M EDTA, pH 8.0, and then

inactivated at 85uC for 15–60 min. The CIAP reaction mixtures

were extracted twice with phenol/chloroform (1:1), and once with

chloroform/isopentyl alcohol (24:1). DNA was precipitated with 3

volumes of 100% ethanol and 1/10th volume of sodium acetate at

220uC for 10 hrs. DNA pellets were washed 3 times with 300 ml
of 75% ethanol, dried at room temperature for about 2 hrs and

resuspended in 4 ml of ddH2O. Then, the resuspended oligo 11

were phosphorylated by using T4 DNA ligase and radioauto-

graphed as described above.

Results

Ligation Products of the Complementary Linkers
To explore if the linkers with 59-OH ends could be joined by

commercial T4 and E. coli DNA ligase, linkers A–B, C–D, and E–

F were joined by using commercial T4 or E. coli DNA ligase.

Their ligation products could be detected by using 12% and 15%

denaturing PAGE (Figures 2 and 3). In Figure 2, there are 5 bands

(bands 1–5), 4 bands (bands 6–9), and 3 bands (bands 10–12) in

the lanes of the ligation products of linkers A–B, C–D, and E–F,

respectively. To characterize these bands, we run a denaturing

PAGE for all the oligos of linkers A–B and C–D. The result was

showed in Figure 4. Basing on this result and the lengths of these

oligos, we inferred that bands 1 and 2 were from oligos 4 and 1,

respectively. Band 3 was from both oligos 2 and 3. Band 4 was

unknown. Perhaps it might be the intermixtures of oligos 1–4.

Band 5 was the denatured ligation products of linkers A–B. Bands

6 and 7 were from both oligos 6 and 7, and both oligos 5 and 8,

respectively. Band 8 was the denatured ligation products of linkers

C–D. Band 9 was unknown. Perhaps it might be the intermixtures

of oligos 5–8 and the double-strand ligation products of linkers C–

D. Bands 10 and 11 were from both oligos 9 and 12, and both

oligos 10 and 11, respectively. Band 12 was the ligation products of

Ligation Products of DNA Linkers with 59-OH Ends

PLoS ONE | www.plosone.org 4 June 2012 | Volume 7 | Issue 6 | e39251



linkers E–F. Band 3 from oligos 2 and 3 of linkers A–B was very

weak. We supposed that the bands 5, 8, and 12 were from the

ligation products of linkers A–B, C–D, and E–F, respectively,

because: (i) their lengths were consistent with the expectation; and

(ii) there were no these bands in the negative controls. Based on

the band density of the ligation products and oligo 15 used as

a marker, we estimated roughly that about 0.5–1% of linkers A–B

and E–F, and 0.13–0.5% of linkers C–D could be joined by T4

DNA ligases. About 0.25–0.77% of linkers A–B and E–F, and

0.06–0.39% of linkers C–D could be joined by E. coli DNA

ligases. To figure out if the ligation of linkers A–B and E–F could

be inhibited by (NH4)2SO4, a strong inhibitor of T4 PNK, the

ligation of these linkers were performed in T4 DNA ligase reaction

mixture containing 7.5 mM (NH4)2SO4. The results showed that

the ligation of linkers A–B and E–F could not be significantly

inhibited by (NH4)2SO4 (Figures 2B and D, and Figure 3E). To see

if T4 PNK could use NAD+ as its phosphate donor, oligos 2 and 3

of linkers A–B were separately preincubated with T4 PNK in the

reaction mixture with NAD+, but without ATP. Then these linkers

were joined by using E. coli DNA ligase. The ligation results

demonstrated that the ligation yield of linkers A–B preincubated

with T4 PNK in the reaction mixture containing NAD+ did not

increased, indicating that T4 PNK could not use NAD+ as its

phosphate donor (Figure 2F).

To compare the ligation products between the linkers with 59-

phosphate ends and the linkers with 59-OH ends, linkers A–B, C–

D and G–H were separately phosphorylated by using T4 PNK,

and then joined by using T4 and E. coli DNA ligase. As a result,

we could see that the ligation products of linkers with 59-OH ends

were similar, but not completely, to those of the phosphorylated

linkers (Figure 3F). Based on the band density, we could estimated

that more than half of the ligation products of linkers A–B with 59-

OH ends were single strands, while more than half of those of the

phosphorylated linkers A–B were double strands. The ligation

products of linkers A–B were also similar to those of the

phosphorylated linkers G–H which deleted a nucleotide at their

59-ends (Figure 3G). Therefore, we speculated that some of the

ligation products of linkers A–B might also be generated from the

linkers with one or more nucleotide deletion(s) at their 59-ends. To

see if the ligation of linkers A–B could be inhibited by CIAP

treatment, oligos 2 and 3 of linkers A and B were treated with

CIAP before ligation. As a result, the ligation products of linkers

A–B treated with CIAP reduced obviously when CIAP was

inactivated at 85uC for only 15–25 min (Figures 5A–B). The

ligation products increased again when CIAP was inactivated at

85uC for more than 30 min (Figures 5B–E). These results of CIAP

treatments might perhaps give us at least 3 messages: (i) CIAP

treatments of linkers A–B could block, but not completely, the

ligation of linkers A–B, indicating that some of linkers A–B could

still be joined by T4 DNA ligase even after CIAP treatment; (ii) the

ligation of linkers A–B could be recovered after CIAP was

inactivated at 85uC for 30–90 min, perhaps suggesting that some

of linkers A–B could spontaneously delete one or more nucleo-

tide(s) at their 59-ends and generate some 59-phosphate ends when

the linkers were incubated at 85uC for 30–90 min; and (iii) these

results of CIAP treatments again indicated that band 5 in

Figure 2A was the ligation products of linkers A–B.

Three Round Overlap PCR Products and DNA Sequencing
To prepare the sequencing template, the ligation products of

linkers A–B and C–D were amplified by using 3 round overlap

PCR. The 3 round overlap PCR products from the ligation

products of linkers A–B or linkers C–D were 78, 121, and 165 bp

long, or 109, 148, and 201 bp long, respectively. These PCR

products were checked by using 2.5% agarose gel. All of them

could be detected by using 2.5% agarose gel electrophoresis

(Figure 6), again indicating that the linkers with 59-OH ends could

be joined by T4 and E. coli DNA ligases. To see if the linkers with

59-OH ends could be correctly joined by T4 and E. coli DNA

ligase, the third round PCR products were analyzed by DNA

sequencing. The sequencing results revealed that linkers A–B and

C–D had been joined by T4 or E. coli DNA ligase (Figure 7). We

could find a 1-base deletion (-G) at the ligation junctions of both

sense and antisense strands of linkers A–B, and a 5-base deletion (-

GGAGC) at the ligation junction of the antisense strand of linkers

C–D. The signal intensity from these deletions was only equivalent

to about 25% of that from the normal sequences if the ligation

products of linkers A–B and C–D were purified with a PCR

product purification kit before PCR (Figures 7A–D), otherwise, the

signal intensity from these deletions was equivalent to or even

stronger than that from the normal sequences if the ligation

products of linkers A–B and C–D were not purified with a PCR

product purification kit before PCR (Figures 7E–G). These

sequencing results indicated that: (i) about 80% (calculated

according to the formula: the signal intensity from the ligation

products without base deletion + the signal intensity from the

ligation products with base deletion = 1, namely,

141.256%=80%) of the ligation products purified with a PCR

Table 2. Primers used in the three round overlap PCR and DNA sequencing.

Primers Sequence (59-OHR39-OH)

1 AATAGGCAGAGAGAGTCA

2 GAGGTGTCCCACTCCAGATTCACTACTGTCGGCATGGACAGGAACCGAGA

3 TACTTTCCCTAATCTCTTTCTTTCAGGGCAATAATGATACAATGAGGTGTCCCACTCC

4 TTAGTAGCAATTTGTACTGATGGTATGGGGCCAAGAGATATATCTACTTTCCCTAATCT

5 AGAGCCAAGGACAGGTACGGCTGTCATCACTTAGACCTCACCCTGT

6 TTTCTATTGGTCTCCTTAAACCTGTCTTGTAACCTTGATAC

7 AGGGCTGAGGGTTTGAAGTCCAACTCCTAAGCCAGTGCCAGAAGAGCCAAGGACA

8 CTATTGGTCTCCTTAAACCTGTCTTG

9 AGTAGCAATTTGTACTGATGGTATGGGGCCAAGAGATATATCTTAGAGGGAGGGCTGAG

10a AGTAGCAATTTGTACTGATGGTATGG

aDNA sequencing primer.
doi:10.1371/journal.pone.0039251.t002
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Figure 2. 12% denaturing PAGE for the ligation products of linkers A–B, C–D, and E–F. PAGE (1061060.03 cm, A:B = 19:1, 7 M urea and
0.5 x TBE) was run in 0.5 x TBE, 25uC, 200 V for 1.7 hrs for the ligation products of linkers A–B and C–D, or 100 V for 3.5 hrs for those of linkers E–F. The
arrows indicate the ligation products. Lane M: DNA marker I (GeneRulerTM 50 bp DNA ladder, Fermentas); Lane M1: DNA marker I +1 ml of 1 mM oligo
15; Lane M2: pUC19 DNA/MspI Marker (Fermentas). (A) The ligation products joined by using T4 DNA ligase from Takara and Fermentas. Lane 1:1 ml
of 1 mM oligo 15; Lanes 2 and 6: the ligation products of linkers A–B joined by using T4 DNA ligase from Takara and Fermentas, respectively. We could
see 5 bands. Of them, bands 1 and 2 were from oligos 4 and 1, respectively. Band 3 was from both oligos 2 and 3. Band 4 was unknown. Perhaps it
might be the intermixtures of oligos 1–4. Band 5 was the denatured ligation products of linkers A–B; Lanes 4 and 8: the ligation products of linkers C–
D joined by using T4 DNA ligase from Takara and Fermentas, respectively. We could see 4 bands. Of them, bands 6 and 7 were from both oligos 6 and
7, and both oligos 5 and 8, respectively. Band 8 was the denatured ligation products of linkers C–D. Band 9 was unknown. Perhaps it might be the
intermixtures of oligos 5–8 and the double-strand ligation products of linkers C–D; Lanes 3, 5, 7, and 9: the negative controls. (B) The ligation
products of linkers A–B and C–D joined by using T4 DNA ligase from Promega and the ligation products of linkers A–B joined in the ligase reaction
mixture containing (NH4)2SO4. Lane 1:1 ml of 1 mM oligo 15; Lanes 2 and 4: the denatured ligation products of linkers A–B, and C–D, respectively. T4
DNA ligase was from Promega; Lanes 6 and 7: the ligation products of linkers A–B joined in the ligase reaction mixture without (NH4)2SO4 and with
(NH4)2SO4, respectively. T4 DNA ligase used was from Takara; Lanes 3, 5, and 8: the negative controls. (C) The ligation products of linkers A–B and C–D
joined by using E. coli DNA ligase. Lane 1:1 ml of 1 mM oligo 15; Lanes 2 and 4: the ligation products of linkers A–B, and C–D, respectively; Lanes 3 and
5: the negative controls. (D) The ligation products of linkers E–F joined in the ligase reaction mixture with (NH4)2SO4. The ligase was T4 DNA ligase
(Fermentas). Lane 1: pUC19 DNA/MspI Marker plus 2 ml of ligation products of linkers E–F; Lanes 2 and 3: the ligation products of linkers E–F joined in
the ligase reaction mixtures with (NH4)2SO4, and without (NH4)2SO4, respectively. We could see 3 bands. Bands 10 and 11 are from both oligos 9 and
12, and both oligos 10 and 11, respectively; Band 12 is the ligation products of linkers E–F; Lane 4: the negative control. (E) The ligation products of
linkers E–F joined by using E. coli DNA ligase. Lane 1: the ligation products of linkers E–F. Lane 2: the negative control. (F) The ligation products of
linkers A–B preincubated with T4 PNK in the E. coli DNA ligase reaction mixture without ATP. The ligase was E. coli DNA ligase (Takara). Lane 1:1 ml of
1 mM oligo 15; Lane 2: linkers A–B were not preincubated with T4 PNK; Lane 3: linkers A–B were preincubated with T4 PNK; Lane 4: the negative
control.
doi:10.1371/journal.pone.0039251.g002
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Figure 3. 15% denaturing PAGE for the ligation products of linkers A–B, C–D and linkers G–H. PAGE (1061060.03 cm, A:B = 29:1, 7 M
urea, 0.5x TBE) was run in 0.5 x TBE, 25uC, 100 V for 3.5 hrs in (A)–(F), or 4.3 hrs in (G). The ligation products were indicated by the arrows. Lane M:
DNA marker I (GeneRulerTM 50 bp DNA ladder, Fermentas). Lane M1: DNA marker I plus oligo 15. (A) The ligation products joined by using T4 DNA
ligase from Fermentas. Lane 1: the ligation products of linkers C–D preincubated with T4 DNA ligase; Lane 2: the ligation products of linkers C–D
without the preincubation; Lane 4: the ligation products of linkers A–B; Lanes 3 and 5: the negative controls. (B) The ligation products joined by using
T4 DNA ligase from Takara. Lanes 1–3:0.5, 1, and 2 ml of 1 mM oligo 15, respectively; Lanes 4 and 6: the ligation products of linkers A–B; Lane 8: the
ligation products of linkers C–D. Lanes 5, 7, and 9: the negative controls. (C) The ligation products joined by using T4 DNA ligase from Promega. Lane
1:1 ml of 1 mM oligo 15; Lanes 2 and 4: ligation products of linkers A–B, and C–D, respectively; Lanes 3 and 5: the negative controls. (D) The ligation
products joined by using E. coli DNA ligase from Takara. Lanes 1 and 3: the ligation products of linkers A–B, and C–D, respectively; Lanes 2 and 4: the
negative controls. (E) The ligation products of linkers A–B joined in T4 DNA ligase reaction mixture containing (NH4)2SO4. Lanes 1–3: the ligase
reaction mixture with 7.5 mM (NH4)2SO4, 3.75 mM (NH4)2SO4, and without (NH4)2SO4, respectively; Lane 4: the negative control. (F) The ligation
products of the phosphorylated linkers A–B and C–D joined by using T4 and E. coli DNA ligase (Takara). Lane 1:1 ml of 1 mM oligo 15; Lanes 2 and 4:
the ligation products of the phosphorylated linkers A–B joined by using T4 and E. coli DNA ligase, respectively; Lanes 3 and 5: the ligation products of
the phosphorylated linkers C–D joined by using T4 and E. coli DNA ligase, respectively; Lanes 6 and 7: the ligation products of linkers A–B and C–D,
respectively; Lanes 8 and 9: the negative controls of lanes 6 and 7, respectively. (G) The ligation products of linkers A–B and the phosphorylated
linkers G–H. Lanes 1 and 2: the ligation products of linkers A–B and the ligation products of the phosphorylated linkers G–H plus the negative control
of linkers A–B, respectively; Lane 3: the negative control of linkers G–H plus the negative control of linkers A–B. The band from the ligation products
of the phosphorylated linkers G–H run a little more slowly than that of linkers A–B. The sequences of linkers G and H are similar to those of linkers A
and B, respectively. But there is a 1-base deletion at the 59 end of each of linkers G and H.
doi:10.1371/journal.pone.0039251.g003
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product purification kit did not contain these base deletions,

meaning that some linkers had been correctly joined by T4 and E.

coli DNA ligases; (ii) the ligation products of the linkers

phosphorylated by T4 DNA ligase could be selectively collected

by the PCR product purification kit; and (iii) perhaps these base

deletions might be partly caused by PCR as well as by the base

deletions at the 59-ends of the linkers. Therefore, it was difficult for

us to estimate how many ligation products did not contain these

base deletions if these ligation products were not purified with

a PCR product purification kit. If only based on the signal

intensity from Figures 7E–F, we could estimate that about 30–50%

of the unpurified ligation products did not contained base

deletions. The sequencing result of the negative control of linkers

A–B showed that there was the same base deletion (-G) at the

ligation junction (Figures 7H), again indicating that this base

deletion might be partly caused by PCR.

Kinase Assay
To explore the ligation mechanism of DNA linkers with 59-OH

ends by T4 DNA ligase, oligo 11 of linker F were phosphorylated

by using [c-32P] ATP and T4 DNA ligase. As a result, the

phosphorylation products of oligo 11 could be detected by

radioautography, suggesting that the 59-OH of oligo 11 could be

phosphorylated by T4 DNA ligase (Figure 8). Based on the band

density of the phosphorylation products, we estimated roughly that

about 0.025–0.1% of oligo 11 could be phosphorylated by T4

DNA ligase. The phosphorylation products would increase when

the phosphorylation reaction at 37uC was extended from 1 hr to

2 hrs (comparing Figures 8A–C with Figure 8D). Combining this

result with that of DNA sequencing, we supposed that the ligation

products of the linkers with 59-OH ends might be the inter-

mixtures of the ligation products of the linkers phosphorylated by

T4 DNA ligase and those of the linkers which deleted some

nucleotides at their 59-ends. To check if the phosphorylation of

oligo 11 by T4 DNA ligase could be inhibited by CIAP treatment,

oligo 11 was treated with CIAP before it was phosphorylated by

T4 DNA ligase. As a result, the phosphorylation products of oligo

11 by T4 DNA ligase reduced if oligo 11 was treated with CIAP

(Figures 8B–C). The phosphorylation products by T4 DNA ligase

were more when CIAP was inactivated at 85uC for 15 min than at

85uC for 30–60 min (Figures 8B–C). It was unknown why the

phosphorylation of oligo 11 by T4 DNA ligase could be inhibited

by CIAP treatment.

Discussion

Our experiments showed that DNA linkers with 59-OH ends

could be joined by both T4 and E. coli DNA ligases. The ligation

products could be detected directly by using 12% and 15%

denaturing PAGE silver stain (Figures 2 and 3), or indirectly by

using the first round PCR. We had to perform 3 round overlap

PCR to generate DNA sequencing template because the first

round PCR products were too short to be analyzed by direct DNA

sequencing. DNA sequencing results showed a 1-base or 5-base

deletion at the ligation junction between linkers A–B or C–D,

respectively. We inferred that these deletions might be generated

in 2 manners: (1) they were generated partly by the PCR because

(i) the deletion background could be significantly reduced by the

purification of the ligation products with a PCR product

purification kit (Figures 7A–D); and (ii) when the second round

PCR for the negative control of linkers A–B was run 15 cycles as

many as those of the positive sample, the third round PCR

products of the negative control were hardly detectable. However,

when the second round PCR was run up to 25 cycles, the third

round PCR products of the negative control were rich enough to

be analyzed by DNA sequencing. The sequencing result for this

negative control showed the same deletion as that in the ligation

products of linkers A–B (Figure 7H); and (2) they might be

generated partly by nucleotide deletion at the 59-ends of the

linkers. Since it was impossible that oligos with 59-phosphate

groups could be synthesized by using the solid-phase phosphor-

amidite method without any chemical modification, we inferred

that the 59-ends of linkers could delete one or more nucleotide(s)

spontaneously or by the possibly contaminated nucleases.

It is quite clear that the ligation mechanism of DNA nicks or

breaks with 59-phosphate includes the following steps. First, DNA

ligase is activated through the formation of a covalent protein-

AMP intermediate. Second, the AMP moiety is transferred from

the ligase to the 59-phosphate group at the nick site. Finally, DNA

ligase joins the DNA nick or break by catalyzing the formation of

a phosphodiester bond between the adjacent 59-phosphate and the

39-OH ends with the release of AMP. However, it is unclear why

these DNA linkers with 59-OH ends could be joined by

commercial T4 or E. coli DNA ligases. Based on our experimental

results, we have 3 hypotheses. First, the 59-OH ends of the DNA

linkers might be first phosphorylated by T4 DNA ligase, and then

these phosphorylated DNA linkers were joined by T4 DNA ligase

through the three steps mentioned above. This hypothesis seems to

be supported by our kinase assay showing that T4 DNA ligases

Figure 4. 15% denaturing PAGE for oligos 1–8. PAGE
(1061060.03 cm, A:B = 29:1, 7 M urea, 0.5 x TBE) was run in 0.5 x TBE
buffer at 25uC and 100 V for 3.5 hrs. The silver stain method was
described in the text. Lanes M and M2: DNA marker I (GeneRulerTM

50 bp DNA ladder, Fermentas) and pUC19 DNA/MspI Marker (Fermen-
tas), respectively. Lanes 1–8: oligos 2, 3, 5, 8, 4, 1, 6, and 7, respectively.
Of them, oligos 2, 3, and 7 could not be fixed with 50% methanol
containing 10% acetic acid and silver-stained.
doi:10.1371/journal.pone.0039251.g004
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Figure 5. 12% denaturing PAGE for the ligation products of linkers A–B treated with CIAP. PAGE (1061060.03 cm, A:B = 19:1, 7 M urea
and 0.5 x TBE) was run in 0.5 x TBE, 25uC, 200 V for 1.7 hrs. The arrows indicate the ligation products. Lane M: DNA marker I (GeneRulerTM 50 bp DNA
ladder, Fermentas); Lane M1: DNA marker I +1 ml of 1 mM oligo 15. The ligases used in (A)–(C) were T4 DNA ligases. The ligases used in (D)–(E) were E.
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coli DNA ligases. (A) CIAP was inactivated at 75uC for 15 min. Lanes 1 and 5:1 ml of 1 mM oligo 15; Lanes 2: CIAP was inactivated at 75uC for 15 min;
Lane 3: the positive control without CIAP treatment; Lane 4: the negative control without ligase. (B) CIAP was inactivated at 85uC for 25 min and
45 min. Lanes 1 and 3: the positive controls without CIAP treatment; Lanes 2 and 4: CIAP was inactivated at 85uC for 25 min and 45 min, respectively;
Lane 5: the negative control without ligase. (C) CIAP was inactivated at 85uC for 65 min and 90 min. Lanes 1 and 3: the positive controls without CIAP
treatment; Lanes 2 and 4: CIAP was inactivated at 85uC for 65 min and 90 min, respectively; Lane 5: the negative control without ligase. (D) CIAP was
inactivated at 85uC for 45 min. Lanes 1 and 3: the positive control without CIAP treatment and the negative control without ligase, respectively; Lane
2: CIAP was inactivated at 85uC for 45 min. (E) CIAP was inactivated at 85uC for 65 and 90 min. Lanes 1 and 3: the positive controls without CIAP
treatment; Lanes 2 and 4: CIAP was inactivated at 85uC for 65 and 90 min, respectively; Lane 5: the negative control without ligase.
doi:10.1371/journal.pone.0039251.g005

Figure 6. 2.5% agarose gel electrophoreses for the three round PCR products. Electrophoreses were run in 1 x TAE at 60 V for 40 min.
Lanes M and M2: DNA marker I and pUC19 DNA/MspI Marker, respectively; Lanes 1, 3, and 5: the first, second, and third round PCR products,
respectively; Lanes 2, 4, and 6: the negative controls. (A) and (B)The first round PCR templates were the ligation products of linkers A–B joined by T4
and E. coli DNA ligases, respectively. (C) and (D) The first round PCR templates were the ligation products of linkers C–D joined by T4 and E. coli DNA
ligases, respectively. (E) The first round PCR templates were the ligation products cut from the denaturing PAGE gel.
doi:10.1371/journal.pone.0039251.g006
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had a weak kinase activity. Perhaps we could imagine that a ligase

might facilitate the phosphorylation of oligos. In the ligase-ATP-

Mg2+-DNA complex, the ligase may somewhat act as a kinase

through the general mechanism of enzyme catalysis: the proximity

and orientation effect. If so, the kinase activity perhaps is a minor

one simply due to the fact that a ligase can place ATP or NAD+ to

the proximity of the 59-OH. Second, the DNA ligases used might

contain trace amount of PNK. But this hypothesis seems not to be

supported by (i) T4 and E. coli DNA ligase are polypeptides with

molecular weights of 68 and 75 kDa, respectively. T4 PNK

consists of four identical subunits of 28.9 kDa each. These

enzymes should be able to be easily separated because their

structures and molecular weights are quite different from each

other; (ii) DNA ligases used were purchased from the professional

manufacturers. When these manufacturers were questioned, they

stated that their T4 DNA ligases had very high quality and it was

very unlikely that there would be PNK in their ligases because

their ligases were produced by using E. coli cells and production

lines that were different from those for T4 PNK. A quality

inspection report of T4 DNA ligase from Fermentas showed that

T4 PNK could not be detected in their T4 DNA ligase

(Supporting information S1); (iii) PNK could not be detected in

T4 DNA ligase (Fermentas) by using mass spectrometry (MS)

analysis (Supporting information S2 and S3); (iv) PNK is abundant

in mammalian cells but absent in E. coli cells [14]. Therefore, the

endogenous PNK should be absent in the host E. coli cells that

carry plasmids enabling T4 or E. coli DNA ligase high expression;

(v) The ligation of linkers A–B and E–F could not be significantly

inhibited by (NH4)2SO4, a strong inhibitor of T4 PNK (Figures 2B

and D, and Figure 3E); and (vi) T4 PNK requires ATP for activity.

Our experiment showed that T4 PNK could not use NAD+ as its

phosphate donor. However, both Type I and II linkers could be

joined by E. coli DNA ligases even if there was no ATP in the E.

coli DNA ligase reaction mixture (Figures 2C and F, and

Figure 3D). Third, the 59-ends of the linkers could delete some

nucleotides spontaneously or by the possibly contaminated

nucleases, and thereby formed some 59- phosphate ends. Although

the efficiency was low, now the ligase could join the newly

appeared 59-phosphate to the 39-OH of the other linkers, which

resulted in the amplification of ligation product with a nucleotide

deletion at the junction point.

The ligation products of linkers A–B could be reduced by CIAP

treatment of the linkers when CIAP was inactivated at 85uC for

15–25 min, but they could increase again when CIAP was

inactivated at 85uC for 30–90 min. The reasons were unknown.

We presumed that the linkers with 59-phosphate generated by

a spontaneous nucleotide deletion would increase when the

incubation at 85uC was extended. Therefore, the ligation products

would decrease when the 59-phosphate generated by the

Figure 7. DNA sequencing results of the third round PCR
products. The letters on the top are the expected DNA sequences. The
downward arrows and the upward arrows indicate the ligation
junctions of the sense strands and the antisense strands, respectively.
(A) and (B) The sequencing templates were prepared from the ligation
products of linkers A–B joined by T4 and E. coli DNA ligases,
respectively. The ligation products were purified by using a PCR
product purification kit before PCR. There was a 1-base deletion (-G) at
the ligation junctions of both sense and antisense strands. The signal
intensity from these deletions was only equivalent to about 25% of that
from the normal sequences. (C) and (D) The sequencing templates
were prepared from the ligation products of linkers C–D by T4 and E.
coli DNA ligases, respectively. The ligation products were purified by
using a PCR product purification kit before PCR. A 5-base deletion (-
GGAGC) was found at the ligation junction of the antisense strand. The

signal intensity from the deletion was only equivalent to about 25% of
that from the normal sequence. (E) and (F) DNA sequencing template
was prepared from the unpurified ligation products of linkers A–B and
C–D, respectively. A 1-base deletion (-G) or a 5-base deletion (-GGAGC)
was found at the ligation junctions of both sense and antisense strands
of linkers A–B, or the ligation junction of the antisense strand of linkers
C–D, respectively. The signal intensity from these deletions was
equivalent to or even stronger than that from the normal sequence.
(G) DNA sequencing template was prepared from the ligation products
of linkers A–B cut from the denaturing PAGE gel. There was a 1-base
deletion (-G) at the ligation junctions of both sense and antisense
strands. (H) DNA sequencing template was prepared from the negative
control of linkers A–B cut from the denaturing PAGE gel. There was 1-
base deletion (-G) at the ligation junctions of both sense and antisense
strands.
doi:10.1371/journal.pone.0039251.g007

Ligation Products of DNA Linkers with 59-OH Ends

PLoS ONE | www.plosone.org 11 June 2012 | Volume 7 | Issue 6 | e39251



spontaneous nucleotide deletion was removed by CIAP, but

increase again when the linkers deleting one or more nucleotide(s)

at their 59-ends increased as the CIAP inactivation at 85uC was

extended from 15 min to 30–90 min.

Our kinase assay for T4 DNA ligase showed that about 0.025–

0.1% of oligo 11 could be phosphorylated by T4 DNA ligase and

the phosphorylation of oligo 11 by T4 DNA ligase could be

inhibited by CIAP treatment of oligo 11. The phosphorylation

Figure 8. The radioautograph of oligo 11 phosphorylated by T4 DNA ligase. The oligo 11 was phosphorylated by using commercial T4 DNA
ligase. The phosphorylation products were loaded on a 15% denaturing PAGE gel (1061060.03 cm, A:B = 29:1, 7 M urea, 0.5 x TBE). Electrophoresis
was run in 0.5 x TBE at 100 V and 25uC for 3 hrs. The gel was dried between two semipermeable cellulose acetate membranes and radioautographed
at220uC for 1–3 days. The arrows indicate the phosphorylation products. The positive controls were oligo 11 phosphorylated by T4 PNK. (A) Oligo 11
was phosphorylated by T4 DNA ligase at 37uC for 2 hrs. Lanes 1 and 5: the positive controls; Lanes 2 and 4: the negative controls without ligase, and
without oligo 11, respectively; Lane 3: the phosphorylation products of oligo 11 by T4 DNA ligase. (B) Oligo 11 treated with CIAP was phosphorylated
by T4 DNA ligase at 37uC for 2 hrs. Lanes 1 and 5: the positive controls; Lane 2: the phosphorylation products of oligo 11 by T4 DNA ligase; Lanes 3
and 4: the negative controls without ligase, and without oligo 11, respectively; Lanes 6, 7, and 8: oligo 11 treated with CIAP was phosphorylated by T4
DNA ligase. CIAP was inactivated at 85uC for 15 min, 30 min, and 60 min, respectively. Lanes 9 and 10: the negative controls without ligase, and
without oligo 11, respectively. (C) Oligo 11 treated with CIAP was phosphorylated by T4 DNA ligase at 37uC for 2 hrs. Lanes 1 and 5: the positive
controls; Lane 2: the phosphorylation products of oligo 11 by T4 DNA ligase; Lanes 3 and 4: the negative controls without ligase, and without oligo
11, respectively; Lanes 6, 7, and 8: oligo 11 treated with CIAP was phosphorylated by T4 DNA ligase. CIAP was inactivated at 85uC for 60 min, 15 min,
and 30 min, respectively. (D) Oligos 11 and 12 were phosphorylated by T4 DNA ligase at 37uC for 1 hr. Lane 1: oligos 11 and 12 were phosphorylated
by T4 PNK; Lane 2: oligos 11 and 12 were phosphorylated by T4 DNA ligase; Lane 3: oligo 11 were phosphorylated by T4 DNA ligase; Lane 4: the
negative control without ligase. (E) Oligo 11 was phosphorylated by T4 DNA ligase at 37uC for 2 hrs. 1 x TE and 10% SDS were not added to the
phosphorylation products before phenol/chloroform extraction. Lane 1: the positive control; Lanes 2 and 3: the phosphorylation products of oligo 11
by T4 DNA ligase and the negative controls without ligase, respectively.
doi:10.1371/journal.pone.0039251.g008
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products by T4 DNA ligase were more when CIAP was

inactivated at 85uC for 15 min than at 85uC for 30–60 min. It

was unknown why the phosphorylation of oligo 11 could be

inhibited by CIAP treatment. We supposed that the reasons might

include: (i) CIAP mixture perhaps contained some inhibitors from

CIAP or the other components of CIAP mixture; and (ii) an oligo

might be hard to be phosphorylated by T4 DNA ligase if it were

incubated in CIAP mixture at 85uC for more than 15 min. Our

DNA sequencing results demonstrated one or more base

deletion(s) at the ligation junction between linkers, but the base

deletion background could be significantly reduced if the ligation

products of linkers A–B and C–D were purified with a PCR

product purification kit before PCR. These results might suggest

that the ligation products of the linkers phosphorylated by T4

DNA ligase could be selectively collected by the PCR product

purification kit. Since the base deletion background of the ligation

products generated by E. coli DNA ligase could also be

significantly reduced by the purification of the ligation products

with a PCR product purification kit, we speculated that the

ligation products generated by E. coli DNA ligase might also

contain the ligation products of the phosphorylated linkers, or in

other words, perhaps the linkers with 59-OH ends could be

phosphorylated by E. coli DNA ligase, too.

T4 and E. coli DNA ligases have been deeply researched and

widely used as molecular biology tools since they were discovered

a long time ago. It is unclear why the ligation products of DNA

linkers with 59-OH ends joined by T4 or E. coli DNA ligase are

rarely reported. We speculated that the reasons might include: (i)

in the past, the ligation products loaded on a gel were too little to

be detected by silver stain because the maximum volume of a 0.3-

mm-thin gel was about 10 ml if the wells were created by a shark

tooth comb. Of course, the maximum volume of a well could be

increased if a thicker gel was used. But the silver stain for a thick

gel would be difficult to be done. It was because the ligation

products were enriched 12.5 to 25 fold that the ligation products

could be detected by us. Or in other words, the enriched ligation

products loaded to each well by us was equivalent to 50–100 ml of
the unenriched ones. Therefore they could be detected by us; (ii)

the ligation products could not be separated from the ligation

substrates (the oligos of linkers) by using an agarose gel containing

EB (Figure 9). Moreover, the sensitivity of EB was lower than that

of silver stain; and (iii) the sensitivity of radioautograph may

perhaps be higher than that of silver stain, but the signals from

ligation products could be covered by those from the substrates

(the oligos of linkers) because the latter would be much stronger

than the former (refer Figure 8D). In addition, it was the most

important that we added 1 x TE and 10% SDS to the

phosphorylation products generated by T4 DNA ligase before

they were extracted with phenol/chloroform, otherwise, the

signals from the phosphorylation products would be covered by

those from the background (Figure 8E).

In the previous experiments [15], we found that the short DNA

fragments (,80 nt) were hard to be fixed with 10% acetic acid.

Therefore, in this experiment, we fixed the ligation products and

the oligos of linkers with 50% methanol containing 10% acetic

acid. The ligation products and most oligos of the linkers could be

fixed by this fixing solution, but oligos 2, 3, and 7 could not be well

fixed (Figures 2, 3, and 4) and silver stained. The reason is

unknown. We found that the oligos (20–30 nt long) could be fixed

with 50% methanol containing 10% acetic acid and silver-stained

if their base compositions could meet either of the following 2

conditions: (i) the amount of base A $8; and (ii) the amount of

base G $7 if the amount of base A #7, but $5 (Table 3).

In conclusions, our experimental results indicate that about 0.5–

1% of linkers A–B and E–F, and 0.13–0.5% of linkers C–D could

be joined by commercial T4 DNA ligases. About 0.25–0.77% of

linkers A–B and E–F, and 0.06–0.39% of linkers C–D could be

joined by commercial E. coli DNA ligases. These ligation products

could be detected directly by using denaturing PAGE silver stain,

or indirectly by using PCR. There was a 1-base or 5-base deletion

at the ligation junction between linkers A–B or C–D, respectively.

But 80% of the ligation products purified with a PCR product

purification kit did not contain these base deletions, meaning that

some linkers with 59-OH ends had been correctly joined by T4

and E. coli DNA ligases. CIAP treatments of linkers A–B could

block, but not completely, the ligation of linkers A–B. About

0.025–0.1% of oligo 11 could be phosphorylated by commercial

T4 DNA ligase. The phosphorylation products could be increased

when the phosphorylation reaction was extended from 1 hr to

2 hrs. The phosphorylation of oligo 11 by T4 DNA ligase could be

Figure 9. 2.5% agarose gel electrophoresis for the ligation
products of linkers A–B and C–D. The gel contained 0.5 mg/ml of
EB. 20 ml of the original ligation products were loaded to each well.
Electrophoresis was run in 1 x TAE, at 60 V for 40 min. Lane M: DNA
marker I; Lanes 1 and 3: the ligation products of linkers A–B, and C–D,
respectively. Lanes 2 and 4: the negative controls of lanes 1 and 3,
respectively.
doi:10.1371/journal.pone.0039251.g009

Table 3. Base compositions of the oligos of the linkers and
silver-stain.

Linker Oligo Length (nt) Base compositions (nt; %) Silver stain*

A C G T

A 1 22 7;31.8 5;22.7 8;36.4 2;9.1 +

2 30 3;10.0 11;36.7 5;16.7 11;36.7 2

B 3 28 7;25.0 7;25.0 5;17.9 9;32.1 2

4 20 8;40.0 2;10.0 7;35.0 3;15.0 +

C 5 29 7;24.1 8;27.6 8;27.6 6;20.7 +

6 21 5;23.8 5;23.8 7;33.3 4;19.0 +

D 7 21 4;19.0 2;9.5 8;38.1 7;33.3 2

8 29 8;27.6 11;37.9 3;10.3 7;24.1 +

*(+) = positive; (2) = negative.
doi:10.1371/journal.pone.0039251.t003
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inhibited by CIAP treatment of oligo 11. The phosphorylation

products by T4 DNA ligase were more when CIAP was

inactivated at 85uC for 15 min than at 85uC for 30–60 min. We

speculated that perhaps the linkers with 59-OH could be joined by

the commercial T4 or E. coli DNA ligase in 2 different manners: (i)

the commercial T4 DNA ligase could phosphorylate the 59-OH of

linkers at a low efficiency, and then join them to the 39-OH ends of

other linkers; and (ii) the 59-ends of the linkers could delete one or

more nucleotide(s) spontaneously or by the possibly contaminated

nucleases, and thereby generated some 59-phosphate ends, and

then these 59-phosphate ends could be joined to the 39-OH ends of

other linkers at a low efficiency. Our findings may perhaps

indicate that some DNA nicks with 59-OH ends could be joined by

T4 or E. coli DNA ligase even in the absence of PNK. But a base

deletion mutation would be created if the nicks were joined in the

manner of base deletion.
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