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SUMMARY

Detailed knowledge of the molecular biology of severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) infection is crucial for understanding of viral
replication, host responses, and disease progression. Here, we report gene
expression profiles of three SARS-CoV- and SARS-CoV-2-infected human cell
lines. SARS-CoV-2 elicited an approximately two-fold higher stimulation of the
innate immune response compared to SARS-CoV in the human epithelial cell
line Calu-3, including induction of miRNA-155. Single-cell RNA sequencing of in-
fected cells showed that genes induced by virus infections were broadly upregu-
lated, whereas interferon beta/lambda genes, a pro-inflammatory cytokines such
as IL-6, were expressed only in small subsets of infected cells. Temporal analysis
suggested that transcriptional activities of interferon regulatory factors precede
those of nuclear factor kB. Lastly, we identified heat shock protein 90 (HSP90) as
a protein relevant for the infection. Inhibition of the HSP90 activity resulted in a
reduction of viral replication and pro-inflammatory cytokine expression in pri-
mary human airway epithelial cells.

INTRODUCTION

Diseases caused by coronaviruses (CoVs) range from asymptomatic and mild infections of the upper res-

piratory tract to severe acute respiratory distress, when the lower respiratory tract is infected. In addition

to the six previously known CoVs affecting humans, a novel CoV termed severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) has recently emerged. The novel SARS-CoV-2, which causes coronavirus dis-

ease 2019 (COVID-19), is an ongoing global health threat since the beginning of the outbreak in late

2019 and has, at the time of writing this text, infected more than 80 million people worldwide (World Health

Organization, 2020). The SARS-CoV-2 life cycle initiates with the attachment of the virion to the cell surface

and subsequent binding to the angiotensin converting enzyme 2 (ACE2), followed by proteolytic cleavage

and internalization (Fehr and Perlman, 2015; Hoffmann et al., 2020; Masters and Perlman, 2013). Non-struc-

tural proteins are then translated to form a replicase-transcriptase complex, in which the full genomic RNA,

as well as subgenomic RNAs are generated within double membrane vesicles (DMVs) (Fehr and Perlman,

2015; Masters and Perlman, 2013; van Hemert et al., 2008). Incoming viral RNA is detected by sensors such

as IFIH1 (interferon induced with helicase C domain 1; also known as MDA5) and DDX58 (DExD/H-Box heli-

case 58; also known as RIG-I), which trigger the antiviral response. This sensing and signaling is impaired by

a range of viral factors, e.g. replication within DMVs, RNA capping, and methylation, or shortening of the

poly-U tail on the minus strand RNA (Hackbart et al., 2020; Menachery et al., 2014a). Furthermore, inhibition

of interferon regulatory factor (IRF) activity (Spiegel et al., 2005) and a delayed induction of interferon-stim-

ulated genes (ISGs) compared to influenza virus infection or type I interferon treatment itself (Menachery

et al., 2014b) was observed in SARS-CoV infection. Importantly, accessory genes in the SARS-CoV genome,

like open reading frame 6 (ORF6), may code for antagonists of interferon signaling (Narayanan et al., 2008).
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Charité – University Hospital
Berlin, 10117 Berlin, Germany

7Laboratory of Infection
Oncology, Institute of Clinical
Molecular Biology, UKSH,
Christian Albrechts University
of Kiel, 24105 Kiel, Germany

8IRI Life Sciences, Institut für
Biologie, Humboldt
Universität zu Berlin,
Philippstraße 13, 10115
Berlin, Germany

9These authors contributed
equally

10Lead contact

*Correspondence:
emanuel.wyler@mdc-berlin.
de (E.W.),
christian.drosten@charite.de
(C.D.),
markus.landthaler@
mdc-berlin.de (M.L.)

https://doi.org/10.1016/j.isci.
2021.102151

iScience 24, 102151, March 19, 2021 ª 2021 The Author(s).
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1

ll
OPEN ACCESS

mailto:emanuel.wyler@mdc-berlin.de
mailto:emanuel.wyler@mdc-berlin.de
mailto:christian.drosten@charite.de
mailto:markus.landthaler@mdc-berlin.de
mailto:markus.landthaler@mdc-berlin.de
https://doi.org/10.1016/j.isci.2021.102151
https://doi.org/10.1016/j.isci.2021.102151
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2021.102151&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Following production of subgenomic RNAs, during which a constant 50 leader is prepended by a process

called discontinuous transcription (Sola et al., 2015), the viral genes are translated either in the cytoplasm,

e.g. the nucleocapsid protein, N, or at the endoplasmic reticulum (ER), such as the envelope (E), membrane

(M), and spike (S) proteins (Alsaadi and Jones, 2019; Muller et al., 2010). The substantial increase in ER trans-

lation causes ER stress, which triggers the unfolded protein response (UPR). This is then integrated with

double-stranded RNA sensing at the level of eukaryotic initiation factor 2 alpha (eIF2alpha) phosphoryla-

tion (Fung and Liu, 2014). The ER stress response is likely attenuated by the viral E protein (DeDiego

et al., 2011; Li et al., 2019). Accordingly, heat shock proteins (HSPs), which ameliorate ER stress, have

been described to be generally relevant for virus infections (Santoro et al., 2010). Furthermore, ER stress

induces autophagy, a cell recycling pathway which can be used by some viruses for productive replication

(Guo et al., 2017). Finally, dysregulation of microRNA (miRNA) expression and subsequent alterations in

gene expression patterns have also been reported to play a role in infected cells (Kemp et al., 2020;

Leon-Icaza et al., 2019).

Comprehensive profiling of SARS-CoV-2-mediated perturbations of gene expression are at the beginning. A

recent in-depth analysis of the transcriptional response to SARS-CoV-2 in comparison to other respiratory vi-

ruses in cells and animal models revealed a virus-specific inflammatory response (Blanco-Melo et al., 2020).

For further in-depth studies, high-resolution methods such as single-cell RNA-sequencing (scRNA-seq) are of

particular interest. They allow the characterization of cellular heterogeneity over the course of infection, which

may be masked at the population level (Cristinelli and Ciuffi, 2018; Drayman et al., 2019; Russell et al., 2018;

Shnayder et al., 2018; Wyler et al., 2019; Zanini et al., 2018). Furthermore, techniques such as small RNA

sequencing, which reveals miRNAs and other small RNAs (Bartel, 2004; Friedlander et al., 2012), allow the char-

acterization of other aspects influencing the regulation of gene expression.

Here, we performed a comprehensive analysis of three human cell lines infected with SARS-CoV or SARS-

CoV-2, namely the gut cell line Caco-2, as well as the lung cell lines Calu-3 and H1299. We generated

scRNA-seq, poly(A)+, and total RNA transcriptomic data, as well as small RNA profiling in infection time

courses for both viruses.

Efficiency and productivity of infection as well as the interferon response was remarkably different between

cell lines. Interestingly, SARS-CoV-2 induced a two-fold higher expression of genes induced by the infec-

tion than SARS-CoV. In addition, we found strong induction of miR-155 with both viruses, suggesting a role

for this miRNA in the progression of infection. The scRNA-seq data showed that while some genes such as

interferon-induced protein with tetratricopeptide repeats 1 and 2 (IFIT1/IFIT2) were broadly induced, inter-

feron beta (IFNB1) and interleukin-6 (IL6) were expressed only in subsets of infected cells. Furthermore, the

transcriptional induction of nuclear factor-kB (NF-kB) targets could be temporally separated from the inter-

feron-driven transcription. Detailed investigations of cellular gene expression programs suggest an

involvement of the protein folding chaperone and autophagy regulator HSP90 in the viral infection cycle.

Inhibition of HSP90 by multiple inhibitors resulted in reduced viral replication and cytokine mRNA levels.

Overall, our study provides a detailed picture of the gene expression changes in cell line models for

CoVs and particularly SARS-CoV-2, highlights the cell-type specificity of the transcriptional response to

infection and identifies HSP90 as a potential target for therapeutic interventions.

RESULTS

Different permissiveness of SARS-CoV-2 infection in cell lines

To establish cell culture systems for studying SARS-CoV-2 replication and host cell responses, we examined

the epithelial lung cancer cell lines, H1299 and Calu-3, since infection of lung epithelial cells is a key feature

of SARS-CoV-2 infection in the human body. In addition, we used the epithelial colorectal adenocarcinoma

cell line, Caco-2, which is frequently used as a CoV cell culture model (Bojkova et al., 2020; Chu et al., 2020;

Klann et al., 2020; Reigel, 1985), and infection of intestinal cells is still under debate (Lamers et al., 2020).

Transfection of poly-I:C RNA resulted in induction of IFIT1, IFIT2, and OAS2 (20-50-Oligoadenylate Synthe-

tase 2) genes in Calu-3 and H1299 cells, indicating that sensing of foreign RNA in the cytosol is active in

these cell types. This response was not observed in Caco-2 cells (Figure S1A), which exhibit low expression

of viral RNA receptor genes, IFIH1/MDA5 and DDX58/RIG-I (Figure S2C).

For all cell lines,weperformedacomprehensiveanalysisof transcriptomechanges.Cellswere infectedwitheither

SARS-CoV (Frankfurt strain) or SARS-CoV-2 (patient isolate BetaCoV/Munich/BavPat1/2020|EPI_ISL_406862) at
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an MOI of 0.33 (schematic representation of experiments in Figure S1B and Table S1), and sampled at different

time points after infection. The percentages of viral transcripts in intracellular RNAs, as determined by poly(A)+

and RNA-seq sequencing were low in H1299 cells for both viruses, in contrast to Caco-2 and Calu-3 cells (Fig-

ure 1A, Table S2). Accordingly, the yield of infectious virus particles was higher for the permissive cell lines

Caco-2 and Calu-3 (Figure S1C). The low susceptibility of H1299 cells might, at least partially, be attributed to

the low expression of the SARS-CoV receptor ACE2, as suggested by the RNA-sequencing data and Western

blot analysis (Figure S1D).

By counting poly(A)+ or total RNA-seq reads spanning the junction of the viral leader and its downstream

gene (82.6% of virus-mapping split reads), we accurately quantified the relative amounts of subgenomic

viral mRNAs (Irigoyen et al., 2016; Kim et al., 2020). We observed a consistent, time-dependent hierarchy

of gene expression, mostly dominated by viral mRNAs encoding the N gene (Figures 1B and S1E–S1H),

similar to a recent report for the alpha Human CoV-229E (HCoV-229E) (Viehweger et al., 2019). At later

time points post infection, the relative amount of ORF7a generally increased. Notably, this approach failed

to detect expression of leaders immediately adjoining ORF7b or ORF10 (Table S3 (Taiaroa et al., 2020)).

By visual inspection, Caco-2 cells appear hardly affected by the infection; whereas, Calu-3 clearly show

signs of impaired growth and cell death at 24 hr post infection (hpi), particularly when infected with

SARS-CoV-2 (Figure S1I). Data from that time point, including e.g. the level of viral RNA (Figure 1A) should

be therefore interpreted with caution. Taken together, we show that the three infected cell lines show

distinct responses in respect to the course of SARS-CoV/-2 infection.

SARS-CoV-2 infection leads to a two-fold stronger induction of ISGs compared to SARS-CoV

To analyze changes in the host cell transcriptome, we compared virus- and cell line-dependent differences

in gene expression. SARS-CoV-2 infection of Calu-3 cells, as expected from similar results for SARS-CoV

infections (Yoshikawa et al., 2010), led to induction of a range of genes known to respond to viral infections,
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Figure 1. Different permissiveness of SARS-CoV/-2 infection in cell lines

(A) Viral read percentages of total reads of the respective cell line at different time points of infection. Note that Calu-3

cells infected with SARS-CoV-2 show clear signs of cell death at 24 hpi (Figure S1I), which likely influences the viral yield at

the latest time point.

(B) Heatmaps of canonical junction-spanning viral reads in total RNA from Calu-3 cells infected with either virus, averaged

across biological replicates per time point, expressed in log2(TMM-normalized counts per million).
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such as IFIT2, OAS2, or IFNB1 (Figure 2A) (Schoggins, 2019). This likely occurs through triggering of RNA

sensors by incoming viral RNA via IRFs and NF-kB signaling (Schneider et al., 2014; Schoggins, 2019).

Expression levels of these genes at 12 hpi were on average about twice as high in cells infected with

SARS-CoV-2 compared to infection with SARS-CoV (Figure 2B), at similar amounts of viral RNAs present

in the cells at 12 hpi (Figure 1A, right panel). This difference in the extent of the transcriptional response

in SARS-CoV/-2 infections has also been observed in human airway epithelial cells (AECs) (V’kovski et al.,

2020). Importantly, several cytokines (Carrasco Pro et al., 2018) are among the induced genes (Figure 2C),

and which might be connected with pathologies such as the acute respiratory distress syndrome (ARDS) in

CoV infections (Channappanavar and Perlman, 2017; Moore and June, 2020).

Expression of arrestin-related domain-containing protein-3 and thioredoxin-interacting

protein genes is induced independently of RNA sensing

Although the infection levels are comparable between Caco-2 and Calu-3 cells, based on the amount of

intracellular viral RNA and virion yield (see above), the host transcriptome responses were markedly

different (Figures 2D and S2A). Both cell lines showed an increase in expression of a number of genes typi-

cally activated in response to ER stress and MAP kinase activation (e.g. activating transcription factor 3,

early growth response 1, EGR1; immediate-early response 3; protein phosphatase 1 regulatory subunit

15A (PPP1R15A) also known as growth arrest and DNA-damage-inducible 34; GADD34 (Lee et al.,

2018)), with a corresponding enrichment of related GO terms in a gene set enrichment analysis (Figures

2E and S2B). Induction of genes regulated by IRFs was however absent in the Caco-2 cells employed

here. One reason for this response might be the low expression of the pattern-recognition receptors

IFIH1 and DDX58 (Figure S2C).

In addition, two genes, arrestin-related domain-containing protein-3 (ARRDC3) and thioredoxin-interact-

ing protein (TXNIP), stood out among the few genes that were significantly upregulated upon infection

with either viruses and in both cell lines (Figures 2D and S2A). Both genes encode proteins that are involved

in regulation of signaling pathways (Aubry et al., 2009). ARRDC3 mediates G protein–coupled receptor

lysosomal sorting and apoptosis-linked gene 2-interacting protein X (ALIX) ubiquitination (Dores et al.,

2015). ALIX is a Lys63-specific polyubiquitin binding protein that functions in retrovirus budding and

Dengue virus propagation (Dowlatshahi et al., 2012; Thepparit et al., 2019). TXNIP is involved in the regu-

lation of glucose and lipid metabolism (Alhawiti et al., 2017) and has been shown to be involved in initiation

and perpetuation of NLRP3 (nucleotide-binding domain and leucine-rich repeat and pyrin domain contain-

ing 3) inflammasome activation (Elliott and Sutterwala, 2015; Oslowski et al., 2012).

To conclude, most gene expression changes in response to SARS-CoV-2 infection are likely triggered by

RNA sensors and/or ER stress. In H1299 cells, in which virus replication was very inefficient, we observed

no consistent and notable differences in gene expression, as well as no alterations of the visual appearance

(data not shown).

Comparison of datat sets from in vivo and in vitro infections shows common and distinct

responses to SARS-CoV-2 infections

To substantiate the relevance of the genes induced by the SARS-CoV-2 infection observed in the Calu-3

cells, we compared our data with various recently published data sets. This includes bronchoalveolar la-

vages (BALs) (Liao et al., 2020), as well as nasopharyngeal swabs (Chua et al., 2020) of patients infected

with COVID-19 , and transcriptome studies of normal human bronchial epithelial (NHBE) cells, A549 cells

with and without ACE2 expression, and also Calu-3 cells upon infection with SARS-CoV-2 (Blanco-Melo

et al., 2020). (Table S2). For the BAL samples, differential gene expression was calculated for the epithelial

cells (Figure S2D upper panel), from severe COVID-19 cases in comparison to the healthy control also used

in the original paper (Figure 2F). Several genes were also found to be induced in the patient samples, such

as several IFI/IFIT/IFITM genes, as well as the cytokines C-C motif chemokine ligand 5 (CCL2) and C-X-C

motif chemokine ligand 9 (CXCL10), which were also upregulated in a BAL bulk RNA-seq analysis (Xiong

et al., 2020). Remarkably, we did not observe induction of interferon genes, pro-inflammatory cytokines,

and IL-6 in epithelial cells in patient samples. ARRDC3 and TXNIP, the two genes upregulated in both

Calu-3 and Caco-2 cells, generally showed low expression with no induction in this analysis. However,

when comparing expression levels within samples, we found an increase of ARRDC3 expression in a subset

of patients compared to the healthy control, along with the consistent upregulation of the stress gene

PPP1R15A (Figure S2D lower panel).
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Within the epithelial cells in nasopharyngeal swabs, the highest expression values for the SARS-CoV-2 receptor

ACE2 was found in secretory and ciliated cells (Chua et al., 2020), and we performed a similar analysis as above

for these two cell types by comparing differential expression between the five control samples and the nineteen

samples from infected patients (Figure S2E). The differentially expressed genes, which were commonly upregu-

lated in patient samples, showed a smaller overlap with the Calu-3 cells compared to the BAL samples.

Infection of Calu-3 cells with SARS-CoV-2 showed strong reproducibility across experiments from our study

(Figure S2F) and data from other laboratories (Figure S2G, upper panel). There were however considerable

differences between Calu-3 and NHBE cells on one side (Figure S2G, lower panel), and A549 cells (Fig-

ure S2H) on the other side. As in the patient samples, interferon beta/lambda genes were not induced

in NHBE cells (Figures 2F and S2G). On the other side, CXCL10 or IFIT2, which were induced in patient sam-

ples and Calu-3 cells, were not or not reproducibly induced in NHBE (Figure S2G) or A549 cells (Figure S2H).

This however could also be due to variabilities in e.g. employed MOIs (Blanco-Melo et al., 2020). Taken

together, the interferon and stress response observed in SARS-CoV-2 infected Calu-3 cells could be

partially recapitulated in patient samples and other cell lines. Further investigations are warranted to better

define appropriate model systems for studying the consequences of in vivo SARS-CoV-2 infections.

MicroRNA miR-155-3p is expressed in SARS-CoV and SARS-CoV-2 infected cells

In addition to assessing mRNA changes, we have also profiled small RNAs expression changes in the

context of Calu-3 infections. Both viruses triggered a close to 16-fold upregulation of miR-155-3p, the

‘‘star’’ form, and an almost 3-fold upregulation of miR-155-5p (Figures 3A, 3B, and S3A). Importantly, the

primary miRNA precursor gene, miR-155 host gene (MIR155HG), was also upregulated in polyA-seq and

total RNA-seq data by about 10-fold, suggesting that the increase of two miRNAs was primarily driven

by transcription (Figure S3B). In addition, we found a significant upregulation of miR-4485. All observations

were confirmed using a Taqman assay (Figure 3C). Of note, miR-4485 derives from the MTRNR2L8 locus,

and it is unclear whether its expression pattern reflects its functionality or that of its host gene.

Interestingly, the miRNA profiling identified small RNAs mapping to vault RNA (VTRNA) genes to be

induced by the infection (Figures 3D and S3C–S3E). The predominant lengths of these RNAs were 21

and 24 nt (Figure S3C). The function of vtRNAs has not been fully elucidated, but the mature VTRNA1-1

was recently discovered as a negative regulator of autophagy (Horos et al., 2019). VTRNA-derived sRNAs

can be processed by DICER and bound by Argonaute proteins (Persson et al., 2009; Thomson et al., 2015)

and could thus have a regulatory role in virus infected cells.

scRNA-seq of infected Calu-3 cells shows expression of interferon genes only in a small subset

of cells

To assess gene expression changes on the level of individual infected Calu-3 cells, we performed scRNA-

seq at different time points post infection for both SARS viruses. The data showed that cellular transcrip-

tomes grouped by time point of infection (Figure 4A) and type of virus (Figure 4B). At 4 hpi, the number of

cells bearing viral RNA was between 40% and 60% (Figure S4A, Table S4). At 8 hpi and 12 hpi, all cells con-

tained viral RNA. The distribution of viral load (percentage of viral RNA per cell) was comparable for the two

Figure 2. Continued

(B) Expression values (FPKM) of genes significantly induced in cells infected with either virus at 12 hpi in Calu-3 cells. Values represent averages of the two

replicates.

(C) Expression values (FPKM) of differentially expressed cytokine genes in SARS-CoV-2 infected Calu-3 cells. Values of individual replicates are log2

transformed and represented as a heatmap.

(D) log2-transformed fold changes of SARS-CoV-2 infected Calu-3 cells at 12 hpi vs. mock (horizontal axis) and Caco-2 cells 12 hpi vs. mock (vertical axis).

Genes exhibiting significant changes in both cell lines are shown in red, significant changes only in Calu-3 cells in light blue, only in Caco-2 cells in light green.

All other genes are shown in gray. Selected genes with significant fold changes are labeled.

(E) Gene Ontology (GO) terms in a gene set enrichment analysis of cell lines infected by SARS-CoV-2. In blue are indicated enriched GO terms from

differentially expressed genes in Calu-3 cells, in green fromCaco-2 cells and in red from both cell lines. Adjusted p values were -log10-transformed. GO terms

from downregulated genes are shown to the left, those from upregulated genes on the right of the solid line. The dotted line represents the cutoff value (p =

0.1).

(F) Log2-transformed fold changes of SARS-CoV-2 infected Calu-3 cells of this study at 12 hpi (horizontal axis) and epithelial cells from severe COVID19

patients from Liao et al. (2020) (vertical axis). Genes exhibiting significant changes in both cells are shown in red, significant changes only in Calu-3 cells in

light blue, only in patient cells in light green. All other genes are shown in gray. Selected genes with significant fold changes are labeled in red, and

additional genes mentioned in the text (TXNIP and ARRDC3) in green.
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viruses and showed the expected increase from 4 hpi to the later time points after infection; however bio-

logical replicates showed some variability (Figures S4B and S4C). The amount of detected RNA molecules

(UMI, unique molecular identifiers) was generally lower in cells with high levels of viral RNA (Figure S4D),

indicative of some degree of host cell shutoff.

In agreement with the bulk RNA-seq data, we observed a strong increase of e.g. IFIT2 or OAS2 in infected

cells (Figures 4C and S4E). Again, the induction of these genes was much stronger in the cells infected with

SARS-CoV-2 compared to infection with SARS-CoV (Figures 4C and S4E).

In the bulk RNA-sequencing data, interferon beta (IFNB1; Figure 2A) was one of the most induced genes upon

SARS-CoV-2 infection. In the scRNA-seq data, we found the expression of IFNB1 expression restricted to a small

subset of infected cells (Figure 4D). As in bulk RNA-sequencing, we observed expression of ARRDC3 in cells

infectedwith either viruses. ARRDC3 (Figure 4E), aswell as PPP1R15A (Figure S4F), were highly expressed in cells

with the highest levels of viral RNA. For SARS-CoV infection, we observed similar effects, however at overall

lower levels and in very small numbers of cells (Figure 4D, top part of the plots).

To confirm the induction of the microRNA mir-155 described in the previous section, we investigated the

expression of its host gene, MIR155HG. Although it is expressed at only low levels, it resembled the expres-

sion pattern of IFIT2 and OAS2 genes (compare Figure S4G with Figure S4E), i.e. induction in cells contain-

ing SARS-CoV-2 RNA and high levels of SARS-CoV RNA.
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Figure 3. MicroRNA miR-155 and vaultRNA-derived miRNAs are induced by the infection

(A and B) Scatterplots of miRNAs from of SARS-CoV (A) or SARS-CoV-2 (B) infected Calu-3 cells harvested at 12 hpi.

Plotted are mean expression over log2(fold changes), normalized to mock infected (uninfected) cells. miRNAs found

significantly differentially expressed are indicated in red.

(C) Validation of the induction of the displayed microRNAs in Calu-3 cells at 12hpi using Taqman assays. Shown are

average and standard deviations of three measurements from one biological replicates of the samples used for the

sequencing in A and B, as relative expression normalized to 24 hpi SARS-CoV-2.

(D) Coverage plots of the vaultRNA gene VTRNA1-1 of replicates A and B at 12hpi after infection of Calu-3 cells with or

without SARS-CoV-2.
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To relate host gene expression to the accumulation of viral RNAs, cells were ordered by an increasing amount of

viral RNAand arranged intobins of 50 cells. This was done to reduce noise due todetection dropout events. The

correlation with viral RNA over all bins was then calculated for both viruses, indicating a particularly strong
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Figure 4. Single-cell RNA-sequencing shows different expression dynamics of genes induced by infection

(A) Based on scRNA-seq data, Calu-3 cells were embedded into diffusion map space and, by Uniform Manifold Approximation and Projection (UMAP),

projected using 20 diffusion components into two-dimensional space, and colored by harvesting time point.

(B) Same projection as in A, with cells colored by SARS-CoV (left) and SARS-CoV-2 (right) 30-UTR signal.

(C–E) Same projection as in A, with cells colored by expression levels of IFIT2 (C), IFNB1 (D), and ARRDC3 mRNA (E).

(F) Cells were sorted by the amount of viral RNA and binned. Horizontal axis for each panel represents relative, log2-transformed levels of SARS-CoV-2 RNA

(left) or SARS-CoV (right) RNA per bin. The vertical axes in the panels represent relative, log2 transformed expression levels for IFIT2 (upper panel) or ARRDC3

(lower panel). Every dot represents a bin containing 50 cells. The distribution of the harvesting time points of the cells per bin is indicated below.
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relationship for the amount of viral RNA the expression of, among others, ARRDC3 (Figure S4K). For IFIT2 and

ARRDC3, the expression level per bin was then plotted against the amount of viral RNA (Figure 4F, left). For

IFIT2, a stepwise expression increase between 4 hpi and 8 hpi was observed, with the expression levels after-

ward being independent of the amount of SARS-CoV-2 RNA. ARRDC3 mRNA transcript levels however

increased gradually with the accumulation of viral RNA. For SARS-CoV, this transcriptional induction was

observed only at much higher levels of viral RNA were (Figure 4F, right).

In order to identify genes co-regulated with IFNB1, we performed a correlation analysis of cells binned by

increasing IFNB1 and ARRDC3 expression (Figure S4L). Using this approach, we found a putative co-regu-

lation of the four interferon lambda genes (IFNL1-4), the chemokine genes, CXCL9 and CCL5, and the

cholesterol-25-hydroxylase gene. This enzyme, as well as its product 25-hydroxycholesterol, has been

shown to act against a range of viruses (Liu et al., 2013). In addition, two other genes were found in this

group, the sodium voltage-gated channel alpha subunit 3 gene (SCN3A) (Figure S4M) and the dual oxidase

1 gene (DUOX1) (Figure S4N). Although SCN3A has previously not been described in the context of virus

infections, DUOX1 appears to promote the innate immune defense to pathogens via the production of

reactive oxygen species (De Deken et al., 2014).

RNA velocity reveals transient induction of interferon genes and temporal resolution of NF-

kB signaling

To better understand the nature of interferon beta/lambda gene induction in the context of SARS-CoV-2 infec-

tion, we applied RNA velocity, which uses sequencing reads originating from introns to measure the amount of

nascent mRNA (La Manno et al., 2018). This analysis inferred a temporal trajectory, represented by the black ar-

rows in Figure 5A, with longer arrows indicating a stronger signal. For the SARS-CoV-2 infected cells, the direc-

tionality was particularly strong from cells expressing interferon and interferon-correlated genes to the cells with

maximal amount of viral RNA but not expressing interferon genes (Figure 5A). This finding suggests that induc-

tion of interferon genes is short and transient during the viral replication. A similar effect was seen for SARS-CoV

infection.Weobserved that target genes of IRFs such as IFIT2, IFIT1, orOAS2 (Grandvaux et al., 2002) showhigh

intron counts in most of the cells infected with SARS-CoV-2, except for a subpopulation (Figure 5B underneath

the blue oval, S5B). This subpopulation, however, showed intron counts for NF-kB target genes such as inter-

leukin 6 (IL6), tumor necrosis factor (TNF) or NF-kB inhibitor alpha (NFKBIA) (Figure 5C bottom part of the violet

oval, S5B). Since the IFNB1gene is devoid of introns and intron counts from IFNL1-4were not detected, weused

CCL5 as a reference for this group of genes (compare Figure S5A with Figure 4D, middle panel). Interestingly,

we found that its transcriptional activity is restricted to a small subset of cells (Figure 5D) at the intersection of IRF

and NF-kB activity.

To identify the temporal evolution of changes in gene expression, we have looked at the patterns of host

and viral gene expression in the principled space of a diffusion map (Angerer et al., 2016; Haghverdi et al.,

2016). As expected, the cells infected with the two viruses separated on two branches according to themain

diffusion components (Figure S5C). Especially for SARS-CoV-2, there was a noticeable population of cells

(Figure S5C, circled by a violet oval) marked by high levels of both viral RNA and IL6 mRNA, whereas the

highest levels of IFNB1 and IFIT2 mRNA were in distinct subpopulations, indicating the importance of

higher order diffusion components for the proper temporal stratification (Figure S5C, pink and blue ovals).

To corroborate the velocity analysis shown in Figure 5A, we projected the velocity data on an alternative

embedding, initialized with diffusion pseuodotime, i.e. reflecting cell-to-cell transition probabilities (Fig-

ure S5D). In there, we observed the same biological effect as in Figure 5, namely that transient induction

of interferon genes is followed by expression of NF-kB target genes.

For a comprehensive analysis, we have binned SARS-CoV-2 infected cells by applying the Louvain algorithm on

the top fifty diffusion components and sorted the resulting bins by median SARS-CoV-2 load (Figure 5E, top

row). Per bin, the intron counts of the infection-induced genes IFIT2, OAS2, CCL5, IL6, NFKBIA, and TNF are

shown, along with ATXN10 as control (Figure 5E). The temporal ordering suggests that IRF-regulated genes

(OAS2, IFIT2) were transcribed before NF-kB target genes (IL6, NFKBIA, TNF), and likely only during a relatively

short time window, both pathways were active and drove transcription of interferon and related genes (CCL5).

In addition, we performed the RNA velocity analysis on an embedding of the Calu-3 cells calculated without

viral genes, which is now driven by the genes induced by the infection such as IFIT2 or ARRDC3, leading to a

convergence of highly infected cells independent of the virus (Figure S5E).
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Interestingly, we also observed a minor increase in intronic counts for ACE2 transcripts in SARS-CoV-2 in-

fected cells (Figures S5F and S5G), suggesting a transcriptional activation of the viral receptor gene during

infection, as observed recently (Ziegler et al., 2020).

scRNA-seq of SARS-CoV and SARS-CoV-2 infected H1299 reveals a potential involvement of

HSP90AA1 in the progression of infection

As shown above, transcriptional changes in bulk and scRNA-seq data fromCalu-3 infected cells were domi-

nated by the interferon response. In order to detect more subtle alterations in the cellular transcriptomes,

we applied the scRNA-seq likewise to SARS-CoV/-2 infected H1299 cells, which are only partially permissive

to the infection.

Despite the overall low amount of viral RNA in infected H1299 cells (Figure 1A), the percentage of cells

bearing viral transcripts was unexpectedly high (Figure S6A, Table S4), indicating that virions indeed are

able to enter the cells. As seen in the bulk RNA-seq, transcriptional changes were subtle, and cells do
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Figure 5. Interferon genes and NF-kB target genes are expressed in small subsets of cells

(A) Embedding as in Figure 4. Areas of interest are marked by colored ovals and labeled. Arrows represent trajectories

based on RNA velocity, signal strength is represented by the length of the arrows.

(B–D) Projection as in A, but colored by intron counts of IFIT2 (B), IL6 (C), and CCL5 (D). Areas of interest are marked by

colored ovals and labeled.

(E) Cells were grouped into pseudotime bins. Plotted are, from top to bottom, the amount of SARS-CoV-2 viral RNA, and

the percentage of cells with intron counts for the indicated genes.

ll
OPEN ACCESS

10 iScience 24, 102151, March 19, 2021

iScience
Article



not group into discrete clusters (Figures S6B–S6D). When correlating individual genes with the amount of

viral RNA over cells, we found a positive correlation with HSP90 alpha family class A member 1 (HSP90AA1)

with the amount of SARS-CoV-2 RNA but not SARS-CoV (Figure 6A). When comparing expression within

samples, we observed higher levels of HSP90AA1 mRNA in cells with SARS-CoV-2 viral RNA compared

to those without (Figure 6B). To exclude that this would not be a general effect for highly expressed tran-

scripts, we performed the same analysis for GAPDH, which remained unchanged in virus-positive cells

(Figure S6E).

For the Calu-3 cells, we found a similar HSP90AA1 expression pattern in the data from the 4 hpi time point

(Figures 6C and 6D). However, in this analysis, we observed, like for HSP90AA1, a positive correlation of

MALAT1 RNA levels with the amount of viral RNAs in the cells (Figures 6C and S6F). Previously, MALAT1

was shown to be upregulated by the UPR during flavivirus infection (Bhattacharyya and Vrati, 2015).

In order to investigate HSP90AA1mRNA deregulation in patients infected with COVID-19, we re-examined

the BAL scRNA-seq (Figure 2F). We observed that in a cluster of epithelial cells, with a substantial number of

cells containing viral RNA, HSP90AA1 was among few genes that were deregulated in cells with viral tran-

scripts compared to those without (Figure S6G).
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Figure 6. HSP90AA1 is deregulated in SARS-CoV-2 infected cells

(A) Correlation of gene expression values with the amount of SARS-CoV RNA (horizontal axis) and SARS-CoV-2 RNA

(vertical axis) in the H1299 scRNA-seq data.

(B) Distribution of HSP90AA1 mRNA expression in H1299 single cell samples. For SARS-CoV and SARS-CoV-2 samples,

cells were group by presence of viral RNAs. To calculate p values, the Kruskal-Wallis test was used (p.val < 13 10�5, with 3

degrees of freedom), followed by post-hoc comparison of classes using the Dunn test with Bonferroni correction. Non-

significant (n.s.) indicates p values larger than 1 3 10�5.

(C and D) As in A, B, but for Calu-3 (4 hpi) samples.
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Overall, we found HSP90AA1 deregulation in various datasets, suggesting a role for HSP90AA1 in SARS-

CoV-2 infection.

Inhibition of HSP90 reduces viral yield and expression of cytokine genes

The involvement of HSP90AA1, a highly-conservedmolecular chaperone, in viral infections has since a long

time been discussed to be involved in the infection of a range of viruses (Geller et al., 2012). In order to

explore the effect of HSP90 on SARS-CoV-2 replication in Calu-3 cells, we applied the HSP90 inhibitors

Onalespib, Ganetespib, and 17-(Allylamino)-17-demethoxygeldanamycin (17-AAG) to cells one hour after

viral absorption and measured virus yield and RNA in the supernatant at 16 hpi. At inhibitor concentrations

of 800 nM, viral yield was reduced by about 50%–70% (Figure 7A). Cell viability was not impaired using the

indicated inhibitor concentrations (Figure S7A). In order to assess the production of intracellular viral RNA

and changes in host gene expression, we performed bulk RNA-sequencing of uninfected cells, as well as

DMSO (solvent control) and HSP90 inhibitor treated infected cells. Intracellular viral RNAwas reduced com-

parable to viral yield (Figure 7B). The treatment of cells with HSP90 inhibitors dampened the upregulation

particularly of pro-inflammatory cytokines, including IL-6, CXCL10, and CXCL11 (Figures 7C and S7B). In

summary, inhibition of HSP90 reduced both the viral replication and the induction of the inflammation

response.

To assess the effect of HSP90 inhibition in primary human cells, we used AEC differentiated in vitro from

human lung tissue obtained from pneumonectomy specimens (Imai-Matsushima et al., 2018). Again,

SARS-CoV-2 replication was considerably slower upon treatment with the HSP90 inhibitor 17-AAG at

200 nM (Figure 7D). Under these conditions, cell viability was not impaired (Figure S7C). We again assessed

changes in host gene expression by RNA-sequencing, and observed a reduction of mRNA levels of various

genes induced by the infection, including the cytokines CXCL10 and CXCL11 (Figure 7E). As observed in

Calu-3 cells, chemical inhibition of HSP90 in infected human primary cells reduced viral replication and

the induction of the inflammatory response, suggesting that 17-AAG or other HSP90 inhibitors already

applied in clinical trials could be used for the therapeutic interventions in the treatment of COVID-19.

DISCUSSION

We performed gene expression profiling of three different human cell lines infected with SARS-CoV and

SARS-CoV-2 at bulk and single-cell level. We show a particularly strong induction of a range of genes

commonly induced by virus infections in Calu-3 cells, including cytokines, by SARS-CoV-2 in both bulk

and scRNA-seq experiments. For various CoVs, a range of mechanisms that interfere with interferon

signaling have been reported (Kindler et al., 2016). For SARS-CoV, it was shown that ORF6 inhibits signal

transducer and activator of transcription (STAT) signaling (Frieman et al., 2007) and that IRF3 activity is

impaired (Spiegel et al., 2005). Since RNA levels per cell (Figure S4A) and on the population level were com-

parable (Figure 1A), it is tempting to speculate that such mechanisms could be less efficient in SARS-CoV-2

compared to SARS-CoV.

By comparing the transcriptional response of Calu-3 cells to that of Caco-2 cells, which might have reduced

capability to sense incoming RNA (Figure S1A), we identify genes induced independently of the RNA

sensing system, such as the ER stress marker PPP1R15A. We also observed upregulation of the genes

TXNIP and ARRDC3. Both are involved in signaling processes, and further investigations into their role

in SARS-CoV-2 infection are warranted.

On the other hand, in H1299 cells, viral replication was very inefficient both in terms of extracellular viral

yield and intracellular viral RNA. The percentage of cells with viral reads in the single-cell experiment (Fig-

ure S6A) is relatively high, but in contrast to the Calu-3 cells not consistently increasing over time. Whether

this means that virus particles do not productively enter into the cytoplasm, or suppression of replication in

these cells, cannot be answered from our data.

Small RNA profiling indicated an increased expression of miR-155 in the infected cells. This miRNA has

been associated with various virus infections (Badry et al., 2020; Dickey et al., 2017; Gottwein, 2013;

Zeng et al., 2015). miR-155-3p is also a well-known regulator of immune cells, in particular T cell differen-

tiation (Mehta and Baltimore, 2016; Thai et al., 2007). Involvement of this miRNA in the regulation of innate

immunity has also been reported (Zhou et al., 2010). Recently, miR-155-5p expression was shown to be

induced in mice infected with influenza A virus (Woods et al., 2020). Importantly, in this study, lung injury
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Figure 7. HSP90 inhibitors treatment reduce SARS-CoV-2 replication and induction of pro-inflammatory

cytokines

(A) Fold change of infectious plaque-forming units (PFUs) in supernatants of Calu-3 cells infected with SARS-CoV-2 with

the indicated treatment 16 hpi. After viral adsorption for one hour, cells were washed and supplied with conditioned

medium containing DMSO, as solvent control, or indicated concentrations of Onalespib, Ganetespib, or 17-AAG.

Experiment performed in triplicates, and error bars represent standard deviations.

(B) Percentage of viral sequencing reads of all reads in Calu-3 cells after 800 nM of indicated inhibitor treatment 16 hpi.

(C) Heatmap of selected induced genes normalized to infection in Calu-3 cells without treatment.

(D) Infectious viral particles in the supernatant at the indicated timepoints post infections of primary human airway

epithelial cells (AECs) treated with either DMSO (control, black) or 200 nM 17-AAG (blue).

(E) Heatmap of selected induced genes in AECs normalized to the infection sample treated with DMSO of the same

timepoints (average of normalized expression values/FPKM).
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by ARDS was attenuated by deletion of miR-155, making this miRNA a potential therapeutic target in the

context of COVID-19.

The scRNA-seq experiments provided a rich dataset to analyze host cell expression changes in response to

the infection. Surprisingly, the percentage of cells containing viral RNA was much higher than expected

based on the MOI used for the infection experiments. A possible explanation for this observation could

be viral spreading by cell-to-cell fusions, facilitated by the S protein on the cell surface (Buchrieser et al.,

2020; Masters, 2006). Furthermore, the analysis of the scRNA-seq data of infected Calu-3 cells indicated

a sequential activation of IRF and NF-kB target genes, and in particular, a putatively strong, but transient,

induction of interferon genes. This could be due to a relatively short time window during the progression of

infection, in which both IRF and NF-kB are sufficiently activated to trigger interferon gene transcription

(Czerkies et al., 2018; Iwanaszko and Kimmel, 2015).

Concomitantly with the interferon induction, we observed a small increase in transcription of ACE2 mRNA

in cells infected with SARS-CoV-2. Changes in ACE2 transcript levels in the context of interferon treatment

and CoV infection have been described before (Gralinski and Baric, 2015; Ziegler et al., 2020). However,

further studies are needed to explore whether mRNA changes are reflected on the protein level, particu-

larly since a recent report indicates that the transcriptionally upregulated ACE2 mRNA does not yield func-

tional protein (Onabajo et al., 2020). Although the transcriptional induction (RNA velocity) was detectable,

changes in mature mRNA levels were moderate in comparison to IRF-driven genes such as the IFIT family.

Cell line and cell culture-based infections allow detailed analyses of molecular changes during infections, since

perturbations such as genetic manipulations or compound treatments can be straightforwardly applied. How-

ever, they comewith limitations and focus on isolated cells apart from tissues or organisms. This involves e.g. the

production of cytokines, which was described to be connected to COVID-19 pathogenesis (Blanco-Melo et al.,

2020; Channappanavar and Perlman, 2017; Moore and June, 2020). Here, infected Calu-3 cells showed a strong

increase in expression of a number of chemokines, interferons, and pro-inflammatory cytokines, whereas A549

and NHBE cells responded with an induction of pro-inflammatory cytokines (Figure S2). However, in epithelial

cells fromBALs of patients infectedwithCOVID-19, IL-6 or TNFmRNAswere barely detectable. Since these and

interferon genes were transcriptionally activated only in small subsets of Calu-3 cells, this could represent an

unlikely physiological cellular state. Overall, how to best match processes happening in the human body using

in vitro models will require further investigations using a range of models and detailed matching with patient

data (Butler et al., 2018; Duan et al., 2020; Lamers et al., 2020; Stanifer et al., 2020).

CoVs induce ER stress and activate the UPR in infected cells (Fung et al., 2016; Versteeg et al., 2007). We

observed transient deregulation of the stress-responsive HSP gene HSP90AA1 (Zuehlke et al., 2015), in both

the ‘‘slow-motion’’ infection model, H1299 cells, and in Calu-3 cells (4 hpi), and in subsets of epithelial cells in

patient samples. HSP90modulates UPR by stabilizing the ER stress sensor transmembrane kinases IRE1a (Marcu

et al., 2002). Inhibition of the HSP90 has previously been shown to slow down the replication of several viruses

(Gao et al., 2014; Geller et al., 2012; Katoh et al., 2017; Li et al., 2004). The reduction of SARS-CoV-2 growth by

HSP90 inhibition was also proposed based on a computational analysis of patient RNA sequencing data (Sultan

et al., 2020). Here, we show that inhibition of HSP90 by three different compounds at high nanomolar concen-

trations can reduce virus replication in an in vitro infection model. Interestingly, IFIT2 mRNA levels seemed un-

affected by HSP90 inhibition, supporting the ‘‘on-off-switch’’ independent of the amount of viral RNA observed

in the scRNA-seqdata. In addition,mRNAexpression of the pro-inflammatory cytokines TNF and IL1B, which are

implied in the progression of COVID-19 (Hirano andMurakami, 2020), were strongly reduced. This repression is

likely due to the requirement of HSP90 for constitutive and inducible IKK and NF-kB activation (Broemer et al.,

2004). Interestingly, in addition to the already described activities, HSP90 inhibitors were shown to exert barrier

protective effects on pulmonary arterial endothelial cells and were suggested to have useful therapeutic value in

ARDS and other pulmonary inflammatory diseases (Antonov et al., 2008). Several HSP90 inhibitors have been in

clinical development as anticancer agents (Gao et al., 2019) and have advanced to phase 2 and 3 clinical trials.

Some of these compounds could be readily available to become part of a therapeutic strategy for COVID-19 by

possibly inhibiting SARS-COV-2 replication, reducing inflammation and protecting endothelial barrier function.

Limitations of the study

The major limitation of the study is the usage of epithelial cell lines, which might respond differently

compared to epithelial cells in an organism, and intense data comparisons are necessary to define
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physiologically relevant effects. Particularly, the high levels of viral RNA in some cells, which lead to induc-

tion of interferon and NF-kB target genes, might not be reached in epithelial cells in infected organisms

(Nouailles et al., 2020). For the Hsp90 inhibitor, the effects described here need to be confirmed in animals

and humans before clinical relevance can be attributed to this compound class.
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Figure S1. Different permissiveness of SARS-CoV/-2 infection in cell lines, Related to Figure 1 
A, Relative quantification (RQ) of responsiveness to dsRNA of the cell lines as tested by RT-qPCR of three ISGs upon transfection of 
poly-I:C.
B, Overview of experimental set up and collected datasets. Calu-3 cells turned out to be the most suitable cell line.
C, Growth kinetics of SARS-CoV and SARS-CoV-2 in the different cell lines (MOI 0.01). Log10 of plaque forming units (PFU) of the 
inoculum (inoc.) and different hours post infection are plotted.
D, Expression values of the ACE2 mRNA in the polyA RNA-seq mock samples (upper part) and protein expression assessed by Western 
blot analysis with specific antibodies of indicated cell lines (lower part). H1299 cells showed neither mRNA nor protein expression of ACE2.
E, Coverage across the viral genome merged across all datasets for total RNA-seq, poly(A)+ RNA-seq, and small RNA-seq data. The top 
eight junctions supported by split reads are plotted in “sashimi” style for the total RNA-seq.
F, Barplot of junction-spanning reads from poly(A) and total RNAseq at indicated time point of different cell lines and series.
G and H, Heatmaps of canonical junction-spanning reads, averaged across biological replicates per time point, expressed in TMM-normal-
ized counts per million (G), or relative counts per time point (H). ORF1ab levels are estimated by counting contiguous reads mapping to 
the leader junction site.
I, Phase-contrast microscopy images of with either virus infected Caco-2 and Calu-3 cells at indicated time points. CaCo-2 cells appear 
hardly affected by the infection; whereas, Calu-3 clearly show signs of cell death at 24 hours post infection (hpi), particularly when infected 
with SARS-CoV-2.
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Figure S2. Dissection of the transcriptional 
response to SARS-CoV/-2 infection, Related to 
Figure 2
A, log2-transformed fold changes of SARS-CoV 
infected Calu-3 cells at 12 hpi vs. mock (horizontal 
axis) and Caco-2 cells 12 hpi vs. mock (vertical axis). 
Genes exhibiting significant changes in both cell lines 
are shown in red, significant changes only in Calu-3 
cells in light blue, only in Caco-2 cells in light green. All 
other genes are shown in grey. Selected genes with 
significant fold changes are labeled. 
B, Gene Ontology (GO) terms in a gene set enrich-
ment analysis. Enriched GO terms from genes 
differentially in both Calu-3 and Caco-2 cells infected 
with SARS-CoV are shown in red, from differentially 
expressed in Calu-3 only in blue, and from differential-
ly expressed in Caco-2 only in green. Adjusted 
p-values were -log10-transformed. GO terms from 
downregulated genes are shown to the left, those from 
upregulated genes on the right of the solid line. The 
dotted line represents the cutoff value.
C, Expression values (FPKM from polyA(+) RNA-seq) 
of the RNA sensors IFIH1 and DDX58 in mock-infect-
ed Calu-3 and Caco-2 cells.
D, upper panel: Data from BAL scRNA-seq patient 
samples from Liao et al. 2020 obtained via the GEO 
database, accession number GSE145926, analyzed 
together with the healthy control HC4 from GEO 
accesstion number GSM3660650. Cells are colored 
by cluster in a two-dimensional UMAP projection. 
Epithelial cells were identified based on TPPP3 and 
KRT18 marker gene expression (not shown). Lower 
panel: expression values of the indicated genes per 
cluster are shown as box plots.
E, Log2-transformed fold changes of SARS-CoV-2 
infected Calu-3 cells of this study at 12 hpi (horizontal 
axis) and ciliated (left) and secretory (right) cells from 
COVID19 patients from Chua et al., 2020 (vertical 
axis). Genes exhibiting significant changes in both 
cells are shown in red, significant changes only in 
Calu-3 cells in light blue, only in patient cells in light 
green. All other genes are shown in grey. Selected 
genes with significant fold changes are labeled in red, 
and additional genes mentioned in the text (TXNIP, 
PPP1R15A, ARRDC3) in green.
F, Comparison of log2 transformed fold changes in 
Calu-3 in the two experiments from this study 12 hpi 
(series 1 and series 2).
G-H, Comparison of log2 transformed fold changes in 
Calu-3 from series 2 of this study with various series of 
SARS-CoV-2 infected cells from Blanco-Melo et al. F, 
comparison with Calu-3 cells (series 7). G, Compari-
son with NHBE cells 12 hpi (series 1). H, comparison 
with A549 cells (series 2 and series 3 without, series 6 
with ACE2 transduction).
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Figure S3. MicroRNA miR-155 and vaultRNA-derived miRNAs are induced by the infection, Related to Figure 3
A, Normalized counts (counts per million) of miR-155-3p (left panel) and miR-155-5p (right panel), colored by replicate.
B, Log10 miRNA-155 host gene transcripts per million in samples measured by polyA- or total RNAseq.
C, length distribution of small RNAs aligning to the VTRNA1-1 locus
D, coverage plots of the three vaultRNA genes VTRNA1-2, VTRNA1-3, and VTRNA2-1.
E, validation of small RNAs from the VTRNA1-1 locus using Northern blotting of SARS-CoV-2 infected Calu-3 cells 24 hpi. Input 5 µg total 
RNA. Left panel: probing with probes recognizing let-7-5p (left lane) and vtRNAs (three lanes on the right. Predicted sizes are indicated. 
The strong band above the vtRNA likely represents 5S/5.8S rRNA. Right panel: same as left panel, but short exposure to visualize 
vtRNA1-1 levels. Botttom: Ethidium bromide staining as loading control with tRNA with predicted size indicated.
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Figure S4. Single-cell RNA-sequencing 
shows different expression dynamics of 
genes induced by infection, Related to 
Figure 4
A, Percentages of cells bearing viral 
transcripts.
B, Relative densities of the percentage of viral 
transcripts per cell (log10 transformed) for 
SARS-CoV (left) and SARS-CoV-2 infected 
cells (right).
C, Projection as in Figure 4, with cells colored 
by replicate (upper panel) and type of infection 
(lower panel).
D, Cells from infected samples were split into 
groups with the amount of viral RNA either 
above (petrol) or below (red) the median. RNA 
molecule counts (UMI, unique molecular 
identifiers) were then displayed per group as 
boxplots. Median is shown as thick black line, 
lower and upper hinges correspond to the first 
and third quartiles, and whiskers to 1.5 times 
the inter-quartile range.
E-G, Projection as in Figure 4, but colored by 
expression values of the indicated genes.
K, Correlation of gene expression values with 
the amount of SARS-CoV RNA (x-axis) and 
SARS-CoV-2 RNA (y-axis).
L, Correlation of gene expression values with 
the amount of IFNB1 (x-axis) and ARRDC3 
(y-axis).
M, N, Projection as in Figure 4, but colored by 
expression values of the indicated genes. 
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Figure S5. Interferon genes 
and NF-kappaB target genes 
are expressed in small 
subsets of cells, Related to 
Figure 5
AB, Projection as in Fig. 4, 
colored by the indicated mature 
mRNA expression values or 
intron counts for the indicated 
genes.
C, Branching analysis using 
destiny / diffusion maps. Except 
for the panel top right in C 
(projection as in Fig. 4 and 5), 
projections were done using 
diffusion components 1 
(horizontal axis) and 2 (vertical 
axis). Areas of interest are 
marked by colored ellipses and 
labeled.
D, Velocity-based trajectories 
plotted on an embedding 
initialized with diffusion pseudo-
time. Top panel: arrows 
represent trajectories based on 
RNA velocity, signal strength is 
represented by the length of the 
arrows as in Fig. 5A. Cells are 
colored by treatment. Other 
panels: cells are colored by 
expression levels of either viral 
RNA or host cell genes as 
indicated.
E, Projection using only host cell 
genes. Colored by mature 
mRNA expression values of the 
indicated genes.
F, Projection as in Fig. 4, 
colored my ACE2 mRNA (left) 
and intron signal (right).
G, Barplot showing fraction of 
cells containing intron reads 
from the ACE2 gene.
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Figure S6. HSP90AA1 is deregulated in SARS-CoV-2 infected cells, Related to Figure 6
A, Percentages of cells with virus in the H1299 scRNA-seq data.
B-D, H1299 cells are projected in two dimensions using Uniform Manifold Approximation and Projection (UMAP) and colored as indicated.
EF, as in Fig. 6B and D, but for GAPDH and MALAT1 transcripts.
G, average gene expression values in epithelial cells/cluster 24 (see Supplementary Figure 2) of cells with and without viral reads. Expression of viral 
reads is represented by “nCoV”. 
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Figure S7. HSP90 inhibitors treatment reduce SARS-CoV-2 replication and induction of pro-inflammatory cytokines, Related to Figure 7
A, Cytotoxicity assay (CellTiter-Glo) of cells treated with the indicated HSP90 inhibitors for 16 hours.
B, Expression levels of selected mRNAs from the samples shown in Fig. 7 probed by RT-qPCR.
C, Cytotoxicity assay (CellTiter-Glo) of AECs treated with indicated treatments and time points.



Table S1, Related to Figure 1
Overview of datasets
Within file names, S1 means SARS-CoV-1 infection, S2 means SARS-CoV-2 infection, mock means mock infection (Vero cell supernatant), untr means untreated, i.e. no treatment at all

polyA RNA-seq datasets
Caco-2 cells H1299 cells Calu-3 cells series 1 Calu-3 cells series 2

time points conditions time points conditions time points conditions time points conditions
4h untreated, mock, SARS-CoV-1, SARS-CoV-2 4h untreated, mock, SARS-CoV-1, SARS-CoV-2 4h untreated, mock, SARS-CoV-1, SARS-CoV-2 4h mock, SARS-CoV-1, SARS-CoV-2
12h SARS-CoV-1, SARS-CoV-2 12h SARS-CoV-1, SARS-CoV-2 12h SARS-CoV-1, SARS-CoV-2 8h SARS-CoV-1, SARS-CoV-2
24h mock, SARS-CoV-1, SARS-CoV-2 24h SARS-CoV-1, SARS-CoV-2 24h mock, SARS-CoV-1, SARS-CoV-2 12h mock, SARS-CoV-1, SARS-CoV-2

36h mock, SARS-CoV-1, SARS-CoV-2 24h detached cells from SARS-CoV-1 and SARS-CoV-2

Total RNA-seq dataset (rRNA depletion)
Calu-3

time points conditions
4h untreated, mock, SARS-CoV-1, SARS-CoV-2
12h SARS-CoV-1, SARS-CoV-2
24h mock, SARS-CoV-1, SARS-CoV-2

SmallRNA-seq dataset
Calu-3

time points conditions
4h untreated, mock, SARS-CoV-1, SARS-CoV-2
12h SARS-CoV-1, SARS-CoV-2
24h mock, SARS-CoV-1, SARS-CoV-2

Single-cell RNA-seq datasets
H1299 cells Calu-3 cells

time points conditions time points conditions
4h mock 4h mock, SARS-CoV-1, SARS-CoV-2
12h SARS-CoV-1, SARS-CoV-2 8h SARS-CoV-1, SARS-CoV-2
24h SARS-CoV-1, SARS-CoV-2 12h mock, SARS-CoV-1, SARS-CoV-2
36h mock, SARS-CoV-1, SARS-CoV-2

Proteomics
H1299 cells

time points conditions
4h mock
12h SARS-CoV-1, SARS-CoV-2
24h SARS-CoV-1, SARS-CoV-2
36h mock, SARS-CoV-1, SARS-CoV-2

Note: these samples were harvested in parallel with the scRNA-
seq and polyA RNA-seq

Note: these samples were harvested in parallel with the 
scRNA-seq and proteomics

Note: the same RNA was used to prepare the totalRNA and 
smallRNA data mentioned below. Cells that were detached 
after 24h were collected from the supernatant by 
centrifugation and processed separately.

Note: the same RNA was used to prepare the totalRNA and 
smallRNA data mentioned below. Cells that were detached 
after 24h were collected from the supernatant by centrifugation 
and processed separately.

Note: the same RNA was used to prepare the polyA RNA series 
1 and smallRNA data

Note: the same RNA was used to prepare the polyA series 1 and 
smallRNA data

Note: these samples were harvested in parallel with the polyA 
RNA-seq and proteomics. Count table is provided for cells with 
more than 2000 detected genes.

Note: Count table is provided for cells with more than 
1000 detected genes, however the analysis in the 
manuscript was done only with cells with more than 
2000 detected genes.



Table S2, Related to Figure 1
Percentage of virals read in the data presented here and a previously published dataset (GEO identifier GSE147507, only human samples)

polyA RNA-seq datasets
Caco-2 cells % virus H1299 cells % virus Calu-3 cells series 1 % virus Calu-3 cells series 2 % virus

SARSCoV1-12h-A 26.53% SARSCoV1-12h-A 0.09% SARSCoV1-12h-A 35.79% 12h-SARSCoV1-1 5.00%
SARSCoV1-12h-B 27.18% SARSCoV1-12h-B 0.12% SARSCoV1-12h-B 38.17% 12h-SARSCoV1-2 5.40%
SARSCoV1-24h-A 35.67% SARSCoV1-24h-A 0.13% SARSCoV1-24h-A 48.13% 4h-SARSCoV1-1 0.33%
SARSCoV1-24h-B 34.60% SARSCoV1-24h-B 0.14% SARSCoV1-24h-A-sup 44.98% 4h-SARSCoV1-2 0.96%
SARSCoV1-4h-A 0.16% SARSCoV1-36h-A 0.13% SARSCoV1-24h-B 47.72% 8h-SARSCoV1-1 2.25%
SARSCoV1-4h-B 0.18% SARSCoV1-36h-B 0.15% SARSCoV1-24h-B-sup 51.72% 8h-SARSCoV1-2 3.10%

SARSCoV1-4h-A 0.02% SARSCoV1-4h-A 0.59%
SARSCoV1-4h-B 0.02% SARSCoV1-4h-B 0.72%

SARSCoV2-12h-A 10.96% SARSCoV2-12h-A 0.06% SARSCoV2-12h-A 32.89% 12h-SARSCoV2-1 35.77%
SARSCoV2-12h-B 12.80% SARSCoV2-12h-B 0.05% SARSCoV2-12h-B 32.97% 12h-SARSCoV2-2 39.63%
SARSCoV2-24h-A 22.39% SARSCoV2-24h-A 0.04% SARSCoV2-24h-A 16.48% 4h-SARSCoV2-1 1.58%
SARSCoV2-24h-B 22.69% SARSCoV2-24h-B 0.04% SARSCoV2-24h-A-sup 25.02% 4h-SARSCoV2-2 1.62%
SARSCoV2-4h-A 0.08% SARSCoV2-36h-A 0.04% SARSCoV2-24h-B 12.69% 8h-SARSCoV2-1 16.12%
SARSCoV2-4h-B 0.10% SARSCoV2-36h-B 0.04% SARSCoV2-24h-B-sup 16.18% 8h-SARSCoV2-2 15.16%

SARSCoV2-4h-A 0.01% SARSCoV2-4h-A 1.75%
SARSCoV2-4h-B 0.01% SARSCoV2-4h-B 2.02%

Total RNA-seq dataset (rRNA depletion) GSE147507 samples MOI of 0.2 for 24 h
Calu-3 Sample % virus

Series15_COVID19Lung_1 0.00006%
% virus Series15_COVID19Lung_2 0.002%

SARSCoV1-12h-A 56.81% Series1_NHBE_SARS-CoV-2_1 0.10%
SARSCoV1-12h-B 58.68% Series1_NHBE_SARS-CoV-2_2 0.08%
SARSCoV1-24h-A 76.72% Series1_NHBE_SARS-CoV-2_3 0.10%
SARSCoV1-24h-B 77.10% Series2_A549_SARS-CoV-2_1 0.03%
SARSCoV1-4h-A 1.13% Series2_A549_SARS-CoV-2_2 0.03%
SARSCoV1-4h-B 1.95% Series2_A549_SARS-CoV-2_3 0.03%
SARSCoV2-12h-A 54.23% Series5_A549_SARS-CoV-2_1 0.08%
SARSCoV2-12h-B 54.30% Series5_A549_SARS-CoV-2_2 0.08%
SARSCoV2-24h-A 48.18% Series5_A549_SARS-CoV-2_3 0.11%
SARSCoV2-24h-B 42.87% Series6_A549-ACE2_SARS-CoV-2_153.60%
SARSCoV2-4h-A 2.55% Series6_A549-ACE2_SARS-CoV-2_249.83%
SARSCoV2-4h-B 3.01% Series6_A549-ACE2_SARS-CoV-2_357.49%

Series7_Calu3_SARS-CoV-2_1 13.19%
Series7_Calu3_SARS-CoV-2_2 17.01%
Series7_Calu3_SARS-CoV-2_3 14.58%

Note: the same RNA was used to prepare the 
polyA RNA series 1 and smallRNA data



Table S3, Related to Figure 1

(provided as Excel Table)



Table S4, Related to Figure 4
Statistics scRNA-seq
H1299 (more than 1 raw viral read count)

 no virus with S1 with S2
H1299-mock-4h-A 696 695 1 0 H1299-mock-4h-A99,86% 0,14% 0,00%
H1299-mock-4h-B 647 645 2 0 H1299-mock-4h-B 99,69% 0,31% 0,00%
H1299-mock-36h-A 1924 1924 0 0 H1299-mock-36h-A100,00% 0,00% 0,00%
H1299-mock-36h-B 1081 1081 0 0 H1299-mock-36h-B100,00% 0,00% 0,00%
H1299-S1-12h-A 2354 944 1410 0 H1299-S1-12h-A 40,10% 59,90% 0,00%
H1299-S1-12h-B 1665 515 1150 0 H1299-S1-12h-B 30,93% 69,07% 0,00%
H1299-S1-24h-A 1050 287 763 0 H1299-S1-24h-A 27,33% 72,67% 0,00%
H1299-S1-24h-B 1787 359 1428 0 H1299-S1-24h-B 20,09% 79,91% 0,00%
H1299-S1-36h-A 3005 843 2162 0 H1299-S1-36h-A 28,05% 71,95% 0,00%
H1299-S1-36h-B 793 596 197 0 H1299-S1-36h-B 75,16% 24,84% 0,00%
H1299-S2-12h-A 1985 1586 0 399 H1299-S2-12h-A 79,90% 0,00% 20,10%
H1299-S2-12h-B 1710 894 0 816 H1299-S2-12h-B 52,28% 0,00% 47,72%
H1299-S2-24h-A 1363 976 0 387 H1299-S2-24h-A 71,61% 0,00% 28,39%
H1299-S2-24h-B 1227 1118 0 109 H1299-S2-24h-B 91,12% 0,00% 8,88%
H1299-S2-36h-A 2162 1577 0 585 H1299-S2-36h-A 72,94% 0,00% 27,06%
H1299-S2-36h-B 1305 1217 0 88 H1299-S2-36h-B 93,26% 0,00% 6,74%

Calu-3 (more than 3 raw viral read counts)
 no virus with S1 with S2

Calu3-mock-4h-A 1454 1451 3 0 Calu3-mock-4h-A 99,79% 0,21% 0,00%
Calu3-mock-4h-B 839 838 0 1 Calu3-mock-4h-B 99,88% 0,00% 0,12%
Calu3-mock-12h-A 1074 1074 0 0 Calu3-mock-12h-A100,00% 0,00% 0,00%
Calu3-mock-12h-B 732 728 0 4 Calu3-mock-12h-B99,45% 0,00% 0,55%
Calu3-S1-4h-A 642 226 416 0 Calu3-S1-4h-A 35,20% 64,80% 0,00%
Calu3-S1-4h-B 654 251 403 0 Calu3-S1-4h-B 38,38% 61,62% 0,00%
Calu3-S1-8h-A 1428 0 1428 0 Calu3-S1-8h-A 0,00% 100,00% 0,00%
Calu3-S1-8h-B 970 0 970 0 Calu3-S1-8h-B 0,00% 100,00% 0,00%
Calu3-S1-12h-A 715 0 715 0 Calu3-S1-12h-A 0,00% 100,00% 0,00%
Calu3-S1-12h-B 807 0 807 0 Calu3-S1-12h-B 0,00% 100,00% 0,00%
Calu3-S2-4h-A 551 355 0 196 Calu3-S2-4h-A 64,43% 0,00% 35,57%
Calu3-S2-4h-B 1170 736 0 434 Calu3-S2-4h-B 62,91% 0,00% 37,09%
Calu3-S2-8h-A 948 0 0 948 Calu3-S2-8h-A 0,00% 0,00% 100,00%
Calu3-S2-8h-B 510 0 0 510 Calu3-S2-8h-B 0,00% 0,00% 100,00%
Calu3-S2-12h-A 767 0 0 767 Calu3-S2-12h-A 0,00% 0,00% 100,00%
Calu3-S2-12h-B 732 0 0 732 Calu3-S2-12h-B 0,00% 0,00% 100,00%



Transparent Methods 

Cell culture 

Vero E6 (ATCC CRL-1586), Calu-3 (ATCC HTB-55), Caco-2 (ATCC HTB-37) and H1299 

(ATCC CRL-5803) were cultivated in Dulbecco’s modified Eagle’s medium (DMEM) 

supplemented with 10% heat-inactivated fetal calf serum, 1% non-essential amino acids, 1% 

L-glutamine and 1% sodium pyruvate (all Thermo Fisher Scientific) in a 5% CO2 atmosphere 

at 37 °C.  

Poly-I:C transfections 

Transient transfection of eukaryotic cells was performed using X-tremeGENE™ siRNA 

transfection reagent (Roche) according to the manufacturer´s instructions. Briefly, 2x10^5 

cells/ml were grown in 6-well plates for 24 h and fresh DMEM without antibiotics was added. 

OptiPRO SFM™ (Gibco) was supplemented with 0.25 µg poly(I:C) (Invivogen) and 0.75 µl 

X-tremeGENE™ siRNA reagent, incubated for 15 min, and 100 µl transfection mix was added 

to the cells. 

RT-qPCR on intracellular RNA 

RNA was isolated from Trizol using the RNA clean and concentrator kit (Zymo). The RNA 

was reverse transcribed using maxima RT and subjected to qPCR as described (Wyler et al., 

2019). Primers used for qPCR are listed in supplementary table 5. 

Viruses 

SARS-CoV (Frankfurt strain, NCBI accession number AY310120) and SARS-CoV-2 (Patient 

isolate, BetaCoV/Munich/BavPat1/2020|EPI_ISL_406862) were used. For virus stock 

production, virus was grown on Vero E6 cells and concentrated using Vivaspin® 20 

concentrators (Sartorius Stedim Biotech). Virus stocks were stored at -80°C, diluted in OptiPro 

serum-free medium supplemented with 0.5% gelatine (Sigma Aldrich) and phosphate-bufferd 

saline (PBS, Thermo Fisher Scientific). Titer was defined by plaque titration assay. Cells 

inoculated with cell culture supernatants from uninfected Vero cells mixed with OptiPro serum-

free medium supplemented with 0.5% gelatine and PBS, in accordance to virus stock 

preparation, serves as mock infected controls. All infection experiments were carried out under 

biosafety level three conditions with enhanced respiratory personal protection equipment. 

Virus growth kinetics and plaque titration assay 

24 h prior to infection, the different cell lines were seeded to 70% confluence. The cells were 

washed once with PBS before virus (diluted in OptiPro serum-free medium) adsorption. After 



incubation for 1 h at 37 °C, 5% CO2 the virus-containing supernatant was discarded and cells 

were washed twice with PBS and supplied with DMEM as described above. 

To determine the amount of infectious virus particles in the supernatant a plaque titration assay 

was performed. For the assay Vero E6 cells were seeded to confluence and infected with serial 

dilution of virus-containing cell culture supernatant diluted in OptiPro serum-free medium. One 

hour after adsorption, supernatants were removed and cells overlaid with 2.4% Avicel (FMC 

BioPolymers) mixed 1:1 in 2xDMEM. Three days post-infection the overlay was removed, and 

cells were fixed in 6% formaldehyde and stained with a 0.2% crystal violet, 2% ethanol and 

10% formaldehyde. 

Western Blot Analysis 

The expression of human ACE-2 (hACE-2) was confirmed by Western blot analysis. For the 

preparation of total cell lysate cells were washed with PBS and lysed in RIPA Lysis Buffer 

(Thermo Fisher Scientific) supplied with 1% Protease Inhibitor Cocktail Set III (Merck 

Chemicals). After an incubation of 30 min at 4 °C, cell debris were pelleted (10 min, 13,000 x g, 

4 °C) and the supernatant transferred to a fresh reaction tube. For determining protein 

concentration Thermo Scientific's Pierce™ BCA Protein Assay Kit, according to the 

manufacturer’s instructions was used. The protein lysates were mixed with 4xNuPAGE LDS 

Sample Buffer (Invitrogen) supplemented with 10% 2-mercaptoethanol (Roth). Protein lysates 

were separated by size on a 12% sodium dodecyl sulfatepolyacrylamid (SDS) gel and blotted 

onto a 0.2 µm polyvinylidene difluoride (PVDF) membrane (Thermo Scientific) by semi-dry 

blotting (BioRad). Primary detection of hACE-2 was done using a goat anti-hACE-2 antibody 

(1:1,250; #AF933, R&D Systems), a horseradish peroxidase (HRP)-labeled donkey anti-goat 

antibody (1:5,000, Dianova) and Super Signal West Femto Chemiluminescence Substrate 

(Thermo Fisher Scientific). As loading control, samples were analyzed for β-actin expression 

using a mouse anti-β-actin antibody (1:5,000, Sigma Aldrich) and a HRP-labeled goat anti-

mouse antibody (1:10,000, Sigma-Aldrich). 

Infections for RNA sequencing experiments 

Calu-3 cells and H1299 cells were seeded at a concentration of 6 x 10^5 cells/mL and 

5 x 10^4 cells/mL, respectively. 24 h post seeding cells were infected with SARS-CoV and 

SARS-CoV-2 at an MOI of 0.33 or Vero cell supernatant mixed with OptiPro serum-free 

medium supplemented with 0.5 % gelatine and PBS as negative control. 4, 8, 12 and 24 hpi 

samples were taken. For sequencing of total RNA the supernatant was removed and Trizol LS 

Reagent (Thermo Fisher Scientific) was applied to the cell-layer and incubated for 1 min at 

room temperature until the cells were lysed. The suspension was then transferred to a RNase 



free reaction tube (Thermo Fisher Scientific) and stored at -80 °C. For scRNA-seq sample 

preparation the cells were washed with pre-warmed PBS, detached with pre-warmed trypsin 

for 3 min at 37 °C. The detached cells were transferred into a reaction tube (Eppendorf) and the 

following steps were performed on ice. Cells were spinned down at 1000 x g for 2 min at 4 °C, 

resuspended in PBS properly and passed through a 35 µm blue snap cap cell strainer 

(STEMCELL) and again pelletized The cell pellet was then resuspended in pre-chilled 

methanol (Roth) and stored at -80 °C.  

RNA sequencing 

Poly-A RNA sequencing 

Poly-A RNA sequencing libraries were prepared using the NEBNext Ultra II Directional RNA 

Library Prep Kit (NEB) according to the manufacturer’s protocols. Libraries were sequenced 

on a NextSeq 500 device at 1x76 cycles. 

Small RNA sequencing 

100 ng of total RNA of each condition was used for small RNA library preparation. Library 

preparation was performed using the SMARTer smRNA-Seq kit for Illumina from Clontech 

according to manufacturer’s instruction. The small RNA libraries were pooled together with 

19 % PhiX and sequenced on the NextSeq 500, 1 x 50 cycles. 

Total RNA sequencing 

1 µg of total RNA of each condition was used for total RNA library preparation. First, samples 

were depleted of ribosomal RNA using the RiboCop rRNA Depletion Kit (Lexogen) according 

to manufacturer’s instruction. Following, ribo-depleted samples were processed with the 

TruSeq mRNA stranded kit from Illumina according to manufacturer’s instruction. The total 

RNA libraries were sequenced on the HiSeq 4000, 2 x 76 cycles. 

Viral RNA-seq analysis 

Total and poly(A)+ RNA-seq reads were mapped with STAR 2.7.3a to a combined genome 

comprised of GRCh38 and GenBank MN908947 (SARS-CoV-2) or AY310120 (SARS-CoV) 

using permissive parameters for noncanonical splicing 36, 101. Viral genes were quantified by 

taking the top eight noncanonical splice events called by STAR across all total RNA-seq 

datasets according to the numbers of uniquely-mapping reads spanning the junction 

(Supplemental Table 3; note that for host cell gene expression analysis, also non-uniquely 

mapped reads were used). To estimate levels of ORF1ab, insertions, soft-clipping events and 

split reads were filtered from virus-mapping reads, followed by intersection with positions 53-

83 of the virus using bedtools, requiring a minimum of 24 nucleotides overlap to reflect the 

parameters STAR requires to call a noncanonical splice junction 102. These counts were either 



combined with a count matrix of the human genes quantified by STAR and TMM/CPM 

normalized with edgeR (Figure S1D) or normalized by the total number of viral junction-

spanning reads per time point (Figure S1E) 103. Coverage plots were made from merged STAR-

mapped BAM files, or from Bowtie-mapped small RNA-seq BAM files using ggsashimi 104. 

This workflow was implemented with custom Python scripts in a Snakemake pipeline 105. 

microRNA analysis 

Raw reads were preprocessed by trimming with cutadapt (version 2.9) in two passes, first 

trimming i) the Illumina TruSeq adaptor at the 3’ end and allowing for one mismatch, 

ii) all 3’end bases with mean Phred score below 30 and iii) the three 5’end overhang nucleotides 

associated with the template-switching Clontech library preparation protocol.  

In the second pass, poly(A)-tails were trimmed. Trimmed reads were mapped using bowtie 

(version 1.2.2) to a SARS genome consisting of the combined SARS-CoV and  

SARS-CoV-2 genomes using the non-standard parameters (-q -n 1 -e 80 -l 18 -a -m 5 –best –

strata). Reads that did not align to the SARS-CoV genome were aligned to the  

GRCh38 genome. The expression of known miRNAs (miRBase 22 annotation) was estimated 

using mirdeep2 (version 2.0.0.7) and standard parameters.  

The differential expression analysis used the limma 106 and edgeR 103 packages after applying 

the voom transformation to the TMM-normalized count data produced by mirdeep2. 

For the different viral infections we contrasted SARS-CoV-2 24 h / SARS-CoV-2 4 h with 

mock 24 h / mock-4 h in order to test for those miRNAs differentially expressed long after the 

infection having removed any effects seen in mock as well. 

TaqMan assays 

TaqMan probes were purchased from ThermoFisher. 10 ng to 50 ng of total RNA were used 

for TaqMan assays and assays were performed according manufacturer’s instruction with minor 

modifications. The minor modifications were: 10 mM dNTPs, Superscript III, 5 x FS buffer 

and Ribolock were used for the reverse transcription (RT) reaction and for 50 ng RNA input 

only 2 µl of the RT primer was used. All biological samples were handled in triplicates and the 

Ct values were normalized to the let-7a control. 

Northern Blot 

2,5 µg to 5 µg of total RNA were mixed equally with 2 x RNA loading dye, following 

denaturation for 5 min at 95 °C. The RNA of the denaturated samples was separated on 15 % 

urea polyacrylamide gels, transferred onto Hybond-N+ nylon membranes, UV crosslinked at 

120.000 µJ/cm2 and probed with double digoxigenin (DIG)-labeled locked nucleic acid (LNA) 

detection probes (Qiagen, see supplementary table 5) at 55 °C over-night. The membranes were 



subjected to stringent washes using SSC/SDS buffers. Subsequently, membranes were 

incubated with an anti-DIG-alkaline phosphatase (AP) solution (1:2500 diluted in blocking 

solution (Roche)) for 30 min at room temperature. Finally, northern blot signals were visualized 

using CDP star reagent (Roche) and the Vilber Fusion FX system according to manufacturer’s 

instructions. The northern blot signals were normalized to the band intensity of the let-7a 

loading control. 

Bulk RNA-sequencing analysis using DESeq2   

Starting from count tables, RNA sequencing results were analysed on a per run basis comparing 

infected samples to time matched mock experiments unless otherwise specified using DESeq2 
107 version 1.22.2. Genes with a maximum read count across samples of less than two were 

filtered out. Differentially expressed genes were defined as genes with an absolute fold change 

in mRNA abundance greater than 1.5 (log2 fold change of 0.58 - using DESeq2 shrunken log2 

fold changes) and an adjusted p-value of less than 0.05 (Benjamini-Hochberg corrected). 

Gene ontology and KEGG enrichment analysis. 

Genes whose mRNAs were found to be differentially expressed were subjected to gene set 

overrepresentation analysis using the clusterProfiler package in R 108.  

Single-cell RNA-seq 

Methanol-fixed cells were centrifuged at 2,000 x g for 5 min, rehydrated in 1 mL rehydration 

buffer containing 0.01% PBS/BSA and 1:100 Superasein (Thermo Fisher), and resuspended in 

400 µL rehydration buffer followed by passing through a 40 µm cell strainer. Encapsulation 

was done with the Nadia system (Dolomite biosystems) using the built-in standard procedure. 

For library preparation, we followed the version 1.8 of the manufacturer’s protocol, which is 

based on the protocol established by 109, with adding a second-strand synthesis step 110. 

For the encapsulation, 75,000 cells in 250 µL rehydration buffer were used, with 250 µL of 

lysis buffer (6% Ficoll PM-400, 0.2% Sarkosyl, 20 mM EDTA, 200 mM Tris pH 7.5, 50 mM 

DTT) and 3 mL oil (Biorad #1864006). After encapsulation, beads were recovered from the 

emulsion by washing with 2 x 30 mL 6 x saline sodium citrate buffer (diluted from Sigma 

#S6639) buffer in a 5 µm ÜberStrainer (pluriSelect). After another washing step in 1.5 mL 

6 x SSC, cells were washed with 5 x reverse transcription buffer (250 mM Tris pH 8, 375 mM 

KCl, 15 mM MgCl2, 50 mM DTT) and resuspended in 200 µL RT mix (50 mM Tris pH 8, 75 

mM MgCl2, 3 mM MgCl2, 10 mM DTT, 4% Ficoll PM-400, 1 mM each dNTPs, 2.5 µM 

Macosko TSO, 10 µl Maxima H- RT enzyme). Beads were incubated for 30 min at room 

temperature and 90 min at 42 °C (all incubation steps on a rotator). After washing once with 

TE/0.5% SDS and twice with TE/0.01% Tween, beads were incubated in 200 µL exonuclease 



mix (10µl Exonuclease in 1xexonuclease buffer, NEB #M0293) for 45 min at 37 °C, again on 

a rotator. After washing with once with TE/0.5% SDS and twice TE/0.01% Tween, beads were 

incubated for 5 min in 0.1 M NaOH, washed with TE/0.01% Tween and TE, and incubated in 

200 µl second strand mix (50 mM Tris pH 8, 75 mM MgCl2, 3 mM MgCl2, 10 mM DTT, 12% 

PEG 8000, 1 mM each dNTPs, 10 µM dN-SMRT oligo, 5 µl Klenow enzyme NEB #M0212) 

for 1 h at 37 °C. Beads were again washed in TE/0.01% Tween and stored overnight in 

TE/0.01% Tween, then washed in TE and twice in water, and per sample eight PCR reactions 

with 4,000 beads each in 50µl using 1µM SMART PCR primer (oligos in supplementary table 

5) and the 2x Kapa HiFi Hotstart Ready mix (Roche #07958935001) were performed, with pre-

incubation for 3 minutes at 95 °C, then 4 cycles 98 °C/20s, 65°C/45s, 72 °C/3min, then 9 cycles 

98 °C/20s, 67°C/20s, 72 °C/3min, then post-incubation for 3 minutes at 72 °C. The eight PCR 

reaction were pooled in three clean-up reactions using Ampure XP beads. For each oft the three 

sub-samples, a Nextera XT v2 (Illumina) reaction was performed with 600 pg DNA. In a 20µl 

reaction, 10 µl tagment DNA buffer and 5 µl amplicon tagment mix were incubated for 5 

minutes at 55 °C, and, after addition of 5 µl neutralization buffer for 5 minutes at room 

temperature. Afterwards, 15 µl PCR master mix were added, 200 nM New-P5-SMART PCR 

hybrid oligo, 200 nM index oligo in total 50 µl. The Nextera reactions were then again pooled, 

purified using Ampure XP beads, and sequenced on a NovaSeq 6000 deviced with 21+71 cycles 

using Read1CustomSeqB for read 1. 

Single-cell data analysis 

After trimming one nucleotide from the 3’ end of read one, count tables were generated using 

the PiGx-scRNA-seq pipeline 111 version 1.1.4. In short, cells are separated from empty 

barcodes using the inflection method as implemented in the dropbead package 112. The reads 

are then mapped to the combined human and viral genome using the STAR aligner 101, with the 

default parameters. The resulting spliced and unspliced digital expression matrices are 

converted into loom, Seurat and SingleCellExperiment formats.  For read mapping to the viral 

genomes, we used for SARS-CoV, the Frankfurt strain genome (accession number AY310120) 

and for SARS-CoV-2 the original Wuhan sequence (accession number MN908947.3). For both 

viruses, a feature labelled “UTR3” was added between the last annotated gene and the 3’-end, 

which captured most of the reads. Since the genes were counted separately, the scRNA-seq data 

contains counts for all genes in the annotation. Preprocessing was done in R (version 3.6), using 

the Seurat package 84. Cells with less than 2000 unspliced reads were filtered out of the analysis. 

Raw reads were then normalized, and scaled. Variable genes were defined using the variance 



stabilizing method. Dimensionality reduction was performed using diffusion maps, as 

implemented in the destiny Bioconductor 64 package. 

Diffusion components were used as the basis for UMAP embeddings 113. Pseudotime inference 

was performed using the diffusion pseudotime trajectory 65. A secondary UMAP embedding 

was constructed by using, as input, the diffusion pseudotime calculated probabilities of cell-

cell transitions. The UMAP was embedded using the python package umap-learn. All 

processing was done using the default parameters. The processing was done separately both 

with and without including SARS-CoV and SARS-CoV-2 viral genes. Viral load was calculated 

as the sum of detected viral reads in each cell. Velocity estimation was performed using the R 

implementation of the original Velocyto method 62. The following parameters were used for the 

projection of the vector field: n  = 200, scale = 'sqrt',  arrow.scale    = 3,  min.grid.cell.mass = 

0.5.  

To increase the power of detecting dynamic changes in gene expression (Fig. 5E), pseudotime 

based embedding was dynamically discretized using the Louvain algorithm. The input to the 

Louvain algorithm are eigenvectors of the diffusion matrix. The resulting bins were ordered 

based on the median SARS-CoV-2 expression, and the percentage of cells expressing genes of 

interest was visualized in each of the bins.  The ordering of bins based on the median SARS-

CoV-2 load corresponded almost exactly to the velocyto inferred trajectories.  

Both Calu3 and H1299 cells were analyzed using the same parameters. To detect changes 

happening early in infection, Calu3 4h cells were additionally separately analyzed. 

Preprocessing and analysis/figure scripts are available at github 

(https://github.com/BIMSBbioinfo/Ewyler_SARS-CoV). 

The analysis was visualized using ggplot2 114, ggrepel 115, and the interactive exploration was 

enabled by iSEE 116.  

HSP90 inhibitor experiments 

The HSP90 inhibitors were purchased either from Sigma (17-AAG, A8476) or from 

Selleckchem (Onalespib, S1163 and Ganetespib, S1159), and dissolved in DMSO. Cells were 

seeded and grown to subconfluence and infected with SARS-CoV-2 MOI 0.01 (Calu-3) or MOI 

0.5 (AECs) diluted in OptiPro serum free medium. After 1 h virus adsorption the supernatant 

was removed and cells were washed twice with PBS. DMEM containing dilutions of 17-AAG 

(200 nM, 400 nM, 800 nM, 2,000 nM) or DMSO as solving control. Samples for detection of 

viral RNA and infectious particles in the supernatant as well as total RNA within the cells were 

taken 8, 16 and 24 hpi. 



The cytotoxicity of the the HSP90 inhibitor was assured by cell viability assay using CellTiter-

Glo® Luminescent Cell Viability Assay according to manufacturer’s instruction (Promega). 

The activity of untreated cells was set as 100% and cells were treated with different 

concentrations of 17-AAG. The viability of cells was measured 16 and 24 h after treatment 

using Mithras Luminescence microplate reader (Berthold). 

Primary airway epithelial cells 

Cells isolated from distal lung tissue were cultured as described in Imai-Matsushima et al., 

2018. Briefly, for expansion primary cells were co-cultivated with gamma-irradiated 

mitotically inactivated NIH3T3 mouse embryonic fibroblasts (MEFs) in a 3:1 mixture of Ham’s 

F-12 nutrient mix (Life technologies) and DMEM supplemented with 5% FCS, 0.4µg/mL 

hydrocortisone (Sigma-Aldrich), 5µg/mL recombinant human insulin (Sigma-Aldrich), 8.4 

ng/mL cholera toxin (Sigma-Aldrich), 24µg/mL Adenine (Sigma-Aldrich), and 10ng/mL 

recombinant human epidermal growth factor (Invitrogen), 0.1 µM DBZ (Tocris) and  9 µM 

Y27632 (Miltenyi Biotec)  

Differentiation was induced by additional treatment with 3 µM CHIR-99021 (Sigma), 10 ng/ml 

KGF (Invitrogen), 10 ng/ml FGF-10 (Invitrogen), 100 µM IBMX (Sigma), 100 µM 8-

Bromoadenosine 3’,5’-cyclic monophosphate (Biolog),  25 nM Dexamethason (Sigma) and 20 

µM DBZ for 3 days. Two days prior to infection the primary cells were separated from the 

MEFs by differential trypsinization and subsequently seeded in cell culture vessels in DMEM 

with 10% FCS, 1% non-essential amino acids, 1%, L-glutamine and 1% sodium pyruvate.  

RT-qPCR of viral RNA in the supernatant 

The viral RNA from supernatant of infected cells was isolated using the NucleoSpin RNA virus 

isolation kit (Macherey-Nagel) according to the manufacturer’s instructions. To determine the 

amount of viral genome equivalents the previously published assay specific for both SARS-

CoV and SARS-CoV-2 Envelope gene 117 was used. Data analysis was done using LightCycler 

Software 4.1 (Roche).  
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