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ABSTRACT

Protein–RNA interactions play important roles in the biological systems. Searching for regular
patterns in the Protein–RNA binding interfaces is important for understanding how protein
and RNA recognize each other and bind to form a complex. Herein, we present a graph-mining
method for discovering biological patterns in the protein–RNA interfaces. We represented known
protein–RNA interfaces using graphs and then discovered graph patterns enriched in the in-
terfaces. Comparison of the discovered graph patterns with UniProt annotations showed that the
graph patterns had a significant overlap with residue sites that had been proven crucial for the
RNA binding by experimental methods. Using 200 patterns as input features, a support vector
machine method was able to classify protein surface patches into RNA-binding sites and non-
RNA-binding sites with 84.0% accuracy and 88.9% precision. We built a simple scoring function
that calculated the total number of the graph patterns that occurred in a protein–RNA interface.
That scoring function was able to discriminate near-native protein–RNA complexes from docking
decoys with a performance comparable with that of a state-of-the-art complex scoring function.
Our work also revealed possible patterns that might be important for binding affinity.

Keywords: binding sites, common subgraphs, graph patterns, protein–RNA interactions, recur-

rent patterns, scoring functions.

1. INTRODUCTION

It is well known that protein–RNA interactions play important roles in various biological processes.

Understanding the molecular foundation of the interactions will give us the ability to modify the interfaces

to regulate those biological processes. This study aims to analyze protein–RNA interfaces to identify re-

current structural patterns facilitating the interactions. Various proteomic projects have produced a large

number of protein structures, whose functions are still unknown. The patterns discovered in this study will be

helpful for discovering RNA-binding sites on those protein structures and predicting the structures of the

protein–RNA complexes that they may form.

Many computational methods have been developed for predicting RNA-binding sites on proteins. Some

of them used the machine-learning approach to train various computational methods to build classifiers
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that could predict RNA-binding sites on the protein structures using sequence, structural, and evolutionary

features as input (Terribilini et al., 2006, 2007; Liu et al., 2010; Murakami et al., 2010; Chen et al., 2014;

Yang et al., 2014). Although the classifiers reportedly achieved accurate predictions in many cases, a

limitation of these methods is that the predicting process is like a black box, and it is hard to translate the

rules used by the classifiers into knowledge to elucidate the affinity and specificity of the interactions. Other

methods used structural alignment to transfer known RNA-binding sites from a homologous template

structure to a structure of interest. This approach requires an available homologous template, whose RNA-

binding sites are known. However, in many cases, this requirement cannot be satisfied.

Another important problem in the study of protein–RNA interactions is to predict the conformation of the

complex that a protein and RNA may form in the interaction. Docking is a popular approach to solving this

problem. The docking approach generates a large set of poses that represent the whole universe of possible

conformations of the protein–RNA complex and then uses a scoring function to rank the poses. A good

scoring function should assign higher scores to poses similar to the native structure and lower scores to

poses that are dissimilar. Various scoring functions have been used. One important category of scoring

functions is called knowledge-based scoring function, which reflects the propensities of a certain moieties

to occur in the protein–RNA interfaces in a database of known protein–RNA complexes. The moieties

could be atoms, atom pairs, residues, residue pairs, or others (Pérez-Cano and Fernández-Recio, 2010; Zhao

et al., 2011; Li et al., 2012; Huang and Zou, 2014).

In this work, we used a graph-mining method to discover graph patterns in the protein–RNA interfaces.

Our results showed that the graph patterns covered residue sites that had been proven crucial for the in-

teractions by experimental methods. We demonstrated that the discovered patterns could be used to predict

RNA-binding sites on protein structures with high accuracy and high precision, and they could also be used

as a scoring function to discriminate near-native protein–RNA complexes from docking decoys. Our work

also revealed possible patterns that might be important for binding affinity.

We have significantly extended the work beyond previous work (Cheng and Yan, 2015). First, we explored

different machine learning methods to build classifiers for the discrimination of RNA-binding sites versus non-

RNA-binding sites. Second, we compared the discovered graph patterns with the UniProt (Bairoch et al., 2005)

MUTAGEN annotations, which were collected from mutagenesis experiments and contained information

about how alteration of a residue would affect the binding between protein and RNA. Compared with the

UniProt REGION annotations, the MUTAGEN annotations have higher precision. Third, we investigated how

the performance of the proposed scoring function varies, as different numbers of patterns were used in the

scoring function. This led to an important discovery (see Subsection 3.4 of Section 3) that some patterns were

more important for the scoring function, which suggested that these patterns might contribute more to the

binding affinity. Finally, we attempted to improve the scoring function using weighted sum of the patterns. Our

analysis suggested that the order of the patterns that were sorted based on enrichment levels did not strictly

reflect the order of importance of the patterns’ contribution to the binding affinity.

2. METHODS

2.1. Data sets

Our study used two data sets. The first data set, will be referred to as Data set I, included a set of three-

dimensional structures of protein–RNA complexes that had been determined using experimental methods.

Each complex structure showed a native binding mode between a protein and an RNA. In this study, the

training set was used to discover common subgraphs enriched in the RNA-binding sites. Data set I was

obtained from the RCSB Protein Data Bank (PDB) database. First, we retrieved from PDB representa-

tives of protein–RNA complexes with no more than 90% sequence identity. The search returned 1570

hits. Then, the data set was culled using PISCES (Wang and Dunbrack, 2003) with the mutual sequence

similarity no more than 25%, maximum resolution of 3 Å, maximum R-value of 0.3, minimum length of

40 amino acids, and maximum length of 1000. After the culling, 144 protein–RNA complexes remained.

The second data set, will be referred to as Data set II, was derived from a protein–RNA docking

benchmark collected by Huang and Zou (2013). The original data set from Huang and Zou (2013) was a

nonredundant set of 72 protein–RNA complexes and their unbound structures. In this study, we removed

the proteins that overlapped with Data set I. At the end, Data set II consisted of 37 protein–RNA

complexes and their unbound structures.
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2.2. Interface residues

Interface residues on the RNA-binding sites were defined as in Jones et al. (2003). We used NACCESS

software to calculate the accessible surface area (ASA) of each amino acid in both bounded and unbounded

states. An amino acid was defined as an interface residue if its ASA in unbounded state was at least 1 Å2

more than that in bounded state.

2.3. Graph representation of RNA-binding sites

Each RNA-binding site was represented using a graph, where each node represented an interface residue,

and an edge was added between two nodes if the corresponding residues were in contact. Two residues

were considered contacting if the nearest distance between their heavy atoms was less than 0.5 Å plus the

atoms’ radii. Each node was labeled with its residue type. Each edge was also associated with an edge label.

If the two nodes at the end of an edge were sequence neighbors on the protein chain, then the edge was

labeled as type one; otherwise, the edge was labeled as type two.

2.4. Discovery of common subgraphs

There were 144 RNA-binding sites in Data set I, and each one was represented as a graph. We will refer to

these graphs as binding-site graphs. We implemented the VF2 algorithm (Cordella et al., 2004) to find

common subgraphs between each pair of binding-site graphs. In the test of isomorphism, we also took into

consideration the node labels and edge labels. In this study, we focused on the common subgraphs of sizes 3

and 4, that is, each common subgraph had three nodes or four nodes, as common subgraphs with less than

three nodes contain too few information and common subgraphs with more than five nodes were rarely found.

2.5. Classification

We built machine-learning classifiers to distinguish RNA-binding sites from non-RNA-binding sites. The

classification was evaluated using fivefold cross validation at protein level. The whole data set was split

into five subsets at the protein levels, such that surface patches from the same protein remained in the

same subset. In each round of experiment, one subset was used as test set and the other four as training set.

Five rounds of experiments were conducted so that each subset was used as test set once. We tried dif-

ferent machine-learning algorithms, including the decision tree ( J48) (Quinlan, 1986) and Random Forest

(Breiman, 2001), implemented in Weka (Hall et al., 2009), and LibSVM (Chang and Lin, 2011).

The classification performance was evaluated using the following metrics: True Positive (TP): RNA-

binding sites that were predicted as RNA-binding sites; False Positive (FP): nonbinding sites that were

predicted as RNA-binding sites; False Negative (FN): RNA-binding sites that were predicted as nonbinding

sites; True Negative (TN): nonbinding sites that were predicted as nonbinding sites; Accuracy: (TP+TN)/

(TP+TN+FP+FN); Precision: TP/(TP+FP); and AUC: Area under the ROC curve.

3. EXPERIMENTS AND RESULTS

3.1. Discovery of graph patterns enriched in RNA-binding sites

Our goal was to discover graph patterns enriched in the RNA-binding sites, that is, graph patterns that

occurred with high frequencies in RNA-binding sites and with low frequencies in the rest of the protein

surface. We found common subgraphs in Data set I, as described in Section 2.4 of Section 2. After

removing duplicated common subgraphs, we obtained 3363 unique subgraphs of size 3 and 7482 unique

subgraphs of size 4. These subgraphs represented some graph patterns observed in the RNA-binding sites.

We randomly collected 144 nonbinding sites from the 144 proteins, with one nonbinding site from each

protein. The nonbinding site from a protein had the same size as the RNA-binding site from the same

protein, and there was no overlap between the nonbinding site and RNA-binding site. These nonbinding

sites served as the background for the identification of patterns enriched in the RNA-binding sites.

For each subgraph, we checked whether it occurred in the 144 binding-site graphs and the 144 non-

binding sites. The presence or absence of a subgraph in the RNA-binding-site and nonbinding sites was

recorded using a vector of 288 values, with 1 being presence and 0 absence. Then, we performed a t-test to

identify subgraphs that enriched in the RNA-binding sites. A lower p-value given by the t-test indicated that
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the subgraph was more favored by the RNA-binding sites. We sorted the subgraphs in the order of

increasing p-values. Thus, the subgraphs at the top of the list were more favored at the RNA-binding sites.

3.2. Predicting RNA-binding sites using the enriched graph patterns

In the above section, we have discovered a list of graph patterns with various enrichment levels in the

RNA-binding sites. To further evaluate the significance of the graph patterns, we tested the feasibility of

using the graph patterns to discover RNA-binding sites on the protein surface. For this purpose, we used the

graph patterns as input to train a support vector machine classifier to discriminate RNA-binding sites from

nonbinding sites. When n patterns were chosen, an RNA-binding site or nonbinding site was encoded as a

vector of n values, representing the presence or absence of the first n patterns from the top of the list. The

classification was evaluated using fivefold cross validation at protein level. libSVM with radial basis

function (RBF) kernel was used. We tried different numbers of patterns from 100 to 500 with an increment

of 100 for three-node subgraphs and four-node subgraphs separately. The classification performance is

shown in Table 1. Our results showed that as the number of patterns increased, the accuracy first increased

and then decreased. Using four-node subgraphs as input, the classifier was able to achieve better perfor-

mance than using three-node subgraphs. When the first 200 four-node subgraphs from the list were used,

the classifier achieved the best performance with 84.0% accuracy, 88.9% precision, and 0.84 AUC. These

results suggested that the enriched subgraphs we discovered revealed structural patterns that facilitated the

interactions between protein and RNA and thus could be used to predict RNA-binding sites.

We also used Random Forest and decision tree methods to build the classifiers. Table 2 shows the

comparison between these algorithms when 200 four-node subgraphs were used to encode surface sites.

The Random Forest achieved slightly higher precision than libSVM, but with much lower accuracy. The

decision tree had the lowest accuracy and precision among the three algorithms. When different numbers of

subgraphs were used, the same trend was observed when libSVM was used.

3.3. Significant overlap between graph patterns and UniProt annotations

To further evaluate the biological significance of the discovered graph patterns, we compared them with

the annotations in UniProt, a comprehensive database of protein functional information. The REGION

annotation in the UniProt denoted the stretch of protein sequence involved in a certain type of function. We

focused on the REGION annotations that were associated with the RNA-binding function and compared

the residues covered by the graph patterns and the residues covered by the RNA-binding REGIONs. For

Table 1. Classification of RNA-Binding Sites Versus Nonbinding Sites Using libSVM

Size of patterns No. of patterns TP FP FN TN Accuracy (%) Precision (%) AUC

Three nodes Top 100 108 48 36 96 74.0 69.2 0.71

Top 200 94 28 50 116 77.4 77.0 0.73

Top 300 101 30 43 114 76.7 77.1 0.75

Top 400 93 13 51 131 77.8 87.8 0.78

Top 500 95 16 49 128 76.4 85.6 0.77

Four nodes Top 100 88 15 56 129 76.0 85.4 0.75

Top 200 112 14 32 130 84.0 88.9 0.84

Top 300 118 29 26 115 80.9 80.3 0.81

Top 400 109 21 35 123 80.9 83.8 0.81

FN, false negative; FP, false positive; TN, true negative; TP, true positive.

Table 2. Comparison Between Different Classification Algorithms

Algorithms TP FP FN TN Accuracy (%) Precision (%) AUC

Decision tree ( J48) 115 116 29 28 49.6 49.7 0.50

Random Forest 73 7 71 137 72.9 91.2 0.73

libSVM 112 14 32 130 84.0 88.9 0.84

Two hundred 4-node subgraphs were used to encode surface sites.
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simplicity, we only looked at the top 200 four-node graph patterns, since the previous section showed that

these patterns gave the best performance in classification. Among the 144 proteins in Data set I, 16 have a

REGION annotation associated with RNA binding and also include at least one pattern from the top 200

four-node patterns. The number of residues covered by the patterns, the number of residues covered by the

REGION, and the overlap between the two sets are shown in Table 3. The table showed that in 12 of the 16

proteins, the graph patterns overlap with the REGIONs. For the 16 proteins, the average size of the proteins

was 319.5, and the average sizes of the REGIONs and patterns were 64.8 and 12.1, respectively, and the

average overlap was 5.6. The overlap had a p-value of 0.02, that is, if the REGIONs and patterns were

randomly generated, then there was only a probability of 0.02 to achieve overlap equal to or better than this.

This result strongly supports the biological significance of the discovered patterns.

The REGION annotation usually contains a contiguous segment on the protein sequence that is believed

to be associated with a function. They often include many residues that do not directly participate in the

RNA-binding function. Thus, it is understandable that the REGION annotations cover much more residues

than the subgraph patterns.

The UniProt database also includes MUTAGEN annotations and describes how experimental mutations

of one or more amino acids change the biological properties of the protein. In our data set, we searched for

the MUTAGEN annotations, whose mutation reduced the RNA-binding ability of the protein. Different

than the REGION that includes a long stretch of residue, MUTAGEN only includes a few isolated residues.

Among the 144 proteins in Data set I, 21 have at least one MUTAGEN annotation, associated with RNA

binding, and also include at least one pattern from the top 200 four-node patterns. In eight of them, the

MUTAGEN and the subgraph overlapped (Table 4). This overlap had a p-value of 0.005. This confirms the

Table 4. Overlap Between Subgraph Patterns

and Uniprot Mutagens

PDBID

No. of residues

in subgraphs

No. of residues in

MUTAGEN annotations

No. of residues

overlapped

2F8K 5 2 1

1FEU 9 8 4

2XS2 8 4 3

2A1R 4 4 1

2A8V 4 2 2

2BGG 10 5 3

3PEY 4 8 2

3MDI 14 5 2

Table 3. Overlap Between Subgraph Patterns and Uniprot Regions

PDBID

No. of residues

in subgraphs

No. of residues

in REGION annotations

No. of residues

overlapped

1YVP 14 165 12

1K8W 17 29 4

1KNZ 4 146 4

3MOJ 5 76 5

4IG8 13 59 8

2ZKO 10 73 10

1H4S 4 30 0

3DH3 22 8 4

2A8V 4 17 1

3FOZ 19 28 13

3RW6 13 117 0

4KXT 20 95 14

1JID 4 9 0

2BH2 16 24 6

1N78 16 16 0

3MDI 14 146 10

MINING PATTERNS AT BINDING INTERFACES 35



biological significance of the subgraph patterns. We also noticed that in 13 proteins, there was no overlap

between MUTAGEN annotations and the subgraph patterns. One possible explanation for this is that the

information gathered from mutagenesis experiments is scarce, and thus, the MUTAGEN annotations only

cover a small fraction of RNA-binding residues. Meanwhile, the subgraph patterns were meant to capture

patterns that were important for the binding, and thus, they also only cover a small fraction of the RNA-

binding residues. Thus, there is a high chance that the two sets may not overlap.

3.4. Discrimination of near-native protein–RNA conformations from docking decoys

Molecular docking is a very popular approach to predicting the structure of complex that a protein and an

RNA may form when their unbound structures are available. In the first step of the docking, a large number

of poses are generated, with each pose representing one possible conformation the protein–RNA complex

may take. In the second step, a scoring function is used to assign scores to the poses. The poses that are very

similar to the native protein–RNA complexes are usually called near-native poses, and the poses that are

not similar to the native complexes are called docking decoys. A good scoring function should assign

higher scores to near-native poses than to the docking decoys.

In previous sections, we have discovered a list of graph patterns that are favored in the protein–RNA

interfaces. In this study, we will test these patterns’ ability to discriminate near-native structures from

docking decoys. We built a very simple scoring function based on the occurrences of the patterns in the

protein–RNA interfaces. For a docking pose, the proposed scoring function counted the number of these

graph patterns that occurred on the protein–RNA interface and assigned a score equal to the number. We

evaluated the scoring function using Data set II, a docking benchmark collected by Huang and Zou (2013),

and compared it with the scoring function used in 3dRPC, a state-of-the-art protein–RNA docking method

developed by Huang et al. (2013). They compared 3dRPC with other docking methods using Data set II,

and the results showed that 3dRPC was better than the others.

3dRPC consisted of two parts: RNA-Protein (RP)-Dock, which generated potential poses for the protein–

RNA complexes, and a distance- and environment-dependent, coarse-grained, and knowledge-based po-

tential for RNA-Protein (DECK-RP). Huang et al. (2013) generated 1000 poses using RP-Dock for each

protein and RNA pair. Each pose was aligned with the native protein–RNA structure by superimposing the

protein, and if the root mean square deviation between the pose and native structure is less than 10 Å, then

the pose was considered a near-native pose. Then, they used the DECK-RP to rank the 1000 poses and

predicted Np best poses to be near-native poses, where Np will be referred to as the prediction number.

Each protein and RNA pair in Data set II were considered as one test case. They evaluated the performance

using success rate and hit count, where success rate was the fraction of the test cases where the top Np

poses contained at least one near-native pose, and hit number was the mean number of near-native poses

within the top Np poses calculated as the average over all test cases.

We followed the evaluation procedure used by Huang et al. (2013). We used the same poses generated by

them and used our simple scoring method to rank them. There is still one parameter in our scoring function

that needs to be decided. We have a list of graph patterns sorted by enrichment, but we have not decided

how many graph patterns the scoring function should consider. For simplicity, we only used three-node

patterns for this test. To decide this parameter, we set prediction number Np to be 100 and tested how

success rate and hit count changed when we increased the number of graph patterns that the scoring

function considered. We started from 100 patterns with an increment of 100. Figure 1 showed that at the

beginning, both success rate and hit number increased slowly as the pattern number increased, and when the

number of patterns increased to 1200, both success rate and hit number reached the highest levels and only

fluctuated slightly when the pattern number continued to increase. Thus, in the following comparison, our

scoring function considered the first 1200 graph patterns from the list. One interesting observation in

Figure 1 is that when pattern number increased from 700 to 800, both success rate and hit number increased

dramatically. We tried different prediction number Np from 10 to 900. The same trend was observed. This

may suggest that patterns falling in the range from 700 to 800 on the sorted list are crucial for achieving

strong binding affinity between proteins and RNA, that is, they contribute more to the binding affinity.

Further investigations are needed to reveal how these patterns contribute to the binding affinity.

Figure 2 compares the success rate and hit count between our scoring method and DECK-RP over a wide

range of prediction number, from 1 to 900. The results show that the performance of our method is

comparable to that of DECK-RP over the whole range. Given that our scoring method only keeps a tally
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count of graph patterns and DECK-RP has to calculate a complicated energy function that includes many

parameters, it is exciting to see that our simple method is comparable to DECK-RP. This also suggests the

importance of the discovered patterns to the protein–RNA interactions.

In an effort to improve the performance of the scoring method, we assigned the patterns different

weights, according to their enrichment levels, in the RNA-binding interfaces, so that patterns with higher

enrichment levels at the protein–RNA interfaces have higher weights. Then, the scoring function was

calculated as a weighted sum of the patterns. However, this approach slightly decreased the success rate

and hit count. One possible explanation is that the patterns that occur most frequently at the interfaces may

not contribute the most to the binding affinity. This speculation is consistent with the observation in

Figure 1 that patterns falling in the range from 700 to 800 seem to be most useful for scoring the docking

poses. It is worth noting that Table 1 shows that the top 200 patterns were most important for discriminating

RNA-binding sites from nonbinding sites in the classification test. This result from Table 1 does not

contradict with the speculation we make here. Because the classification methods only exploit patterns’

distribution in the two classes, the patterns that show bigger difference in their enrichment levels in the two

classes are more important for the classification task. The classification does not consider the contribution

of each pattern to the binding affinity. Thus, the list of subgraph patterns sorted using t-test reflects the

patterns’ propensities to occur in the RNA-binding sites, and the ranking of the patterns is useful for

discriminating binding sites from nonbinding sites. However, the order of the list does not necessarily

reflect the order of importance of these patterns’ contribution to the binding affinity. Further investigations

are needed to determine how these patterns contribute to the binding affinity and, possibly, binding

specificity.

FIG. 2. Comparison between our scoring method and DECK-RP. Our scoring method is comparable to the DECK-RP

method in the whole range of predictions numbers. DECK-RP, .

FIG. 1. Success rate and hit count varied when different numbers of subgraph patterns were used in our scoring

method. Both measurements reached the highest levels when 1200 patterns were used. There was a hike in both

measurements when the pattern number changed from 700 to 800.
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4. CONCLUSIONS

In this work, we discovered graph patterns that were enriched in the protein–RNA interfaces. These

patterns were favored in the protein–RNA interfaces and were depleted at the rest of the protein surface.

We validated the importance of these patterns in three experiments. In the first, we showed that these

patterns could be used to predict RNA-binding sites with high accuracy (84.0%) and precision (88.9%). In

the second, we showed that the patterns had a significant overlap with known RNA-binding residues as

annotated in UniProt. The third experiment showed that the patterns could be used to discriminate near-

native docking poses from docking decoys with performance comparable to a state-of-the art method. Our

work also revealed possible patterns that might be important for achieving binding affinity. Our method for

pattern mining and the patterns discovered in this study will be very useful for the investigation of inter-

action mechanisms between protein and RNA and other macromolecules.
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