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Abstract

Members of the genus Vibrio are important marine and aquaculture pathogens. Hemolytic activity has been identified as a
virulence factor in many pathogenic vibrios including V. cholerae, V. parahaemolyticus, V. alginolyticus, V. harveyi and V.
vulnificus. We have used transposon mutagenesis to identify genes involved in the hemolytic activity of shrimp-pathogenic
V. harveyi strain PSU3316. Out of 1,764 mutants screened, five mutants showed reduced hemolytic activity on sheep blood
agar and exhibited virulence attenuation in shrimp (Litopenaeus vannamei). Mutants were identified by comparing
transposon junction sequences to a draft of assembly of the PSU3316 genome. Surprisingly none of the disrupted open
reading frames or gene neighborhoods contained genes annotated as hemolysins. The gene encoding RseB, a negative
regulator of the sigma factor (sE), was interrupted in 2 out of 5 transposon mutants, in addition, the transcription factor
CytR, a threonine synthetase, and an efflux-associated cytoplasmic protein were also identified. Knockout mutations
introduced into the rpoE operon at the rseB gene exhibited low hemolytic activity in sheep blood agar, and were 3-to 7-fold
attenuated for colonization in shrimp. Comparison of whole cell extracted proteins in the rseB mutant (PSU4030) to the
wild-type by 2-D gel electrophoresis revealed 6 differentially expressed proteins, including two down-regulated porins
(OmpC-like and OmpN) and an upregulated protease (DegQ) which have been associated with sE in other organisms. Our
study is the first report linking hemolytic activity to the sE regulators in pathogenic Vibrio species and suggests expression
of this virulence-linked phenotype is governed by multiple regulatory pathways within the V. harveyi.
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Introduction

Vibrio harveyi is one of several closely-related species of Vibrio that

cause disease in marine organisms [1–3]. Outbreaks of highly

virulent Vibrio strains have caused major losses to shrimp farmers

in Thailand and elsewhere [4–8]. The mechanisms of pathogenesis

in these vibrios are not clearly understood and are likely mediated

in part by strain-specific virulence factors. Hemolytic activity has

been linked to virulence in many species of Vibrio where several

different classes of hemolysins have been described. The V. harveyi

hemolysin (VHH) is a member of the broadly distributed

thermolabile hemolysin (TLH) family [9–12] and appears to be

sufficient for hemolytic activity in some, but not all, strains of V.

harveyi [12,13]. We have previously determined that the vhh gene is

present in all V. harveyi isolates from both healthy and diseased

marine animals collected in Southern Thailand [14]. However,

hemolytic activity on blood agar was variable in the vhh bearing

isolates, suggesting that hemolytic activity is influenced by

additional factors.

In order to better understand mediators of hemolytic activity

and virulence in V. harveyi we have investigated genes that control

hemolytic activity in the shrimp-virulent V. harveyi strain PSU3316.

Results of an initial transposon screen led us to hypothesize that

regulators of the cell envelope stress sigma factor RpoE control the

elaboration of V. harveyi hemolytic activity and that this phenotype

correlates with virulence in shrimp. Recent work in Vibrio vulnificus

has revealed that the regulatory network of RpoE controls

virulence in a mouse model [15]. To investigate whether the

RpoE-operon regulatory proteins mediate the virulence of V.

harveyi we have carried out targeted mutagenesis, in vitro and in

vivo activity assays, and proteomic analysis to identify genes

differentially expressed in wild-type and non-hemolytic mutants.

Surprisingly, none of the differentially regulated proteins or gene

products of loci inactivated in hemolysis-attenuated transposon

mutants were similar to known hemolysins. These results suggest

that hemolysis activity per se may be a phenotype that is influenced

by a variety of different factors including the RpoE-operon

mediated cell envelope stress response of V. harveyi.

Materials and Methods

Bacterial strains and plasmids
All bacterial strains and plasmids used in this study are listed in

Table 1. V. harveyi PSU3316 was isolated in 2004 from the
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hemolymph of a diseased shrimp (Penaeus monodon) in Southern

Thailand, and an early passage of this strain was archived in

glycerol at 280uC. PSU3316 was identified as being most similar

to type strains of V. harveyi by biochemical testing, genome

sequencing, and phylogenetic analysis of the gyrB gene [16].

Although the systematics of the V. harveyi-group is subject to debate

based on emerging genomic data we have chosen to retain the

original designation pending official taxonomic revision of type

strains. PSU3545 is a spontaneous streptomycin-resistant (SmR)

derivative of PSU3316. Confirmation of virulence of V. harveyi

PSU3316 and PSU3545 was performed by determining the LD50

of each strain in shrimp (P. monodon) and through a competition

assay involving co-infection of these strains and measurement of

hepatopancreas colonization levels. All strains were maintained in

20% glycerol at 280uC.

Media and growth conditions
Vibrio strains were grown at 30uC on Luria-Bertani medium

(LB) or Tryptic Soy Broth (TSB) containing 1% or 1.5% NaCl.

When required, chloramphenicol (Cm) (2 mg mL21) or strepto-

mycin (Sm) (200 mg mL21) was added into broth or agar.

Escherichia coli DH5a/lpir and BW20767/lpir used for construc-

tion of pJT064 and pJT084 were grown at 37uC in LB broth

supplemented with chloramphenicol (20 mg mL21). Unless other-

wise indicated, all cultures were incubated for 16–18 h.

Sequencing and draft assembly of the PSU3316 genome
Libraries suitable for sequencing using the Illumina Genome

Analyzer (Illumina, Inc.) were generated using a modified version

of the standard Illumina GA protocol. 5 mg of genomic DNA from

strain PSU3316 was sheared using Adaptive Focused Acoustic

technology (Covaris, Inc.) to generate fragments 100–300 bp in

length. Fragments were blunt-ended, A-tailed and ligated with T

nucleotide overhang Illumina forked paired end-sequencing

adapters (Illumina, Inc.) containing custom bar-codes for multiplex

sequencing. Libraries were then PCR amplified for 16 cycles after

identifying the optimum number of cycles using qPCR, sequenced

to a depth of ,66 and assembled into contigs using CLC

Genomics Workbench 4 (Aarhus, Denmark). Genome fragments

were uploaded to the Rapid Annotations using Subsystems

Technology (RAST) server for annotation [17]. Genome regions

containing open reading frames for genes and proteins identified

in this study have been deposited at NCBI with accessions XXX-

YYY (to be provided with final submission).

Transposon mutagenesis of V. harveyi
The mariner-based transposon pSC189 (KmR) [18] containing

a kanamycin resistance gene was modified by insertion of a

chloramphenicol marker into the PstI restriction site to obtain

pJT064. This plasmid carries a transposon fragment which was

designated as TnJT064. pJT064 was transformed into compe-

tent E. coli BW20767 [19]. Conjugation of E. coli donor strain

and V. harveyi PSU3316 was performed by mixing each strain at

ratio of 1:1 on LB plates supplemented with 1% NaCl and

incubation at 30uC for 6 h followed by selection of V. harveyi

mutants carrying TnJT064 insertions on Vibrio-selective Thio-

sulfate citrate bile salt-sucrose agar (TCBS) containing chlor-

amphenicol (2 mg mL21).

Screening transposon insertion mutants for hemolytic
activity and shrimp virulence

TnJT064 transposon insertion mutants were screened for

hemolytic activity by spotting cultures on sheep blood agar

(PML Microbiologicals, USA) and then scoring for the appearance

of a lytic zone after incubation at 30uC for 48 h. Wild type V.

harveyi PSU3316 and its streptomycin resistant derivative PSU3345

are b-hemolytic in this assay and any mutant that caused

incomplete hemolysis (defined here as a-hemolysis) were subjected

to a second screen for virulence in shrimp. Cells grown overnight

in TSB were harvested by centrifugation, washed, and suspended

in a sterile saline solution. Shrimp were challenged by intramus-

cular injection of a 100 ml of saline suspensions of approximately

2.46106 CFU (corresponding to four times LD50 for wild-type

PSU3316), of either selected transposon mutants, PSU3316,

PSU3545, or sterile saline (mock infection control). The challenge

experiment was repeated twice, first with three shrimp per

challenge followed by a second experiment with seven shrimp

per challenge. Differences in mortality after 18 h in wild-type

strains (PSU3316 and PSU3545) and mutant strains with

attenuated hemolysis were evaluated using the Fisher’s exact test.

Relative risk (RR) of mortality compared with the wild type-strain

was also determined for each mutant.

Table 1. Bacterial strains and plasmids used in this study.

Strain Plasmid

Description Reference Description Reference

E. coli DH5a/lpir lpir w80dlacZDM15 D(lacZYA-argF)U169,
recA1, hsdR1, deoR, thi-1, supE44, gyrA96, relA1

[21] pSC189 mariner-based transposon delivery
plasmid, NCBI accession no. AY115560

[18]

E. coli BW20767 RP4-2-Tc::Mu-1kan::Tn7 integrant
leu-63::IS10, recA1, zbf-5, creB510,
hsdR17, endA1, thi, uidA(DMluI)::pir+

[19] pDTR801 R6K ori mob, sacB, bla; suicide vector;
Cmr;Apr

This study

V. harveyi PSU3316 Wild-type isolate from a diseased shrimp This study pJT064 pSC189 derivative; ApR; KmR; CmR This study

V. harveyi PSU4512 PSU3316 derivative rseB::TnJT064 This study pJT084 pDTR801 derivative; CmR This study

V. harveyi PSU3545 PSU3316 Smr; spontaneous mutant This study pPR142 pJT084 with 1228 bp internal fragment
harboring rseA/B from PSU3545 cloned
into the XbaI site

This study

V. harveyi PSU4030 PSU3545 derivative rseB::pJT084 This study pPR143 pJT084 with 516 bp internal fragment
harboring rseB from PSU3545 cloned
into the XbaI site

This study

V. harveyi PSU4031 PSU3545 derivative rseB::pJT084 This study

doi:10.1371/journal.pone.0032523.t001

Regulatory Control of V. harveyi Virulence
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Characterization of genes involved in hemolytic activity
The identity of genes disrupted in hemolysis- and virulence-

attenuated mutants was determined by PCR amplification and

sequencing of the transposon insertion junctions using primers

targeting outward facing priming sites in the TnJT064 transposon

(Mar2018 and MarEC6) and arbitrary primers ARB6/7 and

ARB2 which bind throughout the genome [20]. Nucleotide

sequences from transposon insertion junctions were compared to

the PSU3316 genome by BLAST and identified based on

annotation of the corresponding open reading frames disrupted

by the transposon insertion.

rseBC disruption
A spontaneous streptomycin resistant V. harveyi PSU3316

(designated as PSU3545) was used as the parental strain in the

construction of two independent insertions in the rseB gene by

homologous recombination-based gene disruption [21] which is

expected to also inactivate the downstream gene rseC. PCR

amplification of inserts for gene disruption was performed using

specific primers designated in this study (Table 2). The PCR

products were cloned into pJT084 (a derivative of suicide plasmid

pDTR801 which carries the R6K origin of replication , the RP4

mob region, the sacB gene for sucrose-based counter selection from

pCVD422 [22] modified by removal of the bla gene encoding

ampicillin resistance by partial PstI digestion (NEB) and addition of

a chloramphenicol acetyltransferase (cat) gene for chloramphenicol

resistance), transformed into E. coli BW20767/lpir and conjugat-

ed with PSU3545. V. harveyi mutants containing gene disruptions

were selected on TCBS containing chloramphenicol (2 mg mL21)

and streptomycin (200 mg mL21).

Quantification of hemolytic activity
Hemolytic activity expressed by rseBC mutant and wild-type

strains on solid media was visualized using a standard sheep blood

agar assay [23,24]. Cell-associated hemolytic activity was quan-

tified as the percentage of red blood cells lysed in liquid suspension

assay. In brief, bacterial strains were grown 18 h at 30uC in LB

agar containing 1.5% NaCl.

Bacterial cells and sheep erythrocytes were washed twice with

sterile artificial seawater or Artificial SeaWater (Mariscience) prior

to the assay. Bacterial cell suspensions were adjusted to

1.56108 CFU mL21 by optical density at 600 nm and 190 ml of

each strain was mixed with 10 ml of packed sheep erythrocytes in

96-well microtiter plate and incubated at 30uC for 5 h.

Supernatants were obtained by centrifugation (40006 g; 10 min;

4uC) and the amount of hemoglobin released from the lysed

erythrocytes was determined by spectrophotometer at 540 nm.

Isotonic artificial seawater (9 ppt) was used as a non-hemolytic

negative control and complete hemolysis was induced through

osmotic shock with deionized water. The percentage of hemolysis

was calculated using the following formula: % Hemolysis =

1006(OD540 of sample - OD540 of negative control)/(OD540 of

positive control - OD540 of negative control). Differences in

hemolytic activity in wild-type and mutant strains were evaluated

using the student’s t-test SPSS version 14 software (SPSS Inc.,

Chicago, Illinois).

Growth and competition assays during shrimp infections
Growth rates of V. harveyi rseBC mutants (PSU4030 and

PSU4031) were compared to the wild-type strain PSU3545.

Strains were grown in LB broth containing 1.5% NaCl for 16 h at

30uC and growth was quantified by optical density at 600 nm

every 60 min. Colony morphologies were observed on sheep blood

agar. The competitive index (CI) of mutant strains was determined

in vivo using juvenile L. vannamei shrimp (10 to 13 g with a length

of 4 to 5 inches). Shrimp were obtained from a farm in Pattani

province, Thailand, and were maintained in a 70 L glass tank

containing artificial seawater (salinity 17 ppt) at a temperature of

2961uC for at least 7 days before testing. For competition assays,

cell suspensions of wild-type PSU3545 (CmS SmR) and a mutant

strain (CmR SmR) were mixed at a ratio of 1:1 in sterile saline and

then approximately 16106 CFU were injected intramuscularly

into each shrimp. Each competition was performed in duplicate

using 7 shrimp per group. Approximately 18 h post infection, the

hepatopancreas of each infected shrimp was removed, homoge-

nized, and the proportion of V. harveyi parental and mutant strains

determined by plating on TCBS supplemented with streptomycin.

After colonies were recovered several hundred were picked on to

TCBS supplemented with chloramphenicol and streptomycin to

determine the ratio of PSU3545 (CmS SmR) to either PSU4030

and PSU4031 (CmR SmR).

The CI was calculated as follows: CI = (number of mutant

CFU/number of wild type CFU isolated from hepatopancreas)/

(number of mutant CFU/number of wild type CFU in injected cell

suspension). A CI of less than 1 indicates the ability of the mutant

strain to infect shrimp is lower than the wild type. Statistical

analysis of results obtained from competition assays were evaluated

by the Mann-Whitney U test [25,26].

Characterization of whole cell proteins from rseBC
mutant

Protein extracts of rseBC mutant (PSU4030) and wild-type V.

harveyi (PSU3545) were investigated to identify differentially

expressed proteins that may mediate hemolytic activity. Strains

were grown on sheep blood agar at 30uC for 24 h. Whole-cell

protein extracts were prepared by suspending bacterial cells in

1 mL phosphate-buffered saline (PBS). Cells were washed three

times with PBS. The cell pellets were then resuspended in lysis

buffer (7 M Urea, 2 M Thiourea, 4% CHAPS, 2% Pharmalyte 4–

7, 40 mM DTT) and incubated at 4uC for 6 h. The supernatant

was collected by centrifugation at 14,0006 g for 5 min at 4uC and

was kept at 270uC until required.

2-D gel electrophoresis was performed according to the

manufacturer’s protocol (GE Healthcare). Briefly, tested samples

were cleaned by 2D clean-Up Kits (GE Healthcare) and the

concentration of protein was determined using PlusOne 2-D

Quant Kit (GE Healthcare). The test sample was then applied to

Immobiline Drystrip (IPG gel strip) and was transferred to

Table 2. Nucleotide sequences of PCR primers for gene disruption mutagenesis.

Primers Primer sequence 59R39 Product size (bp)

rseA-F1676 rseB-R2903 CATGTCTCTAGATAGAGCAAGACCAAGAGAGCCGTGCATGTCTCTAGACCACCCTACATTCCAGTTACTCG 1228

rseB-F2410 rseB-R2925 CATGTCTCTAGAATGCGACTCACGACAAAGACCAG CATGTCTCTAGATTGGATGGAAACCTTCAGGCGTC 516

doi:10.1371/journal.pone.0032523.t002

Regulatory Control of V. harveyi Virulence
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IPGphor system (GE Healthcare). Isoelectric focusing (IEF) was

conducted in the first dimension at 300 V for 0.30 h, 1000 V for

0.30 h, 5000 V for 1.20 h, and then 5000 V for 0.25 h. (total

6.5 kVh). After IEF, the IPG gel strips were equilibrated in sodium

dodecyl sulfate (SDS) equilibration buffer (6 M Urea, 75 mM

Tris-HCl (pH 8.8), 29.3% glycerol, 2% SDS, 0.002% bromophe-

nol blue) containing 1% DTT for 15 min followed by a further 15-

min incubation in the same buffer containing 2.5% iodoaceta-

mide. The strips were transferred onto 12.5% Tris-glycine SDS

polyacrylamide gel and subjected to SDS-polyacrylamide gel

electrophoresis as the second dimension. Electrophoresis was

performed with miniVE electrophoresis system (Amersham

Bioscience AB, Sweden) with an initial constant current of

10 mA/gel for 15 min followed by 20 mA/gel. Proteins were

visualized by staining with Coomassie Brilliant Blue R250, which

is compatible with subsequent mass spectrometry-based protein

identification. Gels were scanned by ImageScanner and the

protein spots were analyzed using an ImageMaster 2D Platinum

(Amersham Bioscience AB, Sweden). The experiment was

performed in duplicate. Differentially expressed proteins from

mutant and wild type were analyzed by nano liquid chromatog-

raphy–electrospray ionisation tandem mass spectrometry (nano

LC–ESI-MS/MS). Proteins were identified using MS/MS ion

search of the Mascot search engine (Matrix Science, London, UK)

and nonredundant protein databases (NCBInr; National Center

for Biotechnology Information, Bethesda, MD, USA) with the

Table 3. Transposon mutants with reduced hemolytic activity on sheep blood agar.

Mutants ORF Annotation in PSU3316 genomea
Homologous ORF in reference
genome BAA-1116 E valueb

Mortality in shrimpc,d

(#dead/total)

1. EG6 DNA-binding transcriptional regulator CytR VIBHAR00726 0 1/3 and 2/7

2. EH12 Putative cytoplasmic protein, probably associated with
Glutathione-regulated potassium-efflux

VIBHAR00067 1E-91 1/3 and 2/7

3. FH3 sE factor regulatory
protein RseB

VIBHAR03540 0 1/3 and 1/7

4. GG7 sE factor regulatory
protein RseB

VIBHAR03540 0 1/3 and 2/7

5. FD6 Threonine synthetase VIBHAR00941 0 2/3 and 2/7

aBased on Rapid Annotation using Subsystem Technology (RAST) of de novo assembled genome fragments from PSU3316.
bE values determined using NCBI BLASTN using the full open reading frame of PSU3316.
cControl challenges with wild-type PSU3316 or transposant mutants with wild-type hemolysis activity exhibited mortality of 100% at the challenge dose.
dHemolysis attenuated mutants exhibited variable mortality that was statistically different from wild-type as evaluated by Fisher’s exact test (p,0.05).
doi:10.1371/journal.pone.0032523.t003

Figure 1. V. harveyi PSU3316 genome regions containing sites interrupted and the flanking open reading frames. Each region (A–D)
was interrupted by transposon or targeted mutagenesis (orange stars). The corresponding full contigs from the draft genome assembly have been
deposited at NCBI.
doi:10.1371/journal.pone.0032523.g001
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following parameters; taxonomy: other proteobacteria; fixed

modifications: cysteine carbamidomethylation; variable modifica-

tions: methionine oxidation, three missed cleavages allowed,

peptide tolerance of 1.2 Da, and MS/MS tolerance of 0.6 Da.

The identification of proteins was based on the Probability-Based

MOWSE (molecular weight search) scores, whereby individual ion

scores of greater than 53 indicates significant identities (p,0.05).

Results

Transposon mutagenesis of V. harveyi and screen for
hemolysis and virulence

Using the mariner-based transposon mutagenesis, 1,764 V. harveyi

PSU3316 mutants were generated and screened for a loss of

hemolytic activity on sheep blood agar. Five mutants displayed low

hemolytic activity (Table 3) and were subsequently screened for

virulence in shrimp at a dose of four times the LD50 of the wild-

type strain (2.46106 CFU shrimp21). This dose of wild-type V.

harveyi PSU3316 (or PSU3545, see below) consistently resulted in

100% shrimp mortality. Hemolysis attenuated mutants exhibited

lower rates of mortality (Fisher’s exact test p,0.05) where the

relative risk of mortality of mutant strains was 2.5 to 5-fold less

than wild-type. Other randomly chosen transposon mutants

without disruption of the hemolysis phenotype were not attenuated

for virulence (data not shown), indicating that the acquisition of

the transposon per se is not associated with reduced shrimp

virulence. Shrimp infected with V. harveyi exhibited characteristic

disease symptoms including lethargy, and upon dissection, their

hepatopancreas appeared discolored.

The DNA sequences corresponding to the junction of

transposon insertions were determined for the attenuated V.

harveyi mutants. Annotation of sequences adjacent to the

transposon insertion sites revealed that 2 hemolysis-attenuated

mutants (designated as FH3 and GG7) carried insertions that

disrupted the gene encoding the sE factor negative regulatory

protein (RseB) (Table 3 & Figure 1A). The other mutants carried

insertions that interrupted genes encoding putative proteins

annotated as a transcriptional repressor cytR, a threonine synthase,

and a hypothetical protein in the kefGB operon associated with

glutathione-regulated potassium-efflux (Table 3 & Figure 1B, C,

D). These genes were also present in the genomes of closely-related

strains (i.e. V. harveyi BAA-1116, V. harveyi HY01, and V.

parahaemolyticus RIMD 2210633). Analysis of neighboring genes

on contigs assembled from the V. harveyi PSU3316 genome and in

the closely related V. harveyi genomes (BAA-1116 and HY01) did

not reveal any known hemolysins that could be inactivated by

polar effects of the transposon insertions characterized above.

Involvement of rpoE regulators in the hemolytic activity
of V. harveyi

Since inactivation of the rpoE regulatory protein RseB was

linked to reduced hemolytic activity, we hypothesized that this

gene or the product of the downstream gene rseC may mediate

hemolysin gene expression or activity. PSU3316 harbors a

canonical rpoE operon structure comprised of four genes (rpoE-

rseA-rseB-rseC) which are co-transcribed as a poly-cistronic operon

in closely related model systems [27] (Figure 1A). Ideally,

construction of in-frame mutations in all four of these genes

would produce the appropriate a panel of mutations that might

reveal the relationship between the rpoE-rseA-rseB-rseC operon and

hemolytic activity in V. harveyi PSU3316. However, after repeated

attempts to inactivate genes in this region and to create in-frame

deletions using counter-selection, we were only able to construct

two independent plasmid insertion mutations in rseB in V. harveyi

PSU3545 using homologous recombination mediated by internal

fragments of the rseB gene. Disruption of rseB is expected to also

inactivate the downstream rseC gene. The two defined rseBC

mutant strains (PSU4030 and PSU4031) displayed wild-type rates

of growth in LB broth (Figure 2) and a defective hemolytic

phenotype on sheep blood agar (Figure 3). Hemolytic activity of

cell suspensions derived from these mutants strains grown on LB

agar containing 1.5% NaCl was measured using a quantitative

assay for hemoglobin release from sheep erythrocytes (see

Materials and Methods). Compared to the parental strain

PSU3545, hemolytic activity in the V. harveyi rseBC mutants

Figure 2. Growth of V. harveyi in LB broth with 1.5% NaCl,
pH 7.5 at 306C. & Wild type (PSU3545), X RseBC2 (PSU4030), m
RseBC2 (PSU4031). No significant differences were observed in the
growth of tested strains.
doi:10.1371/journal.pone.0032523.g002

Figure 3. Hemolytic activity of wild type and mutants strains of
V. harveyi on sheep blood agar. Images illustrate clear zone around
the colony.
doi:10.1371/journal.pone.0032523.g003

Figure 4. Percent hemolytic activity of V. harveyi wild type
PSU3545 and rseBC mutants relative to controls. An asterisk
indicates that a value is significantly different from the wild-type strain
(PSU3545) (p,0.05). The error bars indicate standard errors of the
means.
doi:10.1371/journal.pone.0032523.g004

Regulatory Control of V. harveyi Virulence
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(PSU4030 and PSU4031) was 20% lower but this reduction

reached statistical significance (p,0.05) (Figure 4).

In vivo competition assays
The virulence of V. harveyi rseBC mutants (PSU4030 and

PSU4031) was evaluated by quantification of shrimp coloniza-

tion relative to wild-type V. harveyi (PSU3545). The competitive

indexes (CI) for rseBC mutants PSU4030 and PSU4031 against

the wild type were determined to be 0.15 and 0.31, respectively

and both were significantly different from 1.0 (p,0.05)

(Figure 5) indicating three to seven-fold reduction in the ability

of either rseBC mutant to colonize shrimp relative to the wild-

type strain.

Comparative analysis and identification of proteins using
2D gel electrophoresis

Two-dimensional protein gel electrophoresis revealed 6 proteins

that were differentially expressed in the rseBC mutant (PSU4030)

compared to the wild-type V. harveyi (PSU3545). These proteins

were analyzed by nano LC-ESI-MS/MS and five proteins could

be identified with significant identity (p,0.05) to proteins in the

NCBInr database. In the non-hemolytic V. harveyi rseBC mutant,

three proteins were significantly under-expressed (Figure 6-A,

spots 1, 2, 3) corresponding to two outer membrane porins

(OmpC-like and OmpN) and an unidentified protein (Figure 7-A,

B; Table 4). Expression of three proteins was elevated in the rseBC

mutant relative to the wild type (Figure 6-B, spots 4, 5, 6)

corresponding to a phosphosugar mutase, S-(hydroxymethyl)

glutathione dehydrogenase, and the protease (DegQ) (Figure 7

C, D, E & Table 4).

Discussion

In the present study transposon and targeted insertion

mutagenesis of V. harveyi PSU3316 revealed that disruption of

regulatory elements in the rpoE operon modulate hemolytic

activity and the ability of this pathogenic organism to colonize

shrimp. The ability to lyse blood cells is an important virulence

factor for V. harveyi [12] and other microbial pathogens [28]

however modulation of hemolysis by the activity of RpoE operon

regulatory proteins was previously unknown. In E. coli the sE

operon contains the gene for the sigma(E) factor (rpoE) as well as

the regulator elements rseA, rseB and rseC which are co-transcribed

by a promoter upstream of the rpoE gene [29]. RseA and RseB are

transmembrane and periplasmic negative regulatory proteins

while RseC is a positive regulatory protein [30,31]. Genome

sequencing and draft assembly revealed an identical rpoE-rseABC

operon structure in V. harveyi PSU3316 (Figure 1A). RpoE has

been implicated in virulence as well as adaptive responses for

survival in natural habitats [30,32–35] and in Gram negative

bacteria, stressors trigger accumulation of unfolded- or misfolded-

proteins in the periplasm, and this in turn activates sE through

RseA and RseB signal transduction [36,37]. In E. coli the

transcription factor encoded by rpoE (sE) becomes more active

when rseB is disrupted leading to increased transcription of sE

Figure 5. Competitive index of V. harveyi rseBC mutant strains
relative to wild-type. For the competitive index assay shrimp were
injected with mixture of wild type PSU3545 (CmS) and rseBC mutant
strains (PSU4030 or PSU4031) for approximately 16106 CFU shrimp21.
Values less than one indicate impaired colonization of the hepatopan-
creas after 18 h. An asterisk indicates that a value is significantly
different from 1.0 (p,0.05).
doi:10.1371/journal.pone.0032523.g005

Figure 6. Two-dimensional gel electrophoresis of V. harveyi proteomes. (A) Wild type strain (PSU3545) and (B) rseBC mutant (PSU4030).
Circled spots (numbers 1–6) represent differentially expressed proteins and were selected for mass spectrometry.
doi:10.1371/journal.pone.0032523.g006
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dependent genes [27]. In V. vulnificus rseB mutants are attenuated

for virulence in a mouse model through putative modulation of

rpoE activity [15]. If regulation of the rpoE operon in V. harveyi is the

same as in E. coli and as proposed for V. vulnificus, then the

attenuated virulence phenotypes associated with the V. harveyi

rseBC mutants may be due to changes in activity of RpoE due to

relief of regulatory control by RseB or RseC. Studies in E. coli

suggest deletion of the negative regulator rseB induces RpoE

activity while deletion of the positive regulator rseC has a negligible

effect [27,30]. In E. coli the double mutant (rseBC) either has a net

inducing effect on RpoE activity similar to a rseB deletion mutant

(in the case of a transposon insertion in rseB with expected polar

effects on rseC) [27] or revealed less induction of RpoE activity

than the single rseB deletion mutant (in the case of a double

deletion mutant in both rseB and rseC) suggesting competing effects

of negative and positive regulation by RseB and RseC respectively

on RpoE activity [30] In V. harveyi, if the activity of RseB is

dominant to that of RseC then elevated RpoE activity in the rseB

gene-disruption mutants would be responsible for alterations in

protein expression that are negatively correlated with hemolysis

and virulence. Alternatively, our transposon and plasmid inser-

tions in rseB may have had a polar effect on expression of the

downstream RpoE positive regulatory gene rseC. In the latter case,

inactivation of either rpoE or rseC would be predicted to produce

the same phenotype as such postulated polar rseB insertion

mutations. Unfortunately we were not successful in making

mutations in the rpoE region other than in rseB and it is possible

that rpoE is an essential gene in V. harveyi. In addition, we were

unable to select for in-frame deletions of rseB using sucrose- or

streptomycin-based counter selection via the sacB or rpsL genes,

respectively, due to the limited genetic tractability of this shrimp

pathogenic V. harveyi strain. Additional genetic analysis (including

the construction of double mutants in rseB together with rseC or

rpoE and complementation with each gene) will be needed to

resolve these two possible models for the phenotype associated

with rseB insertion mutations.

Figure 7. Contigs from the PSU3316 genome draft assembly bearing genes for differentially expressed proteins (A–E) in the rseBC
mutant PSU4030 (spots 2 to 6, respectively). Peptide sequences from differentially expressed proteins were identified by mass spectrometry.
doi:10.1371/journal.pone.0032523.g007
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To shed light on how disruption of the RpoE operon at the rseB

gene controls virulence, we used proteome analysis to determine

whether any protein level changes could be distinguished between

non-hemolytic (rseBC mutant) and wild-type V. harveyi grown on

sheep blood agar. We found that two outer membrane porins

(OmpN- and OmpC-like) and an additional unidentified protein

were decreased in the rseBC mutant relative to the wild-type

(Table 4). This observation is consistent with down-regulation of

OmpN during enhanced expression of sE in E. coli [38]. Several

porins are established components of the RpoE regulon,

controlling transport of solutes through the outer membrane and

modulating the periplasmic environment [39]. Our data show that

reduced porin expression and reduced hemolytic activity are both

linked to disruption of the RpoE operon at the rseB gene in V.

harveyi and characterization of these proteins and their potential

involvement in RpoE-regulated virulence of V. harveyi will be a

priority for future work in this system.

We also observed that three proteins were over-expressed in

the rseBC mutant relative to the wild type. These proteins are a

phosphosugar mutase, a S-(hydroxymethyl)glutathione dehydro-

genase, and the DegQ protease which is homologous, and shares

overlapping function with DegP [40,41], a positively regulated

member of the rpoE regulon in E. coli [42]. RpoE –directed

regulation of DegQ in fish pathogenic V. harveyi has been

suggested recently [41] and our data supports this model. It

should be noted that differentially expressed RpoE, RseA, RseB,

and RseC were not detected during proteomic analysis because

the theoretical molecular weight of RpoE, RseA and RseC

proteins were less than 30 kDa (21.7, 23.5 kDa, and 16.6 kDa

respectively) and the theoretical pI of RseB was more than 7

(pI = 8.6) which were out of molecular weight and pI ranges

investigated in this study.

Transposon mutagenesis, confirmed by targeted gene disrup-

tion, has allowed us to establish the first link between regulation of

the RpoE-operon, hemolytic activity, and virulence in V. harveyi.

This would not be possible in the closely-related and more

genetically tractable V. harveyi strain BAA-1116 because it is weakly

hemolytic and avirulent in the shrimp model used in this study.

Thus, although limited by the availability of optimized genetic

methods including in-frame deletion construction and comple-

mentation, analysis of non-laboratory adapted pathogens can

provide insights into the regulation of virulence that may not be

accessible in more highly characterized and optimized laboratory

model systems. We have sequenced the genome of PSU3316 in

anticipation of future optimized genetics.

In conclusion, we have demonstrated that disruption of RpoE

operon at the rseB gene in a shrimp-pathogenic V. harveyi strain

leads to reduction of hemolytic activity, shrimp colonization

ability, and virulence. These changes are concomitant with

changes in protein expression including decreased expression of

two porins (OmpC-like and N) and increased expression of the

stress-responsive periplasmic protease DegQ. If potential polar

effects on rseC are negligible, as has been suggested in E. coli [27]

our results suggest a model where enhanced activity of rpoE upon

loss of rseB activity triggers periplasmic stress-responses that lead to

diminished virulence by altering periplasmic homeostasis that

controls some aspect of functional hemolytic activity. This study

represents the first report of the role of the rpoE operon in the

hemolytic activity of V. harveyi and paves the way for further work

to determine the molecular mechanisms for hemolytic activity and

virulence in this important group of marine pathogens.
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Table 4. Summary of MS/MS data for protein spots showing altered expression levels on 2-D gels for wild-type and rseBC mutant
cell extracts.

Spot
no.a Predicted product in PSU3316b

Homolog in reference genome
BAA-1116 (E valuec) Identified peptides Ion scored

Theoretical pI/
MW (kDa)

1 Unidentified NAe NAe NAe NAe

2 Outer membrane protein N, non-specific porin
(ompN)

VIBHAR06284 (0.0) IGYTYNGGDIQQANFVGK 109 4.53/37.80

3 Outer membrane protein C precursor (ompC) VIBHAR06741 (3e-47) LGYIGATHDQYGR 83 4.40/36.29

4 Phosphosugar mutase of unknown sugar VIBHAR06273 (0.0) GVVIGYDGRPDSK
VAATPIVAFGVR

134 5.03/62.03

5 S-(hydroxymethyl)
glutathione dehydrogenase

VIBHAR06925 (0.0) SELPEIVNR 55 5.17/41.38

6 Outer membrane stress sensor protease DegQ,
serine protease

VIBHAR00878 (0.0) VTPAVVSIAVEGK
GLGSGVIIDAK
GAFVSQVVPDSAADK
AIDTFSELR
ITLGVIR
GAELSNTTPSDKIQGVK
GVLAINVQR
TVYLVIR

538 5.88/48.03

aSpot no. corresponds to region of stained gel in Figure 6. Spots 1–3 were under-expressed and spots 4–6 were over expressed in the rseBC mutant relative to WT.
bBased on Rapid Annotation using Subsystem Technology (RAST) of de novo assembled genome fragments, or by homology to reference genome BAA-1116.
cE values determined using NCBI BLASTN using full open reading frame in PSU3316.
dIndividual ion scores of greater than 53 indicates significant identities (p,0.05).
eNot available.
doi:10.1371/journal.pone.0032523.t004
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