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Abstract

Pathogens originating from wildlife (zoonoses) pose a significant public health burden, com-

prising the majority of emerging infectious diseases. Efforts to control and prevent zoonotic

disease have traditionally focused on animal-to-human transmission, or “spillover.” How-

ever, in the modern era, increasing international mobility and commerce facilitate the spread

of infected humans, nonhuman animals (hereafter animals), and their products worldwide,

thereby increasing the risk that zoonoses will be introduced to new geographic areas.

Imported zoonoses can potentially “spill back” to infect local wildlife—a danger magnified by

urbanization and other anthropogenic pressures that increase contacts between human and

wildlife populations. In this way, humans can function as vectors, dispersing zoonoses from

their ancestral enzootic systems to establish reservoirs elsewhere in novel animal host pop-

ulations. Once established, these enzootic cycles are largely unassailable by standard con-

trol measures and have the potential to feed human epidemics. Understanding when and

why translocated zoonoses establish novel enzootic cycles requires disentangling ecolog-

ically complex and stochastic interactions between the zoonosis, the human population, and

the natural ecosystem. In this Review, we address this challenge by delineating potential

ecological mechanisms affecting each stage of enzootic establishment—wildlife exposure,

enzootic infection, and persistence—applying existing ecological concepts from epidemiol-

ogy, invasion biology, and population ecology. We ground our discussion in the neotropics,

where four arthropod-borne viruses (arboviruses) of zoonotic origin—yellow fever, dengue,

chikungunya, and Zika viruses—have separately been introduced into the human popula-

tion. This paper is a step towards developing a framework for predicting and preventing

novel enzootic cycles in the face of zoonotic translocations.

Introduction

Humans have frequently enabled pathogens to overcome physical barriers to dispersal [1]. The

European conquest of the Americas brought Old World diseases to the New World, movement
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of troops during World War II propagated dengue viruses (DENVs) across the Asia-Pacific

region [2], and air travel has provided an international transmission network for emerging

infectious diseases (EIDs), such as the 2019 (ongoing) severe acute respiratory syndrome coro-

navirus 2 (SARS-CoV-2) pandemic [3], the 2002 to 2003 SARS-CoV-1 outbreak [4], and pan-

demic influenza [5]. Today, the majority of pathogens that infect humans are broadly

distributed across geographic regions—globalized by human movement and population

expansion, particularly during the past century [1]. Animal pathogens have likewise spread

globally through anthropogenic channels. The globalization of agriculture has expanded the

geographic range of many livestock diseases with major economic repercussions, which con-

tinue to disproportionately affect the developing world [6]. Domestic and wild animals trans-

located by humans have introduced their pathogens to new ecosystems, threatening

biodiversity conservation—an anthropogenic impact termed “pathogen pollution” [7]. In

some cases, these invasive animal infections have maintained transmission postemergence in

local wildlife, establishing persistent reservoirs that subsequently reseed transmission and

thwart control efforts in the original animal host population. Examples include African swine

fever virus in Eastern Europe, where a novel enzootic cycle of the invasive livestock pathogen

in wild boars has prevented disease eradication [8,9], and rabies virus in Africa, where human-

mediated dispersal of domestic dogs established wild carnivore reservoirs that now contribute

to rabies persistence in both wildlife and human communities [10].

Clearly, the global spread of zoonoses poses a unique and critical threat to human health.

Novel enzootic cycles occur when zoonoses are introduced to new regions, infect local wildlife

(spillback), and persist in local animal host populations (enzootic establishment). Fig 1 pro-

vides a diagram of these processes, and Table 1 provides definitions of all terms in this paper.

Now, more than ever, global conditions are ideal for the generation of novel enzootic cycles. In

an increasingly connected world, international trade and travel provide pathways for pathogen

introductions, while the recent surge in the emergence and reemergence of animal pathogens

has increased the number of zoonoses poised to exploit those pathways [11]. Human popula-

tion expansion into natural habitats is intensifying contact between humans and animals, cre-

ating more opportunities for imported zoonoses to spill back into naïve wildlife populations

[12]. The probability that these introduced infections persist in animal populations is increas-

ing as human development pushes wildlife into crowded habitat patches and climate change

alters transmission conditions [7].

In this era of globalization, zoonoses are increasingly being recognized as global threats.

The emergence of SARS-CoV-2 in Wuhan, China, has since affected 210 countries and territo-

ries, causing nearly 5 million cases and 325,000 deaths worldwide as of May 21, 2020 [13]. The

pandemic has prompted an extraordinary global response—many countries have imposed

nationwide lockdowns and closed their borders, nonessential international travel has largely

been suspended [14], warring countries have declared cease-fire [15], and the World Health

Organization (WHO) and United Nations have led international health and humanitarian

organizations in mobilizing unprecedented funds for mitigating the spread and impact of the

virus [16]. Previously, the 2002 to 2003 SARS-CoV-1 epidemic prompted efforts to build infra-

structure for global health security [17], and WHO has declared recent outbreaks of Ebola,

H1N1, and Zika virus (ZIKV) as public health emergencies of international concern (PHEICs)

[18]. Nevertheless, this dialogue on the globalization of infectious disease continues to conflate

zoonoses and human-specific pathogens, often overlooking what makes the spread of zoonoses

so uniquely dangerous—the potential for enzootic reservoirs to establish in previously naïve

regions. Some zoonoses such as Ebola virus and SARS-CoV-1 have remained within the

human population, never spilling back to infect wildlife, after introductions to new regions.

Conversely, introductions of yellow fever virus (YFV) in South America, Yersinia pestis
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(plague) in the Americas [19], rabies virus in parts of Africa, and West Nile virus in North

America infected and persisted in local wildlife, inhibiting control and eradication efforts

[10,20,21]. The enzootic establishment of YFV in South America is a particularly noteworthy

case because three additional Old World arboviruses—DENV, chikungunya virus (CHIKV),

and ZIKV—have since been introduced to the New World human population. All three arbo-

viruses now circulate in the same urban transmission cycle as YFV in the South American

human population, raising the question: Will their transmission remain within the human

population, or will novel enzootic cycles emerge [22–25]? Identifying mechanisms that shape

the outcome of zoonotic translocations is critical for developing strategies to mitigate the pub-

lic health consequences of global transmission networks.

An emerging body of literature is beginning to discuss the risk that human-to-animal trans-

mission will seed persistent enzootic reservoirs [22–25], but, overall, disease emergence and

spillover from wildlife continues to dominate the conversation on zoonotic transmission. Our

understanding of enzootic establishment is limited by the difficulty in quantifying a process

that is both highly stochastic and the product of interactions between multiple systems. In this

Review, we provide a conceptual framework to begin disentangling this ecological complexity,

Fig 1. A diagram of the processes by which novel enzootic cycles emerge.

https://doi.org/10.1371/journal.pntd.0008338.g001

Table 1. Definitions of terms used in this paper.

Term Definition

Zoonosis An animal pathogen that can also infect humans

Spillover Animal-to-human transmission

Spillback Human-to-animal transmission

Propagule

pressure

The number, and temporal and spatial distribution of wildlife exposures to a translocated

zoonosis

Permeability The likelihood that humans and potential wildlife hosts, along with the translocated zoonosis,

enter the boundary region at the human–wildlife interface

Realized niche The set of hosts, vectors, and ecophysiological requirements that characterize existing

transmission cycles of a translocated zoonosis

https://doi.org/10.1371/journal.pntd.0008338.t001
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applying concepts from disease ecology, invasion biology, and population ecology. Cross-spe-

cies pathogen emergence has previously been compared to species invasions [26] and popula-

tion ecology used to understand postintroduction persistence [27] in the context of zoonotic

spillover in human populations and host shifts within wildlife communities. Adapting this

interdisciplinary theory on pathogen emergence to enzootic establishment, we review potential

ecological mechanisms affecting the probability that translocated zoonoses emerge in novel

enzootic cycles. We discuss the impact of each mechanism on the process of enzootic establish-

ment: (1) Local wildlife becomes exposed, (2) the zoonosis successfully infects the novel hosts,

and (3) transmission persists indefinitely [28,29] (Fig 2). We ground our discussion in the neo-

tropics, where four arboviruses of zoonotic origin—YFV, DENV, CHIKV, and ZIKV—have

separately been introduced into the human population. We additionally discuss the utility of

modeling approaches, which we illustrate by building a simulation model for our neotropics

case study. Our aim is to delineate the ecological processes that shape the outcome of zoonotic

translocations as a first step towards developing a framework for predicting and preventing

novel enzootic cycles, and, therefore, we do not discuss other key factors such as immunity,

phylogeny, and evolution.

The case study

YFV, DENV, CHIKV, and ZIKV all originated in sylvatic cycles involving nonhuman primates

and primatophilic Aedes spp. mosquitoes in either Africa or Southeast Asia. As a result of

human introductions, all four now circulate in human urban cycles in the Americas vectored

by the anthropophilic mosquitoes Aedes aegypti and A. albopictus [30]. YFV eventually spilled

back to infect New World mosquitoes and primates, establishing a novel enzootic cycle that is

broadly similar to the sylvatic transmission cycle in which it originated, albeit the taxonomic

separation between Old World and New World hosts and vectors [31]. To date, only YFV has

successfully established sustained sylvatic transmission in New World primate and mosquito

populations [31]. However, given the similar histories of DENV, CHIKV, and ZIKV to that of

YFV, there seems a high risk that neotropical mosquitoes and primates will also provide a suit-

able ecological niche for novel enzootic reservoirs of DENV, CHIKV, and ZIKV. DENV and

ZIKV belong to the same genus, Flavivirus, as YFV, and CHIKV (family Togaviridae, genus

Alphavirus) belongs to the same phylogenetic group as Mayaro virus (MAYV), an endemic

South American zoonosis that circulates in primates and Haemagogus spp. [32]. DENV addi-

tionally has spilled back at least once into a novel enzootic system—the virus established a per-

sistent enzootic cycle in Africa after being introduced from Asia [33]—which offers a

formidable warning of enzootic establishment in the American tropics.

ZIKV infections have recently been detected in New World primates, suggesting that a per-

sistent enzootic cycle could emerge. Carcasses of free-living Callithrix spp. (marmosets) and

Sapajus spp. (capuchins) were found to be infected with ZIKV strains of the ZIKV lineage cur-

rently circulating in the South American human population [34], and several monkeys have

tested PCR-positive [35,36]. Mosquito surveillance in Brazil additionally detected an amplicon

of DENV in a pool of primatophilic Haemagogus leucocelaenus [37]. Sylvatic YFV now feeds

recurring human epidemics in South America, allowing urban YFV transmission to continue

despite vaccination campaigns. Thus, preventing the other three arboviruses as well as any

new introductions from also establishing persistent enzootic reservoirs will be critical for fore-

stalling further human morbidity and mortality from zoonotic transmission in the American

tropics. However, the majority of the work on these imported arboviruses has focused on ret-

rospective analysis of the conditions that enabled their introductions—particularly the global

invasion of mosquito vectors A. aegypti and A. albopictus—and the transmission burden in the
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Fig 2. An outline of the ecological mechanisms affecting each stage of enzootic establishment, and their influence on

the enzootic potential of translocated arboviruses in the neotropics.

https://doi.org/10.1371/journal.pntd.0008338.g002
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human population [38–41]. Only a few recent papers have begun to discuss the threat of enzo-

otic establishment [22–25,42]. We add to this discussion by considering how each ecological

mechanism identified in our Review may affect the trajectory of DENV, CHIKV, and ZIKV in

South America, using YFV as a frame of reference.

Wildlife exposure

Once a translocated zoonosis has established in a new human system, there is an immediate

risk that the pathogen spills back into local wildlife populations. The probability of spillback

first depends on the rate at which wildlife is exposed, which can be captured by propagule pres-

sure—a concept from invasion biology that represents the number and temporal and spatial

distribution of nonnative individuals introduced to a new system—and is a key determinant of

invasion success [43,44].

Propagule pressure hinges on introduction pathways between a source and recipient popu-

lation. The propagule pressure of a translocated zoonosis on local wildlife will vary based on

the availability of transmission pathways between the human (source) and wildlife (recipient)

populations. Borrowing from landscape and movement ecology, Borremans and colleagues

[45] identified permeability—the likelihood that source and recipient hosts, along with the

pathogen, enter an ecosystem boundary region—as the ecological basis of pathways available

for cross-species pathogen emergence across ecosystem boundaries. With respect to the

human–wildlife boundary, permeability for translocated zoonoses will increase with wildlife

tolerance of (or preference for) anthropogenically modified landscapes and human communi-

ties’ proximity to the edge of a species’ habitat and incursions into natural habitat for resource

extraction.

Host boundary permeability creates opportunities for contacts between infected source and

recipient hosts, increasing propagule pressure on the recipient host population. Transmission

route determines the type(s) of contact, and thus degree of permeability, required for the trans-

located zoonosis to cross the human–wildlife interface [45,46]. Zoonotic introductions can

occur via direct contacts such as bushmeat hunting or the wildlife trade—common in the

developing world—or via indirect mechanisms such as environmental contamination—e.g., if

infected bats leave saliva on forest fruits consumed by humans or shed excreta in the human

environment [47]. For directly transmitted zoonoses, propagule pressure on local enzootic sys-

tems will require sufficient permeability for humans and wildlife to come into close contact.

Conversely, zoonoses that can survive outside their hosts will be less constrained by host

boundary permeability. Domestic animals often intersect with both humans and wildlife and,

thus, have the potential to bridge transmission between the two populations. Vectors can like-

wise function as bridge hosts; as long as a competent vector is present, vector-borne zoonoses

only require some degree of spatial and temporal overlap to transmit between humans and

wildlife.

Transmission burden in the human population inhabiting the new region—a combination

of time since introduction and the number of subsequent human cases—will determine the

volume of pathogen propagules available to exploit transmission pathways to local wildlife

[48]. Consistent circulation and a high number of cases in the human population may result in

more opportunities to spill back into enzootic transmission cycles, producing greater propa-

gule pressure. The precise propagule pressure that led YFV to invade New World nonhuman

primate populations is unknown, but phylogenetic analyses suggest multiple spillback intro-

ductions [49,50]. Evidence that YFV reached its current widespread distribution in South

America through long-distance, human-mediated dispersal implies that many spillback intro-

ductions occurred across a broad spatiotemporal landscape.

PLOS NEGLECTED TROPICAL DISEASES

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0008338 August 13, 2020 6 / 22

https://doi.org/10.1371/journal.pntd.0008338


Vector-borne transmission may limit opportunity for spillback introductions to wildlife

populations during periods of robust vector control efforts. Notably, in the 20th century, A.

aegypti eradication campaigns significantly reduced the YFV burden, to the point where health

officials erroneously considered the arbovirus to be eradicated from the New World [21]. Fol-

lowing relaxation of eradication efforts, A. aegypti populations rebounded and A. albopictus
invaded [38]. These vectors increase arboviral boundary permeability, allowing zoonotic

exchange to evade physical barriers (i.e., animals and humans do not need to interact directly

or even occupy the same habitat for effective contacts to occur) [51]. A. albopictus populations

are often peridomestic, which may further bridge urban and sylvatic systems [42]. It has been

hypothesized that human-mediated movement of infected vectors played a significant role in

the spread of enzootic YFV [50]. Human-mediated vector dispersal and vector capacity to

transmit between species without direct contacts have the potential to similarly facilitate enzo-

otic invasion of DENV, CHIKV, and ZIKV.

Several New World primates are considered habitat generalists, with high permeability of

human-modified landscapes, likely increasing opportunities for human-to-animal pathogen

introductions. In particular, Aotus spp. (howler monkeys)—the New World primate most sus-

ceptible to YFV—often occupy the forest edge and have been hypothesized to bridge urban

and enzootic transmission of YFV [52]. At the same time, deforestation, urbanization, and

bushmeat hunting are pushing humans into wildlife habitats [53,54].

Inconsistent circulation in the human population likely limited YFV propagule pressure on

New World nonhuman primates. A virulent pathogen, YFV historically emerged intermit-

tently in large, deadly outbreaks in human cities, relying on reintroductions along shipping

routes [21]. However, in recent decades, unprecedented population growth, combined with

climate change and the reinvasion of A. aegypti, has fueled an increase in the frequency and

magnitude of arboviral epidemics in the neotropics [55]. Between 1980 and 2007, the number

of reported DENV cases in the Americas increased 4.6-fold [56,57] and, in 2019, exceeded 3

million, surpassing a previous record of 2.4 million [58]; the 2013 introduction of CHIKV

resulted in 2.9 million cases within the following three years [59], and the 2015–2016 ZIKV

pandemic reached 48 countries and territories [60]. Furthermore (unlike YFV), DENV, ZIKV,

and CHIKV lack available, safe vaccines [61]. This heightened arboviral burden has the poten-

tial to increase propagule pressure of DENV, ZIKV, and CHIKV on New World wildlife popu-

lations, accelerating the timeline between translocation and enzootic establishment.

Enzootic infection

Not all wildlife exposures result in enzootic infections. To progress to the second step of enzo-

otic establishment, the translocated zoonosis must be able to infect the exposed animals.

Infecting novel host species in a novel environment can be described as a niche shift. The con-

cept of an ecological niche has many nuanced definitions in ecology, but generally represents

the set of abiotic and biotic conditions that allow a species to occupy a particular space within

an ecosystem [62]. A pathogen niche is defined by its hosts, vectors, ecophysiological require-

ments and the many ways in which these parts interact [63,64]. Like other species, a translo-

cated zoonosis will have a realized niche—existing transmission cycles—and a fundamental

niche—the range of systems the zoonosis could theoretically invade if given the opportunity

[63]. The probability that the zoonosis undergoes a niche shift to infect novel hosts in its new

range depends on the degree of overlap between its fundamental niche and novel environment

[62].

Host specificity influences the breadth of the pathogen’s fundamental niche. Generalists are

defined by broad fundamental host ranges [65], which, intuitively, will intersect with a wider
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range of enzootic systems, facilitating shifts to novel hosts [66–68]. Alternatively, zoonoses can

evolve to invade environments outside of their original fundamental niches [62]. Some patho-

gen types inherently have higher potential for fundamental niche shifts than others. In particu-

lar, YFV, DENV, CHIKV, and ZIKV are all single-stranded RNA viruses—a group of

pathogens previously shown to be the most likely to shift host species, predisposed to cross-

species emergence by high mutation rates [28]. Species diversity creates the host environment

available to a translocated zoonosis. Disease ecologists have described a complex relationship

between biodiversity and pathogen transmission within a given focal host species, where

increasing diversity can have either an amplification or dilution effect on transmission, largely

contingent on changes in community capacity to support infection (community competence)

[69,70]. Similarly, biodiversity in enzootic systems may either facilitate or inhibit the invasion

of a translocated zoonosis depending on the abundance and distribution of competent hosts

and vector species—susceptible to the zoonosis and infectious enough to transmit to the next

susceptible individual. When increasing biodiversity adds competent host and vector species,

we expect an amplified probability that wildlife exposures result in enzootic infections. How-

ever, adding low-competence species may cause a dilution effect, in which wildlife exposures

are increasingly “wasted” on hosts that cannot support infection. Additionally, competition

among infectious agents can constrain host environments created by biodiversity. Native zoo-

noses already circulating in an enzootic system can compete for susceptible hosts, driving the

competitive exclusion of a translocated zoonosis [71–73].

The “complete” host ranges of YFV, DENV, ZIKV, and CHIKV are not known, as it is prac-

tically infeasible to detect every enzootic infection. However, evidence of broad cell tropism

and evolutionarily conserved viral entry strategies [74,75] suggest wide fundamental host

ranges which are more likely to launch into novel systems [76]. Phylogenetic analysis has dem-

onstrated the relative ease with which YFV can shift between human and nonhuman primate

host types, with multiple sylvatic strains circulating in the human population but no evidence

of major genetic adaptations between urban and enzootic transmission cycles [77].

A remarkably diverse assemblage of nonhuman primates and mosquitoes inhabit the neo-

tropics. This biodiversity could amplify the probability of novel enzootic infections because

New World primates and mosquitoes are competent hosts of a broad range of arboviruses

[24,78]. Previous meta-analyses suggest that the probability of cross-species emergence

increases as the phylogenetic distance between novel and original host species decreases (i.e.,

as hosts become more closely related) [67,68,79–82]. Thus, YFV, DENV, ZIKV, and CHIKV

may be predisposed to shift to New World monkeys and arboreal mosquito vectors, which are

phylogenetically related to the Old World monkeys and Aedes spp. that maintain sylvatic YFV,

DENV, ZIKV, and CHIKV in Africa and Asia [31]. That being said, New and Old World mon-

keys and mosquitoes could be divergent in critical immune factors and/or cell-surface recep-

tors involved in viral infection. Nevertheless, experimental infection has demonstrated that

neotropical primates are competent hosts for ZIKV and DENV [83–86], neotropical H. leuco-
celaenus and A. terrens are competent vectors for CHIKV [25], and Sabethes cyaneus is a com-

petent vector for ZIKV, although significantly less competent than A. aegypti [87]. However,

even if neotropical primatophilic mosquito species have limited capacity to vector DENV,

ZIKV, or CHIKV, as humans encroach on forest habitat, anthropophilic vectors A. aegypti and

A. albopictus could play an increasingly important role in sustaining enzootic cycles in perido-

mestic urban forests [42].

Evidence of cross-protective effects that could drive competitive exclusion of DENV,

CHIKV, and ZIKV from New World enzootic systems is inconclusive. Speculation that hyper-

endemic DENV has conferred widespread cross-immunity against YFV in Asia—where YFV

has remained absent despite the presence of suitable vectors and an entirely susceptible human
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population—has since been challenged [31,88]. Additionally, there is no evidence of reciprocal

crossprotective effects that would allow YFV to exclude DENV from New World enzootic sys-

tems [89]. It has been hypothesized that ZIKV crossprotective immunity against DENV under-

lies the decline in DENV incidence following the first ZIKV outbreaks observed in Brazil [90]

and Colombia [91]; however, neutralization assays have not supported this hypothesis [92]. A

recent experimental infection study in mice suggests strong cross-protection of CHIKV

against MAYV—the endemic alphavirus that circulates in South American primates and Hae-
magogus spp. [93]. However, there is no evidence of reciprocal crossprotective effects that

would allow MAYV to exclude CHIKV from New World enzootic systems [89].

Persistence

The outcome of spillback events depends on the potential for transmission between individu-

als in the novel animal host population. If animal transmission is limited, spillback might result

in an isolated wildlife case or, alternatively, trigger an outbreak that threatens conservation

efforts but eventually dies out [94,95]. However, above a critical transmission threshold, the

translocated zoonosis will persist indefinitely—the final step of successful enzootic establish-

ment. In disease ecology and epidemiology, that critical transmission threshold is represented

by the effective reproduction number (R)—the average number of secondary cases generated

by a single infected individual in a population of susceptible and nonsusceptible hosts. While

R is greater than 1, each infected individual will, on average, produce at least one secondary

infection, allowing the pathogen to persist. The effective reproduction number is a function of

pathogen attributes, such as transmissibility and duration of infectiousness, as well as the aver-

age rate of contact between infected and susceptible individuals (and vectors if vector-borne)

in a given population.

The average contact rate between infected and susceptible hosts is largely shaped by popula-

tion ecology [96]. Dynamic demographic rates and structuring of host populations determine

the abundance, distribution, and movement of hosts available to translocated zoonoses in

enzootic systems. Wildlife populations with high carrying capacities will have larger baseline

populations of susceptible hosts. High birth rates replenish the supply of susceptible hosts,

inhibiting mortality and conferred immunity from depleting the susceptible population and

driving the effective reproduction below the threshold of persistence [97]. Spatial structuring

of susceptible hosts can either limit or enhance the potential for pathogen persistence. Patho-

gen dispersal between patches can promote persistence across a metapopulation by buffering

against local depletion of susceptible individuals. On the other hand, spatial structure can limit

contacts between patches, lowering the effective reproduction number and driving an epi-

demic to extinction [96,98].

While some New World monkeys are large species with low birth rates, one of the clade’s

defining features is its diverse set of remarkably small-bodied, short-lived primates. For exam-

ple, the pygmy marmoset (Callithrix pygmaea) is a small-bodied New World primate with

bimodal annual birth peaks, high twin birth rates, and a natural life span of about 10 years

[99]. These smaller-bodied primates also tend to require smaller home ranges and live in

higher densities, allowing for greater sympatric species richness. A meta-analysis of New

World primate assemblages found that, on average, forest sites contained six sympatric species

but this number could reach as high as 14 species, peaking near the equator [100]. New World

enzootic mosquito species occupy the canopy, preying primarily on primates. These vectors

do not appear to demonstrate strong host preferences and, thus, likely bridge transmission

between sympatric groups of primate species. This spatial structure—vector-mediated patho-

gen dispersal between primate groups (intra- and interspecies)—may have facilitated the
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enzootic establishment of YFV. It has been hypothesized that enzootic YFV persists within pri-

mate metapopulations occupying continuous forest in wandering epizootics, in which trans-

mission continually shifts between subpopulations. We suspect that the demographic rates

and structuring of primate host and mosquito vector populations in the New World would, as

with YFV, facilitate the persistence of DENV, CHIKV, and ZIKV should they spill back

successfully.

The ecology of enzootic establishment in the Anthropocene

Anthropogenic impacts are affecting ecological processes at every stage of enzootic establish-

ment. Wildlife exposure to urban transmission of translocated zoonoses will likely increase as

humans continue to encroach on wildlife habitats [2,12,22,23,101]. Land conversion and

extraction of natural resources drive humans, mosquito vectors, and primates to coincide in

human-modified landscapes, potentially increasing the boundary permeability of the translo-

cated arboviruses. Climate change will alter the epidemiology of zoonoses, particularly vector-

borne zoonoses, substantially reducing transmission at temperature extremes, but increasing

transmission in moderate warming scenarios [102]. Rapid population growth and the global

expansion of mosquito vectors contribute to heightened zoonotic transmission burden in the

human population, which subsequently places greater propagule pressure on enzootic systems.

Species composition is changing in many ecosystems, which can facilitate or inhibit pathogen

invasions depending on whether lost species are competent hosts [70]. However, habitat spe-

cialists are highly sensitive to anthropogenic impacts, whereas habitat generalists—which often

bridge transmission between urban and enzootic systems—often persist [103]. By increasing

the concentration of competent hosts, anthropogenic change can have an amplification effect

on enzootic infection. Habitat loss is additionally pushing animals into dense populations ripe

for disease persistence [7].

Recent trends in enzootic YFV reflect the changing ecology of enzootic establishment in the

Anthropocene. The past decade has seen a surge in the frequency and magnitude of YFV epi-

zootics in South America. The discovery of cocirculating sylvatic transmission cycles during

the 2016 to 2017 YFV epidemic in Brazil implies multiple spillback introductions on a local

scale across a short timespan [77]. Additionally, enzootic YFV has invaded previously nonen-

demic regions, significantly expanding its range in the New World.

A case for modeling

It is challenging to approach the ecological complexity of enzootic establishment through field

and experimental studies alone. Mathematical models can however be a useful tool that allows

us to integrate existing data and ecological theory to elucidate system dynamics, particularly

when data are sparse, as is often the case with enzootic systems [22,104,105]. Many modeling

approaches can be applied to a range of questions that allow us to better understand the risk that

translocated zoonoses will emerge in novel enzootic cycles. For example, species distribution

models, or ecological niche models—statistical approaches that leverage associations between

presence-absence information and environmental variables to infer habitat suitability—can be

used to identify at-risk systems where high permeability of humans, vectors, and translocated

zoonoses create ideal conditions for enzootic establishment [46,106–108]. Metapopulation

modeling is often an important tool to demonstrate conditions of pathogen persistence in wild-

life populations, given that they are typically fragmented [96]. Next-generation matrix methods

are a useful tool to quantify the effective reproduction number of translocated zoonoses in novel

enzootic systems to understand the probability of successful invasion [109]. Explicit simulations

that capture significant amounts of the complexity of systems have been effectively used to
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compare the impact of interventions in the human and wildlife population [110]. We would also

argue that simple models can be very useful in helping us understand the system-specific

dynamics that influence the ecological processes underlying enzootic establishment. For

example, Althouse and colleagues [22] developed the only previous model of vector-borne trans-

mission in nonhuman primate hosts [22,104,105] and showed that whether ZIKV persists

enzootically in South America is highly dependent on primate birth rates and mosquito popula-

tion sizes. Based on model outcomes for the range of parameter values estimated to apply to the

neotropics, they concluded that ZIKV has a high potential for enzootic establishment in the

New World.

The modeling approach of Althouse and colleagues [22] can be applied to all four translo-

cated arboviruses circulating in the neotropics. In particular, we can examine how key differ-

ences between the different viruses may impact their relative risk of enzootic establishment.

Specifically, the extrinsic incubation period (EIP)—the delay from initial infection until trans-

mission is possible—varies between YFV, DENV, CHIKV, and ZIKV [111–114]. The EIP

helps determine the length of the mosquito infectious period, defining onward transmission

[115] and, therefore, has the potential to impact the risk of spillback. However, a model is

needed to explore whether these differences are likely to be relevant, particularly in the context

of the long lifespans of New World sylvatic mosquitoes in South American enzootic systems.

To examine this question, we built on the model of Althouse and colleagues [22] and simulated

the introduction of a single infected primate within a multihost metapopulation model to

explore how a spillback event might play out for all four translocated arboviruses given New

World mosquito lifespans (see the Supplementary Information for a more detailed description

of the model methods). Except for the primate birth rate (which we hold constant), we repro-

duce their range of parameter values, additionally varying the length of the EIP to reflect differ-

ences between the arboviruses and the mosquito life span to reflect differences between species

and environmental conditions. Given that EIP and mosquito life span are highly variable

across conditions, the values selected for our simulations were not meant to perfectly describe

the four arboviruses or particular mosquito species; instead, we aimed to capture the range of

values that have been observed across arboviruses and environmental conditions to under-

stand general trends in the effect of EIP and life span on the probability of enzootic establish-

ment. For EIP, we selected values between 2 (reflecting the lower bound for CHIKV [111])

and 10 days (approximating the longer EIP of ZIKV [87]). For the mosquito life span, we used

7 days—taken from the previous model of enzootic vector-borne transmission in primates

[22]—as our starting value and selected two additional values at 7 day intervals: 14 days

approximately represents mean values from mark–release–recapture studies in South America

for A. albopictus in field conditions [116], and 21 days approximately represents conservative

mean values for Haemogogus spp. and Sabethes spp. at warmer temperatures [117]. For each

set of values, we ran 50 simulations, calculating the probability of persistence as the proportion

of simulations in which infected primates remained at the end of the three-year period.

At shorter mosquito lifespans, EIP length affected the probability of persistence; increasing

the EIP to 10 days, as we might observe with ZIKV, decreased the probability of persistence,

whereas shortening EIP to 2 days, as we might observe with CHIKV or at warm temperatures,

increased the probability of persistence (Fig 3). However, extending the mosquito life span

negated this effect; when the mosquito life span reflects New World sylvatic species and warm

temperatures at 21 days, there is a relatively high probability of sylvatic establishment across all

EIP values. Long-lived sylvatic mosquitoes are hypothesized to play a substantial role in YFV

maintenance in the neotropics [118], which may be part of the reason why YFV has established

and maintained enzootic transmission despite an EIP of 7 days. These results also suggest that

despite differences in EIP, there may be a particularly high risk of enzootic establishment for
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DENV, CHIKV, and ZIKV in the New World due to naturally longer-lived sylvatic species

and warmer temperatures, which both shorten EIP and extend mosquito lifespans. This work

is important in highlighting the need for surveillance efforts to be equally vigilant of DENV,

CHIKV, and ZIKV spillback in the New World. The results give a good example of how mod-

els can be useful in our understanding of complex ecological interactions. In this case we may

have expected that difference in EIP may have been important in determining relative risk of

enzootic establishment; however, due to longer mosquito lifespans, our model suggests that

these differences are unlikely to be relevant.

Fig 3. Model results predicting the probability of establishment across mosquito birthrates and EIPs. Mosquito birthrate is equivalent to the

inverse of life span (1/life span) and increases from the top to bottom panels, while the EIP increases left to right. Within each panel, the total

population size of mosquitoes (in two populations) and primates (in two populations) changes horizontally and vertically, respectively. For each

parameter set, we simulated the introduction of a single infected primate and subsequent transmission for a three-year period. Blue indicates no

simulations establishing, whereas red indicates all simulations establishing. Contour lines show 0.25, 0.5, 0.75, and 0.95 probability of establishment.

EIP, extrinsic incubation period.

https://doi.org/10.1371/journal.pntd.0008338.g003
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Discussion

The goal of this study is to stimulate research on the emergence of novel enzootic cycles and

begin to disentangle the underlying ecology complexity. We have argued here that the estab-

lishment of novel enzootic cycles is a pressing threat with the capacity to dramatically alter dis-

ease dynamics. The International Task Force for Disease Eradication identifies the existence of

an animal reservoir as a barrier to eradicating a disease because enzootic transmission often

feeds human epidemics [119]. In some cases, enzootic cycles have even contributed to the evo-

lution of pandemic pathogens; for example, pigs have functioned as “mixing vessels” for the

evolution of pandemic swine influenza [120]. We delineated potential ecological mechanisms

at each stage of enzootic establishment, grounding our discussion in the neotropics, where the

danger of enzootic establishment is evident in the history of YFV and an ongoing threat given

the endemic circulation of DENV, CHIKV, and ZIKV in the human population. Enzootic

YFV, which has triggered devastating human epidemics across the neotropics, has expanded

its geographic range since its initial establishment [121]. There is a real danger that DENV,

CHIKV, and ZIKV will also establish persistent enzootic reservoirs in the New World, simi-

larly inhibiting efforts to prevent future human epidemics. Given that enzootic cycles are

nearly impossible to control or eradicate, avoiding enzootic establishment will be critical to

mitigate the current arbovirus public health emergency in the New World. Moreover, enzootic

cycles can thwart efforts to eradicate pathogens in the human population, as has occurred with

the carriage of Guinea worm by dogs [122]. In particular, the recent discovery of natural ZIKV

[34–36] infection in nonhuman primates in Brazil calls for renewed urgency to understand the

potential for enzootic persistence.

Now, there is significant concern that SARS-CoV-2 could spill back into susceptible wildlife

within its expanded geographic range and establish novel enzootic reservoirs, becoming

endemic outside of China. The high burden and global distribution of human SARS-CoV-2

transmission places propagule pressure on a wide range of enzootic systems. Bats—the puta-

tive reservoir of SARS-CoV-2 [123]—are the second most diverse mammalian group, inhabit

every continent except Antarctica, and harbor a large diversity of coronaviruses [124]. Analysis

of angiotensin converting enzyme 2 (ACE2)—the cell-surface receptor implicated in SARS-

CoV-2 invasion of host cells—across a subset of bat species has predicted that some bats are

highly susceptible to human-adapted SARS-CoV-2 [125], and crossmammal analyses suggest

that the virus may have the potential to establish in a broad range of other mammalian species

[126–128]. There is also a possibility that human-adapted SARS-CoV-2 could infect initially

unsuitable host species through mutation events [129]. To mitigate the risk that SARS-CoV-2

establishes novel enzootic reservoirs, it is critical to identify susceptible wildlife species and

populations and implement policies that limit their exposure to the virus. In response to the

pandemic, the US government has, at present, suspended all bat research to prevent humans

from infecting and seeding an enzootic reservoir of SARS-CoV-2 in North American bats

[130], and many countries have banned bat bushmeat [131]. Additional policies may be

needed to minimize human contact with other potentially susceptible wildlife, particularly

populations bordering affected human communities and characterized by demographic rates

and structuring predicted to facilitate sustained epidemics and enzootic persistence. Surveil-

lance should monitor whether such populations become exposed and begin to demonstrate

capacity for between-host transmission. In particular, researchers should monitor domestic

animals predicted to be potential hosts—notably cats [127,132] and cattle [133]—which can

bridge transmission between human and wildlife populations [45].

Spillback events in which humans introduce pathogens into wildlife populations may

become common occurrences, as urbanization and anthropogenic pressure on wildlife
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populations increase opportunities for human–wildlife contact. As a result, understanding the

risk that translocated zoonoses will persist in sylvatic cycles after spillback events should be

established as a research priority. The risk of enzootic persistence depends on a multitude of

factors, many of which are unknown or poorly characterized, such as infectivity, number of

spillback events, and the transmission conditions needed for persistence. Here we provide a

conceptual framework of ecological factors to begin addressing the challenge of predicting this

risk. Considering ecological mechanisms is a first step towards developing targeted interven-

tion strategies. We additionally argue for the utility of modeling in detangling ecological com-

plexity, providing a simulation model of arboviral transmission in New World primates and

mosquitoes as an example. Our results indicate that although long EIPs can reduce the proba-

bility of enzootic persistence, the long mosquito lifespans that are characteristic of tropical

New World sylvatic species may negate this effect—suggesting that differences in EIP that we

may have expected to be important in determining the translocated arboviruses’ relative risk

of enzootic establishment are unlikely to be relevant. Overall, our work is important in

highlighting the need to be vigilant of imported zoonoses and emphasizing the importance of

robust programs to mitigate the risk of spillback events that lead to enzootic persistence.

Key learning points

• The globalization of zoonoses—capable of both infecting humans and establishing per-

sistent enzootic reservoirs of transmission in new regions—poses a unique and critical

threat to human health. Understanding the risk that translocated zoonoses spill back

and establish reservoirs in novel wildlife hosts should be established as a research pri-

ority, particularly in the era of SARS-CoV-2.

• Novel enzootic cycles occur when zoonoses are introduced to new regions (transloca-

tion), infect local wildlife (spillback), and persist in local animal host populations

(enzootic establishment).

• Understanding when and why translocated zoonoses establish novel enzootic cycles

requires disentangling ecologically complex and stochastic interactions between the

zoonosis, the human population, and the natural ecosystem.

• Mathematical modeling can inform risk assessments by leveraging existing empirical

data. For example, simulation modeling indicates that long EIPs in the mosquito can

reduce the probability of enzootic persistence, but the long mosquito lifespans that are

characteristic of tropical New World sylvatic species may negate this effect. These

model predictions suggest that while we may have expected differences in EIP to sig-

nificantly affect the risk that translocated arboviruses establish novel enzootic cycles in

the neotropics, these differences are unlikely to be relevant.
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Supporting information

S1 Text. An extended description of the simulation model discussed in this manuscript.
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S1 Fig. By default, waiting periods (such as the EIP) in traditional compartment models

follow exponential probability distributions (in blue). In the case of EIP, this assumption is

unrealistic because individuals have an equal probability of leaving the incubation compart-

ment regardless of the time since infection. In reality, the probability of progressing should be

very low immediately after infection and highest around the EIP mean—a trajectory better

represented by a gamma distribution (in green and purple). A gamma distributed EIP can be

constructed in a compartmental model via a boxcar configuration of the latent period (i.e.,

splitting the latent period up into a series of separate compartments, or boxes). Note how, as

the number of latent boxes increases (green versus purple), the gamma distribution becomes

less dispersed and more closely centered around the EIP mean. EIP, extrinsic incubation

period.

(PDF)

S2 Fig. The probability of establishment with a 10-box Erlang-distributed EIP. Mosquito

birthrate = 1/life span and increases from the top to bottom panels, while EIP increases left to

right. Here, we constructed an Erlang-distributed EIP by splitting the exposed compartment

into 10 separate boxes. Within each panel, the total population size of mosquitoes (in two pop-

ulations) and primates (in two populations) changes horizontally and vertically, respectively.

For each parameter set, we simulated the introduction of a single infected primate and subse-

quent transmission for a three-year period. Blue indicates no simulations establishing, whereas

red indicates all simulations establishing. Contour lines show 0.25, 0.5, 0.75, and 0.95 probabil-

ity of establishment. EIP, extrinsic incubation period.
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S3 Fig. The probability of establishment with a 50-box Erlang-distributed EIP. Mosquito

birthrate = 1/life span and increases from the top to bottom panels, while EIP increases left to

right. Here, we constructed an Erlang-distributed EIP by splitting the exposed compartment

into 50 separate boxes. Within each panel, the total population size of mosquitoes (in two pop-

ulations) and primates (in two populations) changes horizontally and vertically, respectively.

For each parameter set, we simulated the introduction of a single infected primate and subse-

quent transmission for a three-year period. Blue indicates no simulations establishing, whereas

red indicates all simulations establishing. Contour lines show 0.25, 0.5, 0.75, and 0.95 probabil-

ity of establishment. EIP, extrinsic incubation period.

(PPTX)
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