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Abstract: (1) Background: When red blood cells are centrifuged in a continuous Percoll-based density
gradient, they form discrete bands. While this is a popular approach for red blood cell age separation,
the mechanisms involved in banding were unknown. (2) Methods: Percoll centrifugations of red
blood cells were performed under various experimental conditions and the resulting distributions
analyzed. The age of the red blood cells was measured by determining the protein band 4.1a to
4.1b ratio based on western blots. Red blood cell aggregates, so-called rouleaux, were monitored
microscopically. A mathematical model for the centrifugation process was developed. (3) Results:
The red blood cell band pattern is reproducible but re-centrifugation of sub-bands reveals a new set
of bands. This is caused by red blood cell aggregation. Based on the aggregation, our mathematical
model predicts the band formation. Suppression of red blood cell aggregation reduces the band
formation. (4) Conclusions: The red blood cell band formation in continuous Percoll density gradients
could be explained physically by red blood cell aggregate formation. This aggregate formation
distorts the density-based red blood cell age separation. Suppressing aggregation by osmotic swelling
has a more severe effect on compromising the RBC age separation to a higher degree.

Keywords: red blood cells; Percoll; age separation; density gradient; band formation; aggregation;
band 4.1 protein; blood sedimentation; complex fluids; micromechanical modeling

1. Introduction

Red blood cell (RBC) sedimentation is a process already observed by the ancient
Greeks even before the corpuscular nature of blood in form of cells was known [1]. The
sedimentation can be accelerated by applying centrifugal forces. When combined with me-
dia of various densities, accelerated sedimentation may be used for cell sorting according
to their density. Scientific investigations on these approaches began in the 1960s and it was
found that a suspension of silica nanoparticles was the most suited available option [2].
In the following years, improvements were introduced. Among them was the develop-
ment of modified colloidal silica. Finally, Percoll became a commercial density medium
consisting of a suspension of coated silica particles, which were less toxic to cells, non-
penetrating, and had a low surface charge [3,4]. Nowadays, Percoll is a standard medium
for the density separation of erythrocytes, leukocytes, liver cells, Leydig cells, bone marrow
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cells, macrophages and other cell types, subcellular particles including plasma mem-
branes and cell organelles, as well as microorganisms such as bacteria, viruses, parasites
and algae [5].

As the main corpuscular constituent of human blood RBCs were investigated thor-
oughly. This includes cell shape [6,7], elastic properties [8], flow properties [9,10],
biochemical properties [11–13], cellular structure [14], membrane structure [15], ion
channels [16–18], just to name a few properties. The bending elastic properties of
RBCs are a result of the membrane structure [19]. Besides, the membrane contains
a variety of ion channels essential for osmotic balance regulation and for signaling
by exchange of ions [16–18,20]. Some of these channels are linked to deformation by
mechanical sensation [21,22]. It is known that the density of human RBCs increases
with their age [23,24] during the average lifetime of 115 to 120 days [25]. Therefore,
in principle, centrifugation of RBCs in a density gradient allows for sorting by age. A
rapid method for the separation of RBCs in age-dependent fractions was described in
1980 [26]. This led to a variety of studies on the relation of morphological and biochem-
ical parameters to cell age. For instance, the deformability of RBCs declines during
the aging process [27]. These investigations on relating cell age to other cellular prop-
erties are important for RBCs in particular. Reticulocytes enter the circulation in an
enucleated state and thus are void of a protein transcription and translation machinery.
This means RBCs experience aging without any renewal processes, which is a unique
behavior [28].

Lutz et al. found the RBC density to be a reliable indicator for cell age [29]. Unfortu-
nately, the biochemical markers for RBC age populations are very sparse. They include
remnants of RNA or, to some extent, mitochondria in reticulocytes and the transferrin
receptor (CD71) for the youngest population of the reticulocytes. Furthermore, reticulocytes
can be sorted, for example, by fluorescence associated cell sorting (FACS) based on the
above-mentioned markers. Then, the RBC can be stained with in vivo compatible markers,
such as PKH dyes. After transfusion of the stained RBCs, it is possible to get age-defined
RBCs [30,31].

When leaving the single cell level and considering cell populations, the membrane
protein 4.1 provides a reliable measure for cell age. While the total amount stays constant
during the lifetime of an RBC, the ratio between its forms 4.1a and 4.1b increases during
RBC aging [32]. This is the result of a time-dependent, non-enzymatic deamidation of
an asparaginyl residue in protein 4.1b [33]. Therefore, the protein 4.1a/4.1b ratio can be
regarded as a molecular clock [34]. Measurements of the protein 4.1a/4.1b ratio can be used
to determine the average age of an RBC population independent of other physiochemical
parameters such as cell density [35].

The distribution of RBCs after centrifugation in a self-forming Percoll gradient is
surprisingly not homogeneous but characterized by a heterogeneous structure of discrete
bands [26,29,36–38]. Lutz et al. observed a redistribution of cells extracted from the gradient.
Therefore they concluded that a uniform density of cells from a particular fraction in the
gradient is not guaranteed. Additionally, they suspected contamination of dense cells
in light fractions that reflected in the protein 4.1a to 4.1b measurements and considered
aggregation as a possible reason [29].

Recently, a quantification of the band patterns by image processing was investigated
for sickle cell anemia using graph convolutional networks [39], and the applicability in
diagnostics was discussed. Indeed, band patterns in Percoll gradients have the potential to
serve as diagnostic or even prognostic markers [37,39], admitting that a full causal under-
standing is not always given and the application of artificial intelligence is an extremely
useful tool for implementation [40]. Still, the formation of the discrete bands and their
patterns is a phenomenon that could so far not be explained [41] and is investigated in
this paper.
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2. Materials and Methods
2.1. Blood Collection, RBC Preparation, and Solutions

Blood was collected from healthy donors into EDTA or heparin tubes by venipunc-
ture, washed, and resuspended. It was previously shown that the anticoagulant had
no significant effect on the band structure formation in Percoll gradients [38]. For
microscopic aggregation measurements, blood was collected by finger prick. The blood
collection was performed following the declaration of Helsinki and was approved by
the ethics committee of ‘Ärztekammer des Saarlandes’, permit number 51/18. For
centrifugation, either whole or washed blood was used. Washing of full blood samples
was carried out at 1700 to 2000× g for 5 to 7 min in 1.5 mL tubes prior to Percoll gradient
centrifugation, or at 1300× g for 4 min in 1.5 mL Eppendorf tubes prior to microscopy.
In order to remove residual Percoll particles, we washed samples that were extracted
from gradients at 4000× g for 7 min. For washing and resuspension, Phosphate Buffered
Saline (PBS) diluted from a 10× concentrated stock solution or from an undiluted com-
mercial stock (Gibco 100010-031, Thermo Fisher Scientific, Waltham, MA, USA), and
alternatively Chur-solution, containing (in mM): 140 NaCl, 4 KCl, 0.75 MgSO4, 10 glu-
cose, 0.015 ZnCl2, 0.2 glycine, 0.2 glutamate, 0.1 arginine, 0.6 glutamine, 0.2 alanine and
20 HEPES imidazole, pH 7.4, as previously described [36], were used. Hypotonic buffers
were prepared by dilution of isotonic solutions. All solutions were prepared with MilliQ
water. Osmolality was checked using freezing point osmometers (Osmometer Auto-
matic, Hermann Roebling Messtechnik, Berlin, Germany). After washing, RBCs were
fixed by resuspending them at 5% hematocrit (Ht) in a 1% glutaraldehyde solution [42].
During pipetting, the flow velocity was kept low to avoid shear stress and the sample
was incubated at room temperature (RT, between 21 ◦C and 25 ◦C) for 20 min on a
tube roller.

2.2. Percoll Density Preparation, Centrifugation, and Sub-Band Extraction

Commercial medium, Percoll or Percoll Plus (17-0891-01 or 17-5445-01, GE Health-
care, Chalfont St Giles, Buckinghamshire, UK), was diluted to obtain a density match-
ing the average cell density at a given hydration state. Percoll Plus did not reveal
any differences in band formation over Percoll. Density distributions for selected
centrifugation times are presented in Figure 1a. The average cell density was obtained
from a centrifugation series in isotonic Percoll media of different densities; the diluent
was a concentrate of PBS or Chur-solution; the concentration was adjusted to obtain
the desired tonicity and medium density. The pH was adjusted to 7.4 using HCl
and NaOH. Centrifugation was carried out in a Hermle Z36 HK equipped with rotor
221.22 (Hermle Labortechnik GmbH, Wehingen, Germany), a Sorvall Lynx 4000 with
rotor A22-24 × 16 or Sorvall RC 5B Plus with rotor SS-34 (Thermo Fisher Scientific,
Waltham, MA, USA), or an Optima XPN-80 with rotor SW 32 Ti (Beckman Coulter,
Brea, CA, USA), at 25 ◦C or 34 ◦C and 20, 000× g for 20 or 30 min. For band extraction
from inside the distribution, a syringe pump, 40 µL/min, with microfluidic tubing,
0.9 mm inner diameter and 1.3 mm outer diameter, was used as outlined in Figure 1b.
Sub-band extraction was carried out from the top using a syringe with a hypodermic
needle, 0.8 mm× 120 mm. Extracted cells were washed and resuspended to remove
Percoll residue.

2.3. Microscopy and Image Analysis

Aggregation measurements were based on microscopic bright field images from
an Eclipse TE2000 (Nikon, Tokyo, Japan) equipped with a DMK 33UP5000 (The Imaging
Source Europe GmbH, Bremen, Germany) and a CFI Plan Fluor DL 10× NA 0.3 (Nikon,
Tokyo, Japan). Homogeneous RBC suspensions in isotonic Percoll media of different
concentrations were placed in a µ-slide with 18 wells (ibidi GmbH, Munich, Germany),
5 mm in diameter and a volume of 30 µL each; sealed after complete filling. Images
were taken after sedimentation for 24 h at RT. Cell counts were obtained using a cell
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counting chamber (Malassez 0.2 mm, Paul Marienfeld GmbH, Lauda-Königshofen,
Germany or Bright Line Counting Chamber 0.1 mm, Horsham, PA, USA) and bright
field microscopy.
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Figure 1. (a) Density gradient measurements of Percoll medium by GE Healthcare using colored
beads in an angle head rotor at 20,000× g and varying centrifugation duration, (1) 15 min, (2) 30 min,
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band using micro medical tubing and a syringe pump.

2.4. Band 4.1 Protein Deamidation Detection by Western Blot

Sample preparation: One volume of an RBC suspension at 2% or 20% Ht was mixed
with 9 volumes of “sample buffer” (18.2 mM Tris-HCl, pH 6.8, 5% SDS (w/v), 1.9 mM EDTA,
13% (w/v) sucrose, 40 mg/L bromophenol blue as a tracking dye, 70 mM dithiothreitol
added fresh before use). The sample was incubated at 60 ◦C for 15 min then stored frozen
in small aliquots (approximately 100 µL each) so that only the amount required for loading
the gel was thawed before use.

A Mini-Protean 3 system (Bio-Rad Laboratories Inc., Hercules, CA, USA) was used
to cast the gels and perform gel electrophoresis. A stacking gel was layered on top of a
separating gel, also called running gel. Constituents for the running gel were, in (v/v),
23.3% of a 30% (w/v) acrylamide solution in water, 25% of 1.5 M Tris/HCl pH 6.8, 1% of
10% (w/v) SDS, 1% of 10% (w/v) ammonium persulfate (APS), 2.5% of 1% (w/v) Temed,
47.2% H2O. The stacking gel was less dense, and contained, in (v/v), 10% of a 30% (w/v)
acrylamide aqueous solution, 10% of 1.25 M Tris/HCl pH 6.8, 1% of 10% (w/v) SDS,
1% of 10% (w/v) APS, 10% of 1% (w/v) Temed, 68% H2O. Polymerization started after
the addition of Temed and APS. During polymerization, a comb was inserted into the
stacking gel to create wells (10 or 15) for loading the samples, usually 10 µL of cell
lysate per well. In one well, a sample of pre-stained molecular weight standard proteins
was loaded (Precision Plus Protein™ All Blue, code 1610373, Bio-Rad Laboratories Inc.,
Hercules, CA, USA). After loading the samples, the electrophoretic run was conducted
at constant voltage (100 V) until proteins reached the running gel and at 150 V constant
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during the separation in the separating gel. In order to further separate the 4.1a and 4.1b
bands, we overrun the gels by 30 min after the tracking dye reached the bottom of the
gels. The stacking gel was removed. Protein transfer made use of semidry electroblotting
(Trans-Blot, Bio-Rad Laboratories Inc., Hercules, CA, USA) for transferring the proteins to
a PVDF membrane (0.2 µm pores). After the transfer, the membrane was incubated with
a “blocking” solution made of 5% skimmed milk, 20 mM Tris, pH 7.4, 150 mM NaCl and
0.05% Tween-20 (v/v). After the “blocking”, the membrane was washed two times with
a “washing buffer” [50 mM Tris/HCl, pH 7.5, 200 mM NaCl, 1 g/L polyethylene glycole
(PEG)-20000, 0.5 mL/L Tween-20, 1 g/L bovine serum albumin (BSA)]. The membrane
was then incubated overnight at 4 ◦C under gentle rocking with a 1:1000 dilution in
washing buffer of a mouse monoclonal antibody against protein 4.1R (primary antibody:
clone B-11, code sc-166759 Santa Cruz Biotechnology, Dallas, TX, USA). The primary
antibody solution was removed and the membrane subjected to 8 washes, 8 min each,
with washing buffer at RT, and then incubated for 1 h with a secondary antibody (HPR-
conjugated, goat anti-mouse IgG, code 170-6516, Bio-Rad Laboratories Inc., Hercules,
CA, USA). After removing the secondary antibody, the membrane was washed 6 times
for 6 min each and it was then treated with the chemiluminescence reagent: equal parts
of peroxide and luminol (Amersham ECL, Cytiva, Marlborough, MA, USA) for 3 min. A
ChemiDoc XRS+ (Bio-Rad Laboratories Inc., Hercules, CA, USA) was used for acquiring
the chemiluminescence signal. Data was analyzed by our own algorithms using the
Bio-Formats library [43] for Matlab®.

2.5. Statistical Analysis

In order to assess significance in the difference of two data sets, we employed the
two-sample t-test for equal means. A p-value below 0.05 was considered significant and
marked with a star, values smaller 0.01 with two stars. In bar charts, the standard error of
mean (SEM) was computed by dividing the standard deviation (SD) by the square root of
the number of data points. SDs were computed from the unbiased sample variance. In box
plots, quantiles are computed using sorting algorithms and linear interpolation; notches
give an estimate for the 95% confidence interval (CI) from the interquartile range (IQR)
by [44]:

95%CImean = median± 1.57× IQR√
N

(1)

for a sample size of N. No overlap of notches indicates a p-value < 0.05. If not stated
otherwise, whiskers indicate 1.5 times the interquartile range. Kernel density estima-
tion (kde) was utilized to compute probability density functions (pdf). The optimal
bandwidth was estimated by a rule of thumb, hopt = 1.06 SD N−1/5. In aggregation
measurements the accessible parameter was the area of connected absorption regions
in brightfield images. It was assumed, that those regions primarily originate from pro-
jections of cell aggregates. Sources of distortion are the orientation of aggregates and
stacking of disconnected cells or cell aggregates. Statistics was carried out on the area of
connected projection regions.

3. Results

It was absolutely unclear why Percoll centrifugation of RBCs does not provide a
continuous profile but rather distinct bands [41] albeit the self-forming Percoll gradient
is continuous (Figure 1a, [5]). From all we know about RBC aging [28] a discrete aging
process is unlikely to be the cause of the discrete RBC bands.
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3.1. Variation of Basic Experimental Parameters

In a first approach, we aimed to test the influence of very basic experimental
parameters on the band formation per se or the band pattern in order to get an initial
glimpse of the nature of the band formation. Considering that RBCs form a perco-
lating gel in blood plasma [45–48], we wondered if there is a difference in whether
whole blood or washed RBCs are added. Figure 2a shows that there are no major
differences between the band pattern of the whole blood sample and that of the
washed RBCs sample. Next, we wondered if the starting conditions make a differ-
ence, whether the blood is layered on top of the Percoll or if RBCs and Percoll are
mixed thoroughly. Figure 2b presents the tubes before and after centrifugation and
indicates differences in the band patterns, but still shows discrete band formation
with the main population at a similar height. It indicates that the initial position
of the RBCs influences the band pattern but in principle does not prevent or favor
its formation.

Furthermore, we considered the influence of the direction of the centrifugation force
(different from the angle of the tube in the rotor) and its superposition with the gravi-
tational force as possible determinants of the discrete bands. Such forces could induce,
for example, convection flow [49] and thus influence pattern formation. To this end, we
performed Percoll centrifugations with different rotors as outlined in Figure 2c. Similar as
to Figure 2b, we detected slight differences in the band patterns but no prevention of the
formation effect.
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Figure 2. RBCs in self-forming continuous Percoll gradients under various experimental conditions.
The scale bar is valid for all panels. (a) Distributions of a whole blood sample (left) and a washed
RBC suspension after simultaneous centrifugation; the samples were loaded on top of the respective
Percoll suspension before centrifugation. (b) Appearance, before and after centrifugation, of a sample
of whole blood that was layered (left) on top of the Percoll medium, or homogeneously mixed with
it, prior to centrifugation (right). In (a,b) heparin was used as the anticoagulant at blood withdrawal,
and the centrifugation conditions were 20,000× g at 34 ◦C for 30 min. (c) Rotor heads of different
angles were used; 90◦ belongs to the swing-out rotor. Blood samples in (c) were different, but all from
healthy donors; 34◦ with heparin, others with EDTA; centrifugation conditions were 20,000× g for
20 min at 25 ◦C. The different centrifuge models hold tubes different in size and material. This could
influence the gradient shape and band formation.
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3.2. Recentrifugation of Particular Bands

To get a better insight into the bands, we extracted some as outlined in Figure 3a,
resuspended, and centrifuged them under equal experimental conditions (same Percoll
medium, same centrifugation force, same duration). The results are shown in Figure 3b.
All distributions show the appearance of new bands. Please note that this is not just a
higher magnification but the appearance of new bands, which again leads to a discrete
distribution. In another experiment, we aimed to investigate the age structure of the bands
and sub-bands. To this end, we extracted one band from a Percoll gradient and resuspended
this sample in the same Percoll medium, and centrifuged it a second time as indicated
in Figure 4a. From this re-centrifugation, we extracted three bands of low (L), medium
(M), and high (H) density, as indicated in Figure 4b for further analysis. Based on these
extractions we performed western blots (Figure 4c) to determine the protein band 4.1b to
4.1a ratio, which can be regarded as a molecular clock [35].
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Figure 3. Bands were subsequently extracted from the distribution of a full blood sample (a), using a
syringe pump, compare to Figure 1b. Each succeeding image in (a) shows the tube after extraction
of the labeled layer. In a second step, the collected cells were layered on top of another Percoll
suspension of identical composition as in the first centrifugation and centrifuged under equivalent
conditions (b). Band 3 appears lower due to a thinning caused by a larger buffer volume. The scale
bar is valid for both panels.

The statistical analysis (performed as outlined in Appendix A) is shown in Figure 4d
and indicates significant differences between both the original band B (average) and sub-
band L, and between the sub-bands M and L. Non-significant differences were detected
between sub-bands (H vs. L or H vs. M) and between the original band B and sub-band M
(obvious) but also between the original band B and sub-band H.

3.3. Percoll-Induced Cell Aggregation

A possible explanation for a compromised density separation is that not individual
RBCs are density resolved, but RBC aggregates instead. Already by eye, RBC aggregates
are visible at the edges of the bands, as it is exemplified in the enlargement in Figure 5a.

We used bright field microscopy to check if RBCs in Percoll form similar aggregates
(stack of coins or rouleaux) as is known from blood plasma and dextran solutions [50].
Figure 5b shows that this is indeed the case. A more detailed analysis of the projection
area of aggregates in dependence on the Percoll concentration was derived from images as
depicted in Figure 5b. The probability density function is plotted in Figure 5c and box plots
of the aggregate projection area for various Percoll concentrations are given in Figure 5d.
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Figure 4. Western blotting after redistribution of an extracted band. Panel (a) shows the distribution
of a full blood sample from heparin tubes after centrifugation in an isotonic medium. A band (B) was
extracted and redistributed in an equivalent gradient. (b) From the recentrifuged tube, a low (L), a
medium (M), and a high (H) density layer were extracted successively. Panel (c) shows an excerpt of
a western blot. RBCs were treated with the sample buffer as cell suspensions at 20% Ht, and 10 µL of
each sample were loaded in the gels. In (d), bar graphs of the mean 4.1a to 4.1b ratio derived from
six samples for each band, randomly distributed over four different gels, error bars show the SEM; a
single star indicates p < 0.05.

All distributions show a maximum at 28.2 µm2 ± 5.4 µm2. This maximum can be
assigned to non-aggregated single cells. A second peak is present around 56 µm2 originating
in aggregates with two cells, respectively. The second peak shifts towards smaller values
with increasing Percoll concentration. This indicates a more compact binding. Peaks of
larger aggregates are expected to be less prominent due to the variety of three dimensional
configurations leading to different projection areas. The single cell peak decreases in height
and area with increasing Percoll concentration. This means, aggregates increase in size
and cell number. Although this RBC aggregation provides an explanation of compromised
density separation, the formation of individual bands is still elusive.
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Figure 5. Aggregation of RBCs in a Percoll medium: (a) macroscopic aggregates in the band pattern
after centrifugation; (b) Rouleaux formation of RBCs extracted from a gradient under the microscope;
(c) distributions of the projection area as measured from microscopic images for different Percoll
concentrations; (d) boxplots of the distributions in (c), edges show quartiles, whiskers the 2.5th and
90th percentiles, notches the estimated 95% confidence interval.

3.4. Mathematical Modelling of the Sedimentation Process

We developed a theoretical model to simulate the forces acting on RBCs during
centrifugation. The forces acting on an RBC in an aggregate are schematically illustrated in
Figure 6a and the spatiotemporal formation of the Percoll gradient as used in the model is
plotted in Figure 6b. The full model is described in Appendix B.

Figure 6c shows an initial validation of the model. Independent of the starting point
an individual RBC (density of 1.102 g/mL) would always end up in the same position
at the end of the centrifugation process. However, if the model computes the motion of
50 RBCs of various densities, we end up with five discrete bands as outlined in Figure 6d.
We performed a variety of simulations with different binding strengths (from α = 200 m/s2

to 3.2 km/s2), and RBC numbers up to 400 as summarized in Figure 6e. We deduced
conditions that lead to the formation of aggregates and their stability in the equilibrium
distribution after centrifugation. We observed that the RBC distribution is characterized by
bands consisting of RBC aggregates.
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Figure 6. Mathematical description of aggregation during sedimentation in a density gradient.
(a) Schematic illustration of an aggregate in a density gradient, the opacity of blue indicates the
density; (b) graph of the time and space dependent density function; (c) simulation results for
a single cell with density 1.102 g/mL and different initial positions; (d) sedimentation curves
for 50 cells interacting via a contact potential, the amount of red corresponds to the density, the
opacity to the number of cells in an agglomerate; (e) distributions of the number of aggregates in
the final configuration, i.e., at twice the gradient time constant τ, for different cell numbers and
binding strengths.

3.5. Experimental Conditions Suppressing RBC Aggregate Formation

If RBC aggregation is the cause of both, the band formation and the impaired age
separation, suppression of the aggregation should reveal support of the model described
above and refinement of the age-separation method, respectively. One method was the
fixation of RBCs using glutaraldehyde (GA). Since GA fixation is associated with cell
shrinkage [42], centrifugation of fixed RBCs required an adaptation of the Percoll gradient.
The result is shown in Figure 7a in comparison to fresh RBC centrifugation (Figure 7b).
It clearly shows that GA fixed RBC are distributed much more homogeneously, while a
high number of thin bands is formed. Another option to prevent aggregation would be
to swell RBCs in order to reduce the RBC interaction surface compared to discocytes. The
easiest way to transform normocytes into spherocytes (or stomatocytes of type III) [7] is
to place them in a hypotonic solution. In addition, this approach required an adaptation
of the Percoll gradient. The result is presented in Figure 7c and mirrors the results of the
GA-fixed RBCs.
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Figure 7. Suppressing aggregation. (a) Isotonic RBCs fixed with GA; (b) an isotonic control sample;
(c) a hypotonic sample of 150 mosmol/kg H2O; the density medium was adjusted to account for
hydration-related changes in cell density, centrifugation conditions were 25 ◦C, 20,000× g, 20 min in
a Hermle Z36 HK. EDTA was used as the anticoagulant at blood withdrawal.

3.6. RBC Age Determination in Hypotonic Solutions

The related question is if the more homogeneous RBC distribution also leads to a
better/sharper age separation. Since age separation is performed for functional RBC tests,
the separation of fixed RBCs is of lower interest and we followed a systematic investigation
of hypotonic swollen RBCs. To avoid any difficulties in band recognition between isotonic
and hypotonic Percoll solutions it would be advantageous to choose either the uppermost
or the lowest fraction. Due to the terminal density reversal phenomenon [51], we aimed for
the analysis of the lowest/densest cells. Figure 8a,b show the Percoll centrifuged samples
before and after extraction of the densest layer, respectively. Four samples of each layer
were run on two different gels and western blots for Protein 4.1 was performed as depicted
in Figure 8c. Densiometric analysis of the western blots as described in Appendix A
revealed a significant difference between in Protein 4.1a to 4.1b ratio for the densest cells in
isotonic and hypotonic Percoll solutions (Figure 8d).
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Figure 8. Age distribution of the densest cells population. (a) Hypotonic (H) and isotonic (I) samples
(blood withdrawn in EDTA) were centrifuged in density matched Percoll media in a Hermle Z36 HK
at 25 ◦C. From each of the distributions, 1 mL of suspension was extracted from the regions marked
with a blue rectangle. Panel (b) shows the same tubes after extraction; (c) western blots of the RBC
samples (a 2% Ht RBC suspension was treated with the sample buffer for gel electrophoresis, as
described in Materials and Methods), raw images, and logarithmic false-color representations. The
logarithmic false-color version emphasizes intensity differences between the pair of bands. (d) The
protein 4.1a to 4.1b ratio was computed and the statistical results are plotted. Whiskers show the 5th
and 95th percentiles. Average protein ratios differ significantly: p = 0.0037 (∗∗).

4. Discussion

We start the discussion with the discrete band formation of RBCs in a continuous (self-
forming) Percoll gradient. This band-formation should not be mistaken for the (also often
employed) Percoll layer preparation, e.g., in [52], where pre-prepared Percoll media of decreas-
ing density are layered carefully, RBCs are placed on top and centrifuged for a shorter time
at lower centrifugal forces compared to the self-forming gradient centrifugation. While the
pattern of these layers seems to be characteristic for certain pathologies [39] and may reflect
severity of the hereditary diseases such as spherocytosis [37], its origin was a mystery so
far [41]. We confirmed that the band pattern is reproducible for particular blood samples and
does not depend on whether RBCs are added in autologous plasma or washed in phosphate
or Chur buffer (Figure 2a). The reason is most probably that already at the very beginning of
the centrifugation process, RBCs leave the plasma/PBS phase into the Percoll solution and
from that point onwards there is no difference between previously isolated and washed RBCs.

However, results from different initial cell distributions indicate that the dynamics
during the sedimentation influence the band formation (Figure 2b). This is evidence
for the contribution of other parameters than the intrinsic single cell properties. The
reproducibility of band structures emerging from the same initial distribution suggests that
the resulting distribution is deterministic. That means it depends on the initial conditions
and the centrifugation parameters only. In other words, it is not a random result. Different
initial conditions can lead to different but deterministic and reproducible results. In our
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microscopic model, the prerequisite for aggregation of two cells is a crossing or tangency
of their trajectories leading to proximity and the onset of short range interactions. The
aggregation process depends on the number of those approaches in the sample and the
(local) sample density. Therefore it is influenced strongly by the initial distribution.

We were suspicious about ‘non-ideal’ forces in the centrifugation process, such as
differences in centrifugation forces between the opposite sides of the centrifugation tubes in
fixed angle rotors or vector differences between gravitation force and centrifugation force
as putative causes for the band formation. However, comparing the results of different
rotor geometries (Figure 2c) just reveals that the distribution width of the bands increases
with increasing rotor angle due to the less pronounced sigmoidal density distribution of
the Percoll [5]. The band formation per se was conserved in all rotor geometries.

To further investigate the nature of the bands and their formation, we extracted
bands and recentrifuged them a second time under otherwise identical conditions. This
resulting in a broadening of the spatial cell distribution and the formation of new sub-bands
reflecting a broader distribution of both, RBC density (Figure 3) and RBC age (Figure 4).
These properties are in agreement with the effect of RBC aggregation as proposed by Lutz
et al. [29] and as confirmed by our microscopic investigation (Figure 5).

While the rouleaux formation can explain the broadening of the RBC distribution when
recentrifuged as well as impaired age-density correlation, it still does not explain the band
formation. To this end the mathematical model of the sedimentation process as outlined in
Figure 6 and Appendix B provides a possible explanation. The numerical investigations of the
time-dependent sedimentation and aggregation process with randomized initial conditions in
a simplistic model supported the established equilibrium conditions. Moreover, a statistical
insight in the numerical solutions showed that the final distributions are characterized by a
low number of cell aggregates compared to the number of cells. Furthermore, the average
number of aggregates became independent of the interaction force above 80× 103 cm/s2

and cell number for N > 50. The critical force of 80 pN, assuming a cell mass of 10−13 kg, is
comparable to previous measurements of depletion forces [53]. Experimental observations of
the band structure of RBC sedimentation distributions in Percoll suggest an independence on
statistical processes. The resulting distribution is reproducible to the eye given the same initial
conditions and centrifugation parameters. Hence, the band structure can be described as
deterministic with respect to those influences. Suppression of RBC aggregation would hence
decrease band formation which could indeed be shown for two independent approaches,
osmotic swelling of RBCs (Figure 7c) and RBC fixation by GA (Figure 7a).

We aimed for an initial transfer of the gained knowledge towards a more precise
RBC age separation by preventing RBC aggregation and hence band formation. The idea
was to centrifuge the cells in a hypoosmotic Percoll solution and proof the improved age
separation by a protein band 4.1a to 4.1b analysis vs. isotonic preparations. We indeed
achieved a significant difference for the densest RBC population (Figure 8d), but the result
was opposite to our expectations. As we have less aggregation in hypotonic solutions,
we expected less ‘contamination’ by younger cells and therefore an older population
with a higher band 4.1a/4.1b ratio. This illustrates nicely that age-dependent effects
induced by hypoosmotic ‘stimulation’ of the RBCs overwrites the effect of the aggregate
prevention. These hypoosmotically induced effects could be the activation of the K+/Cl−-
cotransport in reticulocytes [54,55], which is likely to shrink them, or the unequal activation
of mechanosensitive channels such as Piezo1 [56,57] in RBCs of different age, resulting
in a heterogeneous Ca2+ uptake, which, in turn, will again lead to cell dehydration and
shrinkage through activation of the Ca2+-sensitive-K+ channel (Gárdos channel) and loss
of KCl and water [58]. It demonstrates clearly that maneuvers that stimulate (directly or
indirectly) changes in ion homeostasis and hence on the hydration state (density) of the
RBCs disrupt the direct correlation between buoyant density and age and compromise the
density-based age separation of RBCs [30,59]. Also, the hypoosmotic stress could have
caused a slight increase in hemolysis among the oldest cells altering their abundance (less
than 1%). A sign of a partial hemolysis is a reddish supernatant (see, e.g., Figure 7c).
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5. Conclusions

We could provide a physical explanation for the RBC band formation in continuous
Percoll density gradients based on RBC aggregate formation. This aggregate formation
compromises the density based age separation. Suppressing aggregation by osmotic
swelling has a more severe effect on RBC density, compromising age separation to a
higher degree.

Further research is required to modify or improve the density centrifugation process to
better represent the RBC age distributions. In principle a decrease of aggregability should
lead to a more homogeneous distribution.
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Appendix A

A series of image with increasing exposure time are acquired in the ChemiDoc XRS+.
Of each series the image is chosen automatically which maximizes contrast without
showing saturation. The raw camera image provides a resolution of 520 × 696 px2,
350 ppi respectively, and 16 bit intensity depth. An algorithm was designed to perform
an automated measurement of the protein 4.1b to 4.1a ratio which is given by the
integrated photoluminescence intensity as summarized in Figure A1. In order to work
with the raw data we used the Bio-Formats library [43]. Sample lanes are separated by
slicing the image vertically at intermediate positions. Lane centers are determined. All
those positions are measured from intensity profiles utilizing peak detection algorithms.
A coordinate transformation makes the analysis independent of lane orientation. The 5th
and 95th percentiles in the horizontal and vertical intensity distributions are determined
for each image row and column, respectively. By means of a gray value matching, a
perimeter (P) around both protein bands (A and B) is derived. The intensity on the
perimeter gives an approximation for the background signal. Protein 4.1 bands are
separated. In order to do so, we perform a column-wise regression of a double-gaussian.
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The cross-over position sj in the in the jth column is determined using two different
methods. Method A involves numerically finding the minimizer of the condition for a
local minimum.
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The turning point position is estimated in method B by minimizing the second derivative.
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Figure A1. Scheme of the automated image analysis algorithm. (a) Intermediate edges and lane
positions are detected, each pair of bands is isolated and rotated for alignment; horizontal and vertical
intensity profiles are extracted; a double-gaussian is fitted to the latter. (b) The 5th and 95th percentiles
of the profiles along each axis are determined and combined to compute a perimeter; separation
points are estimated from the double-gaussian. A spline regression is carried out to discard outliers;
a smoothed discrete edge is deduced. From (b,c) an inverse coordinate transformation is applied to
fit the perimeter and separation edge on the raw data.
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A smoothing spline is fitted to the separation points
(

j, sj
)
. The resulting separation

line encloses each band of the 4.1 pair together with the perimeter. An intensity summation
over each band (A and B) is then carried out. The resulting integral intensities are corrected
for background signal and divided to compute the protein ratio.

I0 =
∑(i,j)∈P I(i, j)

∑(i,j)∈P 1
, (A3)

c(4.1a)
c(4.1b)

=
∑(i,j)∈A I(i, j)−∑(i,j)∈A I0

∑(i,j)∈B I(i, j)−∑(i,j)∈B I0
. (A4)

Our algorithm is robust and provides a good separation also in case of distorted bands.

Appendix B

A theoretical model was established to describe the sedimentation process of RBCs
during centrifugation in a self-forming gradient. The gradient formation was assumed
to be an external input function independent of the presence of cells. The density of the
suspension medium was assumed to be merely a function of height in the tube y and time
t, to be constant initially, and to transition into a sigmoidal equilibrium shape according
to measurements, see Figure 1a. This transition was assumed to be an exponential time
relaxation process. A function meeting those requirements is given by

ρP(y, t) =
{

ρP,0 + ε log
(

λ

y− h0
− 1
)}
×
{

1− exp
(
− t

τ

)}
+ ρP,0 exp

(
− t

τ

)
, (A5)

where ρP,0 = 1.1 g/mL is the initial homogenous density, τ = 300 s the time constant of
the gradient formation, λ = 52 mm the characteristic length, ε = 0.0122 g/mL the density
spread, and h0 = −1 mm a height shift to center the gradient at λ/2 + h 0 = 25 mm. This
translates into a tube length of 50 mm with a central density saddle. The parameter values
were obtained from a non-linear regression to experimental data. The function fulfills mass
conservation at any time.

We set up the equation of motion for the vertical position of the ith cell assuming
azimuthal symmetry and including the centrifugal force, a buoyancy term, Stokes’ friction,
and a short range contact interaction.

..
yi =

ρP(yi, t)− ρi
cell

ρi
cell

rcf− 9η

2ρi
cellR

2
.

yi +
N

∑
j=1

αsign
(
yj − yi

)[
Θ
(

Rmax −
∣∣yi − yj

∣∣)−Θ
(

Rmin −
∣∣yi − yj

∣∣)] . (A6)

The viscosity of the suspension medium was η = 15 mPa s, R = 5 µm the mean
cell radius, Rmin = 4 µm the minimal interaction range, and Rmax = 20 µm the maximal,
respectively. The binding strength α is a mass specific force (i.e., an acceleration). The total
number of cells N and the binding strength α were varied, the resulting distributions at
t = 2τ studied. The relative centrifugal force (rcf) was set to 20, 000× g.

The equations of motion were solved using an implementation of the four-order Runge-
Kutta method (RK4) in C++ with a step size of dt = 1 µs. The initial condition was a randomized
homogenous distribution in height and gaussian distribution in density with central density
of 1.1 g/mL and standard deviation of 4 mg/mL, as found in experiments for physiological
conditions [60,61]. We derived equilibrium conditions from the equations of motion.

I. The displacement force (buoyancy) that includes acceleration of cell volume and
liquid volume must be equal to the sum of binding forces for each cell.

II. The average of all cell densities in an aggregate equals the suspension density at
the average position of those cells.

Our numerical results supported those conditions down to numerical errors.
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