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Abstract 
Pathway-based analysis holds promise to be instrumental in precision and personalized medicine analytics. 
However, the majority of pathway-based analysis methods utilize “fixed” or “rigid” data sets that limit their ability 
to account for complex biological inter-dependencies. Here, we present REDESIGN: RDF-based Differential 
Signaling Pathway informatics framework. The distinctive feature of the REDESIGN is that it is designed to run on 
“flexible” ontology-enabled data sets of curated signal transduction pathway maps to uncover high explanatory 
differential pathway mechanisms on gene-to-gene level. The experiments on two morphoproteomic cases 
demonstrated REDESIGN’s capability to generate actionable hypotheses in precision/personalized medicine 
analytics. 
 
Introduction  

Precision medicine, set by President Obama as a new strategic initiative in medicine (1), has been gaining a lot 
of attention in biomedicine. However, it becomes increasingly evident that one-drug-one-target-one-disease 
paradigm is unable to address outstanding challenges in this new medical paradigm (2). High-throughput omics 
technologies, data integration and computational analytics among others have been considered to be crucial to move 
forward precision medicine ideas (3). Particularly, pathway-based methods (4,5) especially those that utilize curated 
knowledge bases (KB) such as KEGG (6) and Reactome (7) improve handling of the curse of dimensionality and 
noise in omics data by bringing analysis to the level of biological functions (8-11). Specifically, direct correlation of 
differential gene expression with a clinical phenotype usually results in a situation when gene sets, which are 
strongly correlated with the phenotype and reported by different studies, have little or no overlap. It happens because 
gene expression profiling studies are generally underpowered and each study group has different patient cohorts in 
which the same biological mechanisms may have been manifested by different genes. Despite efforts to address this 
limitation by integrating multiple datasets (12,13) the issue of the curse of dimensionality still persists because it is 
not feasible at the moment to compile a single data set with an order of magnitude of the genome. Early methods of 
Over Representation Analysis (ORA) (4,14) partially address this problem by considering affected biological 
pathways that are overrepresented by differentially expressed (DE) genes. However, due to the nature of statistical 
approaches used in ORA methods, levels of expression of DE genes is ignored. The importance of specific pathways 
is simply assessed by counting of how many DE genes are present in these pathways (enrichment). However, an 
enrichment score per se is not explanatory enough to evaluate the contribution of these genes to a particular 
biological state (14). Therefore, slight differential expression of genes that truly affect the phenotype in question 
might be discarded as noise. Functional Class Scoring (FCS) methods (4,14), such as Gene Set Enrichment Analysis 
(GSEA) (15), not only consider genes with large DE values but also account for sets of genes with possibly weak 
DE values but working in concert. For instance, GSEA defines a set of genes, e.g. representing a biological pathway, 
and assigns a large enrichment score for that pathway if the pathway’s genes are found close to the top or bottom of 
the ranked DE gene list. The downside of GSEA and many other FSC methods is that they do not consider the role 
and position of genes in the pathways. For instance, genes located upstream (e.g. “driver genes”) could have greater 
effect on the pathway that those found downstream (e.g. “passenger genes”). Pathway Topology (PT) approaches 
(4,14) take into consideration  the location of genes in pathways. For example, Signaling Pathway Impact Analysis 
(SPIA) (16), computes a perturbation impact of each gene in accordance to its position in a pathway. PARADIGM 
pathway method (17) further improves pathway-based analytics by integrating multiple datasets derived from 
Comparative Genome Hybridization (CGH), and Single Nucleotide Polymorphism (SNP) technologies in addition to 
transcriptomics data. Different variations of ORA, FCS, TP and other pathway-based methods have been used to 
infer patient-specific pathway deregulations (18,19). What common in many of these methods, though, is the fact 
that they treat a biological pathway as a whole, assigning a metric of importance (enrichment) to the whole pathway 
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using various statistical approaches. However, in many applications, including precision/personalized medicine, it is 
critical to infer sub-pathway or gene-to-gene level mechanisms. Another important limitation, in our view, is that 
these methods are designed to run over “rigid” or “static” pathway networks’ data. These datasets may not take into 
account inter-relationships among data entities, such as for instance the fact that distinctive network nodes may de-
facto represent the same biological entities (e.g., alternative names or IDs), have functional similarity (e.g., the same 
binding domains), or belong to the same protein complex (i.e., part-whole relationship). Because of this “rigidity” 
many queries may not return desirable results, even though the information might be present in the network datasets 
in an implicit form.  

Here, we introduce a high explanatory RDF-based differential signaling (REDESIGN) informatics framework 
that enables gene-to-gene level computational analysis of topological differences of signaling cascades. These 
differences can pinpoint places in signal transduction pathways and regulatory networks where a specific patient’s 
case deviates from the canonical flow of the disease. This will not only help to design personalized combinatorial 
therapeutic regimens, but also to bring new hypotheses to basic research. The distinctive feature of this method is 
the fact that the analysis is performed over “flexible”, RDF-formatted and ontology-enabled pathway network data. 
Such data, equipped with description logic inference, provide means to take into account “biological isomorphism”, 
which makes differential pathway analysis more biologically relevant. As we will demonstrate further in text, the 
method has high potential to help realize precision medicine ideas in cancer theranostics.  
 
Methods 

REDESIGN framework utilizes an RDF-based “mashup” knowledge base of signal transduction pathways 
derived from Kyoto Encyclopedia of Genes and Genomes (KEGG), including pathways associated with signal 
transduction, cellular processes, organismal systems, human diseases, and drug development (6). We have 
previously demonstrated the utility of such KB to reduce complexity of biological knowledge for precision medicine 
analytics (20). In this work, we extended the KB to include more biologically relevant interaction types (see Table 
1). 

 
Table 1. Modeled biological relationships. 

RDF Predicate Modeled Purpose RDF Predicate Modeled Purpose 

activates Molecular Interaction misses_interaction_methylation_inhibition Molecular Interaction 
inhibits Molecular Interaction misses_interaction_methylation_activation Molecular Interaction 
binds_associates Molecular Interaction misses_interaction_glycosylation_inhibition Molecular Interaction 
dissociates Molecular Interaction misses_interaction_glycosylation_activation Molecular Interaction 
changes_state Molecular Interaction misses_interaction_deubiquitination_inhibition Molecular Interaction 
expresses Molecular Interaction misses_interaction_deubiquitination_activation Molecular Interaction 
represses Molecular Interaction misses_interaction_ubiquitination_inhibition Molecular Interaction 
indirectly_affects Molecular Interaction misses_interaction_ubiquitination_activation Molecular Interaction 
indirectly_affects_activates Molecular Interaction misses_interaction_dephosphorylation_inhibition Molecular Interaction 
indirectly_affects_inhibits Molecular Interaction misses_interaction_phosphorylation_activation Molecular Interaction 
phosphorylates_activates Molecular Interaction misses_interaction_phosphorylation Molecular Interaction 
phosphorylates_inhibits Molecular Interaction misses_interaction_methylation Molecular Interaction 
dephosphorylates_activates Molecular Interaction misses_interaction_inhibition_degradation Molecular Interaction 
dephosphorylates_inhibits Molecular Interaction misses_interaction_inhibition Molecular Interaction 
ubiquitinates_activates Molecular Interaction misses_interaction_indirect_effect Molecular Interaction 
ubiquitinates_inhibits Molecular Interaction misses_interaction_glycosylation Molecular Interaction 
deubiquitinates_activates Molecular Interaction misses_interaction_expression Molecular Interaction 
deubiquitinates_inhibits Molecular Interaction misses_interaction_phosphorylation_binding_association Molecular Interaction 
methylates_activates Molecular Interaction misses_interaction_dissociation_inhibition Molecular Interaction 
methylates_inhibits Molecular Interaction misses_interaction_dissociation_degradation Molecular Interaction 
glycosylates_activates Molecular Interaction misses_interaction_dissociation_activation Molecular Interaction 
glycosylates_inhibits Molecular Interaction misses_interaction_dissociation Molecular Interaction 
misses_interaction Molecular Interaction misses_interaction_dephosphorylation Molecular Interaction 
phosphorylates Molecular Interaction misses_interaction_state_change Molecular Interaction 
dephosphorylates Molecular Interaction misses_interaction_binding_association Molecular Interaction 
ubiquitinates Molecular Interaction misses_interaction_activation Molecular Interaction 
deubiquitinates Molecular Interaction misses_interaction_phosphorylation_inhibition Molecular Interaction 
glycosylates Molecular Interaction changes_conformation Molecular Interaction 
methylates Molecular Interaction contains Biological Isomorphism 
misses_interaction_deacetylation Molecular Interaction crosstalks_with Pathway interaction 
misses_interaction_acetylation Molecular Interaction participates_in Biological process 
misses_interaction_deubiquitination Molecular Interaction involved_in Disease association 
misses_interaction_ubiquitination Molecular Interaction is_part-Of Pathway association 
misses_interaction_repression Molecular Interaction sameAs Biological isomorphism 
misses_interaction_indirect_effect_inhibition Molecular Interaction 

  misses_interaction_indirect_effect_activation Molecular Interaction 
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The overall roadmap of the 
REDESIGN method, which is a two-
step process, is depicted in Figure 1.  

 
REDESIGN Step 1: Given RDF network 
representations of pathway maps A and 
B, corresponding to two biological 
states, as well as an RDF ontology, 
consisting of biological relationships 
among pathway entities in maps A and 
B, we first extend information in maps 
A and B with inferred knowledge. For 
instance, given distinct pathway nodes 
A, B, C, and D, signaling interactions A-
activates-B, C-inhibits-D, and an 
ontological relation A-aliasOf-C, an 
additional signal transduction interaction 
A-inhibits-D will be added to the 
appropriate pathway map. We consider 
several types of such entailments, for 
instance, generated by RDF predicates 
“sameAs” (gene alias) and “contains” 
(ontological relation whole-part, e.g. 
protein complex/protein relationship). 
There are two ways in which 
REDESIGN performs the entailment 
process. The entailments can be 
generated by Description Logic (DL) 
inference using means of an underlying 
RDF store such as RDF/DL reasoners 
(21) or using matrix representation of 
RDF pathway maps. In the matrix 
method, RDF data of pathway and 
ontology maps are first represented by 
their adjacency matrices. In such an adjacency matrix, a cell holds a non-zero value only if corresponding RDF 
nodes have an edge. Here, we experimented with adjacency matrices that account and do not account for edge types. 
In the former case, a cell value of an adjacency matrix holds a numerical code of a corresponding edge. In the latter 
case, a cell value is 1 if a corresponding edge exists, and zero otherwise. REDESIGN then extends an adjacency 
matrix of each pathway map with relations derived from an ontology adjacency matrix using algorithmic steps 
shown in Figure 2.  
 
REDESIGN Step 2: During the second step REDESIGN uses adjacency matrices of the RDF pathway maps with 
entailments to compute a differential pathway map. The differential pathway map consists of topological differences 
of the original pathway maps. The map is computed using either element-wise logical XOR operation or using 
element-wise subtraction method. In case with XOR, each cell of the differential adjacency matrix will have a non-
zero value only if an edge exists only in one of the original maps for which the differential map is computed. In the 
subtraction method, we utilize an indicator function: 
 

𝐴𝑑𝑗𝐷𝑖𝑓𝑓𝑀𝑎𝑝*+ = 	 .
1, 1𝐴𝑑𝑗𝑀𝑎𝑝𝐴*+ −	𝐴𝑑𝑗𝑀𝑎𝑝𝐵*+1 > 0	

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, 

 
where 𝐴𝑑𝑗𝐷𝑖𝑓𝑓𝑀𝑎𝑝*+ is the ij-th cell of the adjacency matrix of the resulting differential map, 𝐴𝑑𝑗𝑀𝑎𝑝𝐴*+ and 
𝐴𝑑𝑗𝑀𝑎𝑝𝐵*+, are the ij-th cells of adjacency matrices of original RDF pathway maps A and B with entailments 
correspondingly. The subtraction method takes into account types of edges. A cell value of the adjacency matrix of 
the resulting differential map will have a zero value only if the corresponding cell values in the original adjacency 

Figure 1. REDESIGN roadmap. Generating entailments using description logic (DL) 
inference marked in Blue. Generating entailments using the Matrix method marked in 
Green. Computing the differential pathway map using element-wise XOR marked in 
Purple and using element-wise subtraction marked in Orange. 
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matrices are equal, reflecting the equal type of edges in the 
original RDF pathway maps. Finally, the resulting 
differential RDF pathway map is reconstructed from its 
adjacency matrix and the types of its edges are obtained 
from the original RDF pathway maps A and B and 
visualized. 

The current version of REDESIGN was implemented 
using AllegroGraph RDF Store (21), Java-based Jena (22) 
and Sesame (23) libraries. The RDF entailments were 
materialized and then transferred to the Neo4J (24) graph 
database for graph traversal operations and adjacency 
matrix computations. 
 
REDESIGN “Toy” Example: 

To demonstrate working logic of REDESIGN 
framework, let us look at an example shown on Panel A in 
Figure 3, which presents RDF pathway maps Map A and 
Map B corresponding to two biological conditions. The 
differential pathway map computed by REDESIGN is 
depicted in panel C, where color of the differential edges 
indicates which original map they came from.  

If we take into account a simple ontological 
relationship of biological isomorphism of nodes E and G 
(panel B in Figure 3), then after generating entailments 
maps Map A and Map B will be augmented with 
inferential edges (marked in blue). The result of 
REDESIGN differential pathway analysis will then be 
different (panel D in Figure 3). It is obvious from this 
example that just one simple ontological relationship can 
lead to unexpected and more complex results. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2. Matrix method for generating entailments in RDF 
pathway network maps. 

Figure 3. “Toy example” of REDESIGN inferential analysis. 
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Results and Discussion 
To test the utility of REDESIGN framework for precision medicine analytics we have conducted two 

experiments that are presented below.  
 
Validation of REDESIGN on Primary GBM and Secondary GBM WHO Grade IV 

Glioblastoma Muliforme (GBM) is the most aggressive type of primary brain tumors in humans that affects 
central nervous system (CNS) and has low curable rate. Development of GBM involves multiple genetic alterations 
and aberrant signaling pathways activation. Among the 
signaling pathways in GBM, recent studies suggest that NF-kB 
signaling pathway is one of the main oncogenic pathways in 
promoting tumor formation and response to therapy (25). Like 
other types of cancers, NF-kB is constitutively expressed at 
high level in malignant glioma (GBM IV), leading to multiple 
aspects of aberrant activities involved in anti-apoptosis, cell 
proliferation, angiogenesis, disease recurrence, and resistance 
to therapy. In order to validate our proof of concept, we tested 
our differential pathway analysis algorithm on the curated 
signaling pathways of GBM to see if the algorithm reveals 
biologically useful information as the morphoproteomic diagrams reported by the pathologists. Morphoproteomics 
approach has been used by pathologists to elucidate constitutive activation of NF-kB pathway and its signaling 
cascades in malignancy and therapy of patients with glioblastoma multiforme (26). 

First, we ran our experiment on the signaling pathway maps of primary GBM and secondary GBM WHO Grade 
IV. The goal of this task was to identify differential pathways in both signaling maps, which could potentially be 
main drivers in development of advanced stages of glioma. Since activation of NF-kB and loss of PTEN (involved in 
virtually all types of cancers) are present in both signaling pathways of GBM, the algorithm does not include the two 
genes in the networks. The morphoproteomic findings suggest several GBM oncogenic pathways in which EGFR 
amplification and MDM2 were involved. Figure 4 shows that CDKN2A (alias of INK4A) gene does not inhibit the 
activity of MDM2 resulting in MDM2 up-regulation. Consequently, aberrant regulation of MDM2 leads to NF-kB 
overexpression at the transcriptional and protein level. NF-kB overexpression due to the loss of PTEN and MDM2 
amplifications results in chemo-resistance, disruption of programmed cell death, and angiogenesis (27). In addition, 
our algorithm allowed us to capture the aberrant interactions between CDKN2A (alias of INK4A) and Cyclin D-
CDK4/6 complexes shown in Figure 4. As a result, these complexes could not initiate the phosphorylation of the 
tumor suppressor protein RB resulting in the dissociation of E2F from RB-E2F complexes. Without the dissociation 
of RB-E2F complexes, loss of phosphorylated RB leads to genomic instability and lack of E2F expression results in 
anti-apoptosis and uncontrolled cell proliferation (28,29). This demonstrates that our differential pathway analysis 
framework confirms the previous morphoproteomic findings showing signal cascades of constitutively activated 
NF-kB (26,30,31). Moreover, these results depict potential genes candidates contributing to development of 
malignant glioma, which are MDM2, Cyclin D, and CDK4/6. Thus, our approach opens a new avenue for further 
investigation of aberrant gene functions and gene-to-gene interactions in experimental and computational settings in 
precision medicine. 
 
Uncovering alternative therapeutic targets for GBM patients with tyrosine kinase inhibitor resistance 

Next, we tested REDESIGN framework on the signaling pathways of secondary GBM WHO Grade IV and 
GBM with tyrosine kinase inhibitor (TKI) resistance in order to see if the algorithm enables us to uncover 
alternative therapeutic targets for the GMB patients with TKI resistance. The EGFR gene is often amplified and 
mutated in virtually all types of cancers, including malignant glioma. EGFR overexpression is reported to promote 
DNA synthesis via tyrosine kinase involvement, resulting in progression of malignant brain tumors. Thus, EGFR is 
one of the therapeutic targets for GBM patients. Recent studies report that Gefitinib, one of EGFR tyrosine kinase 
inhibitors, is often administered to the patients with glioma in order to block signal transduction pathways 
implicated in the activity of cell proliferation and tumor growth activities within tumor cells (32-34). However, the 
study reported by Heimberger et. al demonstrated that Gitfinib inhibited growth of tumors that were highly 
expressing wild-type EGFR, but showed inability to inhibit tumor cells expressing the EGFR variant III (EGFRvIII), 
approximately a 70% of reduction in therapeutic efficacy tested in vivo (35-38). The morphoproteomic findings of 
GMB WHO Grade IV demonstrated expression of EGFR/EGFRvIII on the cell surface of the malignant glial cells 
and expression of PKC-alpha as well. In addition, activation of mTOR/Akt pathway was evidenced by nuclear 
compartmentalization of p-mTOR and p-Akt. The findings also reported the overexpression of vascular endothelial 

Figure 4. The network depicts no inhibition of MDM2 and 
CyclinD-CDK4/6 complexes by CDKN2A. 
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growth factor (VEGF) and amplification of AKT3 gene (39). Based on these literature findings, our results show 
differential signaling cascades between the pathway maps of secondary GBM WHO Grade IV and GBM with TKI 
resistance. Figure 5 depicts a network of receptor tyrosine kinases (RTKs), including EGFR/EGFRvIII, ErbB, NGF, 
HGF, IL-6, AXL, c-Met, which are often amplified or 
overexpressed in glioma patients resulting in tyrosine 
kinase inhibitor resistance. Previous studies also revealed 
that activation of alternative pathways via HGF, AXL, 
and c-Met and aberrance of the downstream pathways via 
K-Ras mutation, PTEN loss, BCL2-like, and BIM-
deletion is reported as mechanisms leading to resistance 
to EGFR-TKI therapy (34,40,41). Moreover, the resulted 
networks coincide with morphoproteomic diagrams 
reported in (42) for PKC-alpha, mTOR, AKT3.  As it can 
be seen from Figure 6, the Akt3 network shows the signal 
transduction leading to aberrant activity of cell 
proliferation, survival, motility, and angiogenesis within 
tumor cells. The BAD, BIM, BAX, BCL-2, and BCL-XL 
genes are reported to play an important role in apoptosis 
(43,44).  

Figure 7 shows the network of mTOR signal transduction that cascade to p70S6K, S6, eIF-4EGBP, and eIF-4E.  
Brown et.al demonstrated the morphoproteomic 
findings that correlative expression of 
phosphorylated mTOR and phosphorylated 
p70S6K was observed in invasive head and neck 
tumors (45). 

Our results also confirm the morph 
oproteomic studies revealing how the 
pathologists treated the EGFR-inhibitor-
resistance GBM patient with an adjuvant program 
using a combination of anti-tumor agents shown 
in Table 2 (42).  

Figure 5. The network of receptor tyrosine kinases resulting in tyrosine kinase inhibitor resistance. 

Figure 7. The network of mTOR resulting in metastasis in head and neck 
tumors. 

Figure 6. The Akt3 network and downstream pathways resulting in 
uncontrolled proliferation, increased survival, and anti-apoptosis. 
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Table 2. Potential anti-neoplastic agents and therapeutic targets for adjuvant treatment. 

Potential Anti-Neoplastic Agents Potential Therapeutic Targets 

Lapatinib EGFR/EGFRvIII 
Temozolomide EGFR/EGFRvIII, p-Akt, p53 
Metformin EGFR/EGFRvIII, mir-201, mir-26, mir-26a, SIRT1, RICTOR 
Niacinamide p53, SIRT1 
Plerixafor CXCR4, CXCL12/SDF-1 

 
Figure 8 provides the same evidence for alternative therapeutic targets as the morphoproteomic findings reported 

by the group of pathologists. Therefore, our approach is deemed to support in uncovering alternative therapeutic 
targets that interrupt the signaling pathways of TKI resistance into the therapy of GBM patients.

 
Figure 8. The network depicts alternative therapeutic targets and downstream pathways. 

Conclusion 
Here, we presented REDESIGN: RDF-based Differential Signaling Pathway informatics framework. The 

distinctive feature of the REDESIGN is that it is designed to run on “flexible” ontology-enabled data sets of curated 
signal transduction pathway maps to uncover high explanatory differential pathway mechanisms on gene-to-gene 
level. Preliminary validation of REDESIGN using retrospective studies with two morphoproteomic cases 
demonstrated REDESIGN’s utility to generate actionable hypotheses in precision/personalized medicine analytics. 
However, more validation is needed to assess predictive power of REDESIGN. In future work, we plan to extend 
REDESIGN to include a variety of ontological relationships reflecting biological isomorphism, such as functional 
domain similarity and epistatic mechanisms. 
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