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Abstract

Background: Tumour stem cells are considered important to promote disease progression, recurrence and treatment
resistance following chemotherapy in colon cancer. However, genomic analyses of colorectal cancer have mainly been
performed on integrated tumour tissue consisting of several different cell types in addition to differentiated tumour
cells. The purpose of the present study was to compare genomic alterations in two cell fractions enriched of CD133+
and CD133—/EpCAM+ cells, respectively, obtained from fresh intraoperative human tumour biopsies.

Methods: The tumour biopsies were fractionated into CD133+ and CD133—/EpCAM+ cells by immunomagnetic
separation, confirmed by immunocytochemistry and Q-PCR. DNA were extracted and used for array comparative
genome hybridization (aCGH) after whole genome amplification. Frozen tumour tissue biopsies were used for DNA/
RNA extraction and Q-PCR analyses to check for DNA alterations detected in the cell fractions.

Results: The number and size of DNA alterations were equally distributed across the cell fractions; however, large
deletions were detected on chromosome 1, 7 and 19 in CD133—/EpCAM+ cells. Deletions were frequent in both cell
fractions and a deletion on chromosome 19p was confirmed in 90% of the patients.

Conclusion: Isolation of enriched cells derived from tumour tissue revealed mainly genomic deletions, which were not
observed in tumour tissue DNA analyses. CD133+ cells were genetically heterogeneous among patients without any

defined profile compared to CD133—/EpCAM+ cells.
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Background

Cancer stem cells (CSC) have been related to various
properties of aggressive tumours like metastasis, chemo-
and radio-resistance, relapse, and poor prognosis [1]. A
CSC is regarded a cell within tumours able of self-
renewal and production of heterogeneous lineages of
tumour cells that comprise solid tumours. Current che-
motherapies that target proliferating cells are assumed
to meet considerable levels of resistance from CSC in
solid tumours since CSC proliferate at slow rates com-
pared to differentiated tumour cells and normal cells [2].
Studies have displayed that patients with colorectal can-
cers containing CDI133 expressing cells related to
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reduced survival and high risk of early recurrence [3].
This fact is important, particularly in the light of that
CD133 is regarded a relevant marker for cancer stem
cells in colorectal tumours, although its cell functions
are unknown and it may be that only a small fraction of
CD133+ cells have stem/progenitor activity [4, 5].
Understanding genetics of cancer cells, including
CSC, is important since the use of targeted therapy for
cancer treatment may be increasingly important. Also,
genomic imbalances or copy number variations (CNVs)
correlate with gene expression levels — suggesting dir-
ect effects on gene expression by changes in gene copy
numbers [6]. However, little is known about genomic
changes of CD133+ cells compared to differentiated
tumour cells within solid tumours. Therefore, the aim
of the present study was to compare genomic changes
in CD133+ cells versus differentiated (CD133-/EpCAM
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+) enriched tumour cells from intraoperative human
tumour biopsies.

Methods

Patients

Twenty-seven patients diagnosed with colon cancer se-
lected for curative surgery and who did not receive any
chemotherapy treatment prior to biopsy collection, ac-
cording to institutional guidelines at the time, were in-
cluded in this study (2013-2014). Written, informed
consent was obtained from all patients. The study proto-
col was approved by the Board of Ethics at the Univer-
sity of Gothenburg (permit number: 365-05). Patient
characteristics, after exclusion of one patient whose
tumour was later confirmed to be an adenoma, are
shown in Table 1. Two tumour biopsies were collected
from each tumour; one was immediately frozen in liquid
nitrogen and the other placed in tissue storage solution
for cell separation.

MACS tumour sample separation

The biopsy designated for cell separation was kept in
pre-chilled MACS Tissue Storage Solution and used
within 24 h. The samples were dissociated into single
cell suspensions using Tumour Dissociation Kit (MACS,
Miltenyi Biotec, Bergisch Gladbach, Germany) by mech-
anical dissociation and enzymatic degradation of extra-
cellular matrix. The single cells were incubated with
Dead Cell Removal Microbeads for 15 min at room
temperature and separated with MACS LS Column; the
labelled cells were collected as the effluent fraction. Cells
were washed with 9 ml stock solution (1.25 ml 20X
Binding Buffer Stock Miltenyi Biotec diluted up to 25 ml
with ddH,O) and centrifuged at 300G for 10 min and la-
belled with CD133 antibodies conjugated to ferromag-
netic beads (CD133 Microbeads, 130-050-801, MACS
Miltenyi Biotec) for 30 min at 4 °C. After incubation,
cells were washed with 9 ml MACS Buffer, centrifuged
at 300G for 10 min, separated using MACS LS column
and kept on ice until further analyses (Fig. 1). CD133

Table 1 Patient characteristics (n = 26)°

Patients (n)
Male/Female 11/15
Age at surgery 71.1 (44-94)
Tumour stage (I-IV) 51110, 1119,V 2
Tumour differentiation Medium 23/High 2/Mucinous 1
Positive lymph nodes (analysed 5-52) 1 (0-6)
Tuymour location Right 14 / Left 11/Multiple 1
Radical surgery Y/U/N 23/2/1
Recurrent disease (June 2015) 3

@ One patient with adenoma excluded. Data presented as mean
(range), Y = yes/U = uncertain/N = no
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Fig. 1 Tissue separation and cell fractionation Tumour tissue was
separated into CD133+ and CD133—/EpCAM+ cell fractions confirmed
with ICC and analysed with CGH microarrays

negative cells were used in a second step for separation
labelled with EpCAM antibodies (CD326, 130-061-101,
MACS Miltenyi Biotec) for 30 min at 4 °C and washed
with MACS Buffer before separation. Cells were passed
through MACS LS column. The negative fraction was
collected as the effluent (CD133-/EpCAM-) and positive
cells were flushed out of the column and collected as
EpCAM positive fraction (CD133-/EpCAM+). Cells
were used immediately for downstream analysis after
separation of CD133+, CD133-/EpCAM+ and CD133
—-/EpCAM- fractions.

There are some technical issues to consider with stud-
ies of genomic alterations in small amount of cells as
performed in the present study. One such matter is that
CD133+ cells are few within tumours. Therefore, whole
genome amplification (WGA) was necessary before
microarray analyses, which may affect amplification and
interpretations of microarray results [7]. We chose to
use a Multiple Displacement Amplification (MDA) tech-
nique that was recommended for CGH microarrays
(Agilent) in detection of amplifications and deletions of
DNA. Also, the EpCAM+/Cd133- cell fraction was col-
lected by additional round of enrichment with column
elusion, which may reduce recovery. However, unselect-
ive difference in recovery of cell fractions should not im-
pact seriously on the possibility to perform qualitative
comparisons. The DNA quality was checked along prep-
arations on all samples.

Immunocytochemistry for CD133 detection

Biopsies from four random patients were separated with
CD133 antibody as described above (MACS, Miltenyi
Biotec, Bergisch Gladbach, Germany) and the two frac-
tions obtained, CD133+ and CD133-, were used for
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immunocytochemistry. The cells were attached to a glass
slide using cytospin centrifugation at 1000 rpm for
4 min. The slides were placed in methanol at -20 °C for
20 min for fixation. After this step, the MACH2 staining
protocol was followed (Histolab, Gothenburg, Sweden).
Briefly, peroxide was blocked with peroxidised 1 reagent
(Histolab, Gothenburg, Sweden) for 5 min. After wash-
ing with TBS wash buffer (Histolab, Gothenburg,
Sweden), cells were covered with Background Sniper
(Histolab, Gothenburg, Sweden) for 10 min to avoid
non-specific binding. TBS wash buffer was used in all
washing steps. Cells were incubated with CD133 primary
antibody (AC133, 130-090-422, Miltenyi Biotec, 15 pg/
ml) overnight at 4 °C, washed, and incubated with
MACH2 30 min for secondary ALP detection. After
washing, cells were covered with Warp red chromogen
(prepared according to data sheet) for 7 min and coun-
ter stained with hematoxylin for 2 min. The slides were
washed with tap water and mounted using aqueous
mounting medium. Mouse IgG1 (Dako 0931, 15 pg/ml)
was used as negative control.

DNA and RNA isolation

DNA and RNA were isolated from CD133+ and CD133
—/EpCAM+ cells according to Allprep DNA/RNA micro
Kit (Qiagen, Hilden, Germany) and from tumour tissue
with Allprep DNA/RNA mini kit (Qiagen, Hilden,
Germany). Briefly, cells were lysed and homogenized
with RLT Buffer and transferred to an Allprep DNA spin
column for binding of genomic DNA. The flow through
was mixed with 70% ethanol and transferred to an
RNeasyMinElute spin column for total RNA binding. To
elute the RNA, 12 pl of RNase-free water were used and
DNA was eluted with 50 ul of Buffer EB pre-heated at
70 °C. RNA quality and quantity were measured using a
Bioanalyzer 2100 (Agilent Technologies, Santa Clara,
CA, USA). Only RNA with RIN value 26.5 was used in
further analyses. RNA samples were stored at -80 °C
and DNA at -20 °C.

Gene expression of stem cells markers

Gene expression levels of genes related with stemness
were measured by Q-PCR in the CD133+ and CD133
—-/EpCAM+ cell fractions from randomly selected pa-
tients. Genes tested were BMP7 (CD133+ n = 16,
CD133-/EpCAM+ n = 17), PROM1 (gene for CD133;
CD133+ n = 10, CD133-/EpCAM+ n = 12), and
POUSF1/Oct4 (CD133+ n = 12, CD133-/EpCAM + =13).
All three genes were not tested in all samples due to
small sample size, poor RNA quality and/or low amount
of RNA. GAPDH was used as a housekeeping gene, con-
firmed separately [8], and run for all samples. cDNA
synthesis was performed using QuantiTect Reverse
Transcription kit (Qiagen, Hilden, Germany). Q-PCRs
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were run in LightCycler 1.5 using LightCycler FastStart
DNA Master plus SYBR Green I kit (Roche Diagnostics,
Basel, Switzerland) with final primer concentration
0.5 mM for each gene. Primer information is described
by Lonnroth et al. [9]. For each Q-PCR, 2 ul cDNA were
used with the following PCR conditions: Activation for
10 min at 95 °C and denaturation for 10 s at 95 °C, 20 °
C/s were the same for all reactions. Annealing: 7 s 58 °C
(PROM1I); 4 s 64 °C (BMP7, GAPDH); 5 s 66 °C
(OCT4B1). Extension and cycle numbers: 22 s 72 °C,
40 cycles (PROMI); 5 s 72 °C, 45 cycles (BMP7); 20 s
72 °C, 40 cycles (OCT4BI1); 5 s 72 °C, 40 cycles
(GAPDH). PCR efficiency and slope of standard curve
for GAPDH was 88.97% and -3.62, BMP7 83.44% and
-3.79, PROM1 76.42% and -3.77, and OCT4B1 91.01%
and -3.60. Q-PCR results were calculated according to
the relative standard curve method and all samples were
in the range of the standard curve. Negative controls
were negative. Results were analysed with ANOVA
followed by Fisher PLSD and are presented as mean
units/units of GAPDH + SEM. P < 0.05 was considered
statistically significant in two-tailed tests.

DNA Whole Genome Amplification

DNA from CD133+ and CD133-/EpCAM+ populations
as well as reference DNA (Agilent Euro male, #5190—
3796) for CGH array analysis were amplified using the
REPLI-g Single Cell Kit (Qiagen, Hilden, Germany) ac-
cording to manufacturer’s protocol. Briefly, 2.5 ul of
template DNA was incubated with 2.5 pl buffer D1 for
3 min. Neutralization buffer, N1, was added and REPLI-
g master mix added after neutralization. The mixture
was incubated for 2 h at 30 °C. DNA polymerase was
inactivated at 65 °C for 3 min. Reference DNA was ampli-
fied in 8 aliquots that were pooled and used as reference
DNA in the array CGH. DNA was stored at —20 °C.

DNA Purification

DNA was purified using GFX PCR DNA and Gel Band
Purification kit (Illustra, GE Healthcare, Little Chalfont,
UK) according to manufacturer’s instructions. DNA
samples were mixed with 500 pl of Capture Buffer type
3, loaded onto a GFX MicroSpin column and centri-
fuged at 16000G for 1 min. The column was washed
with 500 pl Wash buffer type 1 and centrifuged
(16000G, 1 min); this washing step was repeated to
achieve high purity. DNA was eluted with 30 pl Elution
buffer type 6 after 1 min incubation. DNA quality was
checked on a 2% agarose gel and additional tests were
run using 2200 Tape station (Agilent Technologies,
Santa Clara, USA). DNA quantity was measured using
Qubit® assay (Thermo Fischer Scientific, Waltham, MA,
USA). Two patients were excluded from further analysis
due to poor DNA quality. DNA was stored at —-20 °C.
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Array CGH - DNA alterations in CD133+ and CD133-/
EpCAM+ cell populations

Cell fractions of CD133+ and CD133-/EpCAM+ from
20 patients were used for study of differences in DNA
alterations between the two cell populations (n = 40 ar-
rays). 500 ng of WGA DNA isolated from CD133+ and
CD133-/EpCAM+ cells were used to perform array
CGHs against WGA reference DNA (Agilent Euro male,
#5190-3796). Genome wide analyses of DNA copy num-
ber changes were performed using Sureprint G3 Human
CGH Microarray Kit (Agilent Technologies, Santa Clara,
CA, USA) format 4x180K with 13 kbp overall median
probe spacing (11 kbp in Refseq genes) according to
Agilent Oligonucleotide Array-Based CGH for Genomic
DNA Analysis Enzymatic Labelling for Blood, Cells or
Tissues Protocol version 7.1, December 2011. Slides
were scanned with Agilent Microarray Scanner G2505C,
fluorescence intensities were extracted using the Feature
Extraction software program FE v10.7.1.1 (Agilent Tech-
nologies, Santa Clara, USA) and analysed using CGH
Analytics software Genomic Workbench version 7.0.4.0
(Agilent Technologies, Santa Clara, USA). Aberration al-
gorithm ADM-2 (threshold 6, fuzzy zero on, normalized
with diploid peak centralization and GC correction) was
used with default design level filter (v2) and feature level
filter. Filter after analysis was DefaultAberrationFilter_v2
(minProbe 3, minAbs. average log ratio 0.25). Combined
analysis of arrays divided into CD133+ and CD133
—-/EpCAM+ groups were performed with inter array
analysis.

Q-PCR - DNA alterations in tumour tissue

Q-PCR assays were performed at 4 regions of chromo-
some 19p to study if the deletions at chromosome 19p
detected in cell fractions also were detected in corre-
sponding tumour tissue. Well-known colon cancer alter-
ations were also evaluated with Q-PCR; 1 region at
chromosome 13 and 1 region at chromosome 20 as well
as 1 region at chromosome 10 that is known to be un-
affected in colorectal cancer (control) in DNA from
tumour tissue biopsies. Primers were designed by TATAA
Biocenter AB (Gothenburg, Sweden) with PrimerBlast
(http://www.ncbi.nlm.nih.gov/tools/primer-blast/), primer
sequences for chromosome 10, 13 and 20 are described
elsewhere [10] and for chromosome 19 in Additional
file 1: Table S1. The Q-PCR assays were validated on
gBlocks to estimate the PCR efficiency of the assay. A
seven point standard curve was generated with four
replicates in each point and run in ten-fold dilution
steps. The dilution series covered a template concentra-
tion between 2 x 10” and 20 copies/reactions. LPA car-
riers were added to the dilution series to avoid
unspecific interactions of target. Q-PCR analysis was
performed with TATAA SYBR® GrandMaster® mix
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(TATAA Biocenter AB, #TA01) in 10 pl reactions on
CFX384 instrument (Bio-Rad, Hercules, CA, USA).
Two replicates of the DNA control (Agilent Euro male,
#5190-3796) with concentration 20 ng/reaction were
measured together with the standards. Raw Q-PCR data
was analysed with GenEx software (version 6, MultiD
Analyses AB), standard curve and limit of quantifica-
tion were generated. Specificity control (amplicon size)
for PCR products from designed assays was performed
on capillary electrophoresis instrument (Fragment Ana-
lyser, Advanced Analytical Technologies, Ankeny, IA,
USA) according to manufacturer’s instructions. Results
were analysed according to comparative Cq method
with the region at chromosome 10 and reference DNA
(Agilent Euro male, #5190-3796) as standards. Results
between 0.90—1.10 were regarded as not altered.

Results

Immuno-cytochemical detection of CD133 expression in
the tumour cell fractions

CD133 protein expression was evaluated in 4 samples by
immunocytochemistry to demonstrate that CD133+ and
CD133- cell fractions were separated into two cell popu-
lations with different expression of CD133. The results
display CD133 protein expression in 63% (range 51—
74%) of enriched cells in the CD133+ fraction and <2%
(range 0—-3%) of CD133- cells (Fig. 2a).

Gene expression of stem cell markers

Transcript levels of known cancer stem cell genes indi-
cated that the CD133+ cell population expressed higher
levels of such genes. PROM1 (PROMI = CD133 gene)
displayed increased expression compared to cells in the
CD133-/EpCAM+ population (p = 0.018) (Fig. 2b).
CD133+ cell samples also showed higher expression of
another cancer stem cell gene, BMP7, compared to
CD133-/EpCAM+ cell samples (p = 0.0081). OCT4 gene
expression was below detection limit in all cell samples,
except 5 samples (2 CD133+, 3 CD133-/EpCAM+; all
from different patient tumour biopsies).

DNA alterations in CD133+ and CD133—-/EpCAM+ cell
populations
The number of DNA alterations in the two cell fractions,
CD133+ and CD133-/EpCAMH+, displayed great hetero-
geneity; in the CD133+ cell population DNA alterations
in the 20 patients ranged from 6 to 230 per patient (am-
plifications 3—18, deletions 3—-212), while a range of 4—
278 DNA alterations per patient (amplifications 2-17,
deletions 2-261) were seen in the CD133-/EpCAM+
cell population.

Overall array CGH results indicated that deletions cor-
responded to 87% of DNA alterations in all samples;
thus more common than amplifications. The total
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Fig. 2 CD133+ and CD133- are various cell fractions. a Immuno-
cytochemical staining of CD133 positive cells (top, black arrows
added in the photo indicate examples of CD133+ cells) and CD133
negative cells (bottom), with a difference at 63% versus <2% overall
staining among cells in the two fractions, which displays differences
in CD133 expression in the two cell populations. b Transcript levels
of stem cell markers in CD133+ and CD133—/EpCAM+ cell populations
differed significantly (CD133/PROMT p = 0.018, BMP7 p = 0.0081)

number of significant alterations (2285) in all samples
was equally distributed between the two cell populations;
51% was from CD133+ population and 49% from the
CD133-/EpCAM+ population (Table 2). Deletions de-
tected in both CD133+ and CD133-/EpCAM+ [(shared
deletions) and found in more than 50% (10 patients) of
evaluated patients], were located on chromosome 1, 2, 7,
8, 10, 12, 14, 15, 16, 18, and 19. Amplifications detected
in both CD133+ and CD133-/EpCAM+ cells [(shared
amplifications) and found in more than 10 patients]
were located on chromosome 3 and 14 (both related to
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deletions in the Agilent Euro male reference DNA)
(Table 3). A list of shared deletions is supplied as
Additional file 2: Table S2. Deletion of chromosome 19p
occurred in 27 samples (10 CD133+ and 17 CD133
—-/EpCAM+) representing 18 patients (Fig. 3). A complete
gene list of chromosome 19p deletion is added as
Additional file 3: Table S3.

DNA alterations in CD133+ versus CD133—-/EpCAM+ cell
populations

Amplifications were more common in CD133+ cells
(83%) than in CD133-/EpCAM+ cells (17%); while dele-
tions were more equally distributed between the cell
populations, CD133+ 42% and CD133-/EpCAM+ 58%
(Table 2). No significant differences in number (Fig. 4)
or size (bp) of alterations between CD133+ and CD133
-/EpCAM+ were detected (Table 2), except for chromo-
some 1, 7 and 19, which showed significantly larger al-
terations in CD133-/EpCAM+ population (Table 4 and
Fig. 3). There were 8 alterations detected specific for
CD133-/EpCAM+ cell population located at 8q24.3,
11q12.2-q13.3, 11q12.3, 11q13.4, 1123.3, 16q13, 17p13.2
and 17q21.2. For the CD133+ cell population, 3 deletions
were detected only located on 1q42.12, 8pl11.22 and
12q13.13-q14.1 (Table 5).

DNA alterations in tumour tissue

DNA alterations in tumour tissue were detected with Q-
PCR of selected by known genomic regions and on
chromosome 19 in CRC. Amplifications were detected
in chromosome 13 and 20 in 55% (chr13 n = 11, chr20
n = 11) of the samples (n = 20). Two deletions were de-
tected in chromosome 20 and five deletions in chromo-
some 13. In chromosome 19p, a deletion in the specific
region was detected in 6 of 20 patients (total 11 dele-
tions in 80 reactions; 4 Q-PCR assays x 20 samples).
Several tumour samples displayed amplification in
tumour tissue at chromosome 19p (50%, n = 40 of 80 re-
actions, representing 10 of 20 patients) (Fig. 2).

Table 2 Mean number of significantly altered base-pairs either specific or total (specific + shared) for CD133+ and CD133—/EpCAM+

cell fractions isolated from intraoperative colon cancer biopsies

Specific alterations

Total alterations

(N’ arrays) CNV CNV T-test CNV CNV T-test
CD133 (20) EpCAM (20) p value CD133 (20) EpCAM (20) p value
CNV (Mbp/patient) 285+ 136 248 £ 5.1 0.801 71.7 £222 68.6 =220 0.922
% of all 53 47 51 49
Amp (Mbp/patient) 123+ 112 25+15 0.392 147 £ 115 463 £ 152 0.391
Amp % of all 83 17 76 24
Del (Mbp/patient) 162 £ 58 223 +£50 0433 571 £ 194 64.0 + 222 0.815
Del % of all 42 58 47 53

mean + SEM, CD133 = CD133", EpCAM = CD1337/EpCAM*



Cervantes-Madrid et al. BMC Cancer (2017) 17:219

Table 3 Number of patients (total 20) with either a specific CNV
for each cell fraction or a shared CNV detected in both cell
fractions at the same location. Note that the shared amplifications
detected at chromosome 3 and 14 represents a deletion in the
reference DNA

Amplifications Deletions

CD133  EpCAM  Shared (D133 EpCAM  Shared

(20) (20) (20) (20) (20) (20)
Chr1 4 2 3 11 14 17
Chr 2 2 1 1 10 6 "
Chr 3 2 2 17 9 9 8
Chr 4 1 3 1 4 8 5
Chr 5 0 0 0 9 6 7
Chr e 2 0 0 10 9 7
Chr7 2 0 0 10 15 14
Chr8 1 2 8 6 8 1
Chr9 3 1 0 10 8 5
Chr1i0 0 1 0 8 10 13
Chr 11 2 1 5 1 9 10
Chr 12 2 1 3 14 11 14
Chr 13 4 2 1 7 5 4
Chr14 0 0 20 5 10 16
Chr 15 1 1 0 8 9 15
Chr 16 0 2 1 10 1 "
Chr 17 5 10 8 7 11 7
Chr 18 0 0 0 4 5 12
Chr 19 7 5 2 6 12 "
Chr20 2 2 1 7 7 3
Chr 21 1 2 0 4 5 10
Chr 22 1 1 0 6 7 6

CD133 = CD133+, EpCAM = CD133-/EpCAM+

Discussion
Colorectal cancer is genetically recognised with many re-
ported alterations and mutations. However, most gen-
omic analyses have been performed on tumour tissue
material — with thousands or millions of cells analysed
mixed together. Tumour tissue consists of several differ-
ent cell types beside tumour cells, which may also be
heterogeneous. Therefore, our aim was to compare gen-
omic alterations in two well-defined cell fractions con-
sisting of CD133+ and CD133-/EpCAM+ enriched cells.
CD133, also known as prominin-1, is considered to be
a cancer stem cell marker in fresh, surgically resected
colorectal cancer samples [3]. It is widely used to iden-
tify and isolate cancer stem cells with prediction of
survival, recurrence, metastasis and chemotherapy resist-
ance [11]. Also, in tumour tissue, CD133 is localized in
areas with high cellularity while it is hardly detected at
all in mucosa [4]. In the present paper, other stem cell
markers such as BMP7 was also used to confirm that
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CD133+ cells are more stem cell like than CD133
—-/EpCAM+ cells. BMP7 is a regulator involved in the
maintenance of the stem cell niche and related to poor
prognosis in colorectal cancer patients [12]. OCT4 is
regarded a key factor in maintenance of pluripotency of
stem cells and has been related to poor prognosis in
cancer [13, 14]. There was a significant difference in ex-
pression of BMP7 between the two cell populations with
high expression in the CD133+ fraction, while OCT4
was hardly observed in any of the cell populations.
Reported studies on colorectal cancer tissue display
amplifications at chromosome 8¢, 13 and 20q, and dele-
tions at chromosome 8p, 17p and 18q [15-17]. Amplifi-
cations at chromosome 13 and 20 were detected in 11 of
our 20 patients at tumour tissue analyses while such al-
terations were not detected to the same extent in the
two cell fractions; amplifications at chromosome 13 were
detected in 6 patients, and 4 patients had amplifications
at chromosome 20. In this study, we detected a deletion
at chromosome 19p in 17 of 20 patients in both CD133
+ and CD133-/EpCAM+ cells. This deletion was only
detected in 6 of 20 patients at tumour tissue level with
Q-PCR, while 10 patients displayed a gain instead (Fig.
2). In our earlier studies on genomic alterations in colo-
rectal cancer we detected gain at chromosome 19p13.3
in both tumour tissue and adjacent mucosa, which was
more common in advanced cancer (Dukes D patients)
[15]. A deletion at chromosome 19 in colorectal cancer
has only been reported in a study by Cimino Reale et al.
in 3 of 11 patients [18], while a gain of 19p was detected
in both primary and recurrent tumour tissue by others
[19]. It is possible that the deletion may be diluted by a
bulk of other cells in tumour tissue and thereby escaped
detection, especially considering that a gain at 19p was
earlier detected by ourselves in the mucosa of colorectal
cancer patients [15]. Chromosome 19 is one of the most
gene dense chromosomes and a deletion of the p-arm
affects several genes (Additional file 3: Table S3).
Chromosomal fragile sites are unstable genomic regions
prone to gaps or breaks. In cancer, these regions are fre-
quently sites of chromosomal rearrangements including
translocations, deletions, and amplifications [20]. On
chromosome 19, fragile sites have been found at 19p13.1
and q13 as well as in the centromeric region, 19p11/q11.
Overall, deletions were more common than amplifi-
cations in our CD133 positive and negative cell frac-
tions opposing our earlier result on mixed tumour
tissue [15]. An explanation may be that DNA deletions
were diluted by the presence of normal DNA. Other-
wise DNA alterations were in number and size distrib-
uted equally between the two cell fractions. However,
large alterations were detected at chromosome 1, 7
and 19 in CD133-/EpCAM+ cell population. Also,
several large amplifications were detected in CD133+
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alterations between CD133+ and CD133—/EpCAM+ cell fractions identified with CGH array analyses. (Green = deletions, red = amplifications).
Q-PCR assay results displayed deletions and amplifications detected in tumour tissue. (Below 0.90 was regarded as deletions and above 1.10 as

+=CD133+, - = CD133-
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1.08
0.99
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1.00
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1.08
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cells compared to CD133-/EpCAM+ cells, although
not significantly different probably due to high genetic
heterogeneity displayed in both cell fractions. Some
patients had numerous alterations while others had
few; a span of more than 200 alterations was found
between patients with few versus high frequency of
DNA alterations. An explanation for this could be
chromosomal instability that is common in colorectal
cancer [21].

Our present aim was to compare differences in gen-
omic alterations between CDI133+ and CD133

80 0.89

70 0.92

60

50
0.83

0.52 I 0.55

| M= i b

Specific Specific Specific Total Total del Total all
amp del all amp

Fig. 4 Number of DNA alterations in CD133+ versus CD133—/
EpCAM+ cells. Significant differences in number of alterations were
not detected between CD133+ and CD133—/EpCAM+ cell fractions.
Alterations specific for either CD133+ or CD133—/EpCAM+ cell
populations as well as total number of alterations (both specific and
shared alterations) for each population are presented in the diagram

40 0.85 = CD133+

30 EpCAM+

20

Mean number of CNVs

—-/EpCAM+ cell fractions. Therefore, we focused on
specific alterations in the two cell fractions. However,
some patients had similar genomic alterations in the
two cell fractions while others had completely different
alterations. This made it hard to say that CD133+ cells
are genetically homogenous or defined as stated by Gai-
ser et al. who concluded aberrant profiles between
CD133+ and CD133- cells in 7 out of 12 patient sam-
ples [22]. Due to the amount of alterations detected
among our patients it would require very large groups
of patients to confirm whether CD133+ cells are genet-
ically distinct. Great genetic heterogeneity may repre-
sent different subclones of CD133+ cells and CD133
-/EpCAM+ cells [23].

In this study, specific alterations detected for CD133+
were deletions of 1q, 8p and 12q while specific alter-
ations for CD133-/EpCAM+ cell fractions were dele-
tions of 8q, 11q and 17p, and amplifications on 11q and
17q. Deleted DNA regions in CD133+ cell population
contain known cancer related factors such as ERBB3
(HER3) and HOTAIR [24, 25]. In CD133-/EpCAM+
cells significantly altered DNA regions contained fac-
tors known to be involved in cancer such as VEGFB
and MIR192 [26, 27] (Table 4). However, these alter-
ations occurred in both cell fractions from patients at
individual analyses of the arrays. Therefore, a most rele-
vant change for tumour progression may be the dele-
tion at chromosome 19p that was detected in both cell
fractions in 90% of our patients involving 575 genes
and miRNAs.
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Table 4 Size of CNVs (Mbp) specific for either CD133+ or CD133—/EpCAM+ cell fraction presented as amplifications and deletions

per chromosome and patient

Amplifications Deletions

CD133 EpCAM T-test CD133 EpCAM T-test

(Mbp/patient) (Mbp/patient) p value (Mbp/patient) (Mbp/patient) p value
Chr 1 0.17 £ 0.1 0.06 = 0.05 0.37 068 £ 0.3 1.70 £ 04 0.03
Chr 2 022 +02 0.01 +0.01 0.24 050+ 03 0.24 £ 0.1 0.39
Chr 3 0.01 £ 0.008 0.009 + 0.006 0.77 0.56 £ 04 034 £02 0.62
Chr 4 0.06 £+ 0.06 0.08 = 0.07 0.86 0.06 = 0.03 0.04 £ 0.02 044
Chr 5 0 0 - 213+18 042 + 04 037
Chré 0.02 £ 0.02 0 0.17 021 £0.1 0.92 £ 06 0.23
Chr7 0.01 £ 0.01 0 0.25 0.76 £ 04 223 £ 06 0.05
Chr 8 0.06 £+ 0.06 0.09 + 0.08 0.75 038 £0.2 0.16 = 0.07 033
Chr 9 0.03 + 0.02 0.01 + 0.01 035 070 £ 05 1.00 £ 0.6 0.68
Chr 10 0 012+ 012 0.32 037 £02 1.99 £ 19 040
Chr 11 0.02 £ 0.02 0.002 + 0.002 0.22 117+ 06 1.09 £ 0.5 091
Chr 12 647 + 64 0.002 + 0.002 0.32 1.06 £ 04 215+ 9 0.27
Chr 13 481 =477 0.01 £ 0.008 0.32 0.08 £ 0.04 0.06 = 0.04 0.70
Chr 14 0 0 - 022 +£02 037 £02 0.53
Chr 15 001 + 001 0.02 + 0.02 0.80 045+ 02 0.16 £ 0.1 0.21
Chr 16 0 0.04 = 0.03 0.28 145+ 06 049 £ 0.2 0.13
Chr 17 0.16 = 0.09 0.23 £ 0.08 0.60 324 £22 0.78 £ 04 0.28
Chr 18 0 0 - 0.06 + 0.04 0.13 + 0.06 0.31
Chr 19 0.15 £ 0.06 0.08 = 0.05 0.35 154+ 14 749 £ 27 0.05
Chr 20 0.04 £ 0.03 1.54 + 1.54 0.33 0.12 £ 0.06 0.23 £ 0.1 048
Chr 21 001 + 001 0.19+0.13 0.18 0.03 + 0.03 0.002 + 0.001 0.28
Chr 22 0.01 £ 0.01 0.006 = 0.006 0.70 042 £03 0.26 £ 0.1 0.68
Total 123+ 112 25+15 0.39 162+ 58 223 +50 043

Mean + SEM, Mbp = mega base pairs, CD133 = CD133+, EpCAM = CD133-/EpCAM+

Table 5 Statistically significant DNA alterations specific for either CD133+ or CD133—/EpCAM+ cell fractions from human colon

biopsies. Number of patients refers to the number in each group (n = 20) who displayed the alteration

Chr location CNV N° patients N° patients N° genes Examples of genes in the region
CD133 EpCAM
(20) (20)
CD133
1g42.12 Del 7 7 7 LEFTY1/2, PYCR2, ACBD3
8p11.22 Del 5 5 2 ADAMS5P, ADAM3A
12913.13 - q14.1 Del 15 8 195 HOTAIR, GDF11, ERBB3, CDK2, CDé3, PTGES3, MIR1228
EpCAM
8q24.3 Del 7 8 27 NAPRT, MAPK15, SCRIB, PUF60, MIR661, SHARPIN
119122 -g133 Del 9 9 247 SYT7, MIR1908, MIR612, MIR192, MIR194-2, VEGFB,
MALATT1, BAD, FOSL1, RELA
119123 Amp 7 5 4 SLC22A9/10/24/25
119134 Del 6 8 5 PDE2A, MIR139, ARAP1, STARD10, ATG16L.2
119233 Del 9 8 12 BCLOL, UPK2, FOXR1, TRAPPC4
17p13.2 Del 5 8 12 PENT, INCAT1, KIF1C
179212 Amp 6 11 39 Keratins and keratin-associated proteins

CD133 = CD133+, EpCAM = CD133—/EpCAM+
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Conclusion

Separation of solid tumour tissue into defined enriched
cell fractions displayed genomic alterations that were
not observed in mixed tumour tissue. In cell fractions of
CD133+ and CD133-/EpCAM+ cells we detected a de-
letion at chromosome 19p that was not evident in corre-
sponding tumour tissue. Importantly, CD133+ cells did
not show a distinct genetic profile, but displayed several
alterations (mostly deletions) with large heterogeneity
both within tumours from the same patient and among
patients.
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