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Abstract: Monitoring wetland dynamics and related land-use changes over long-time periods is
essential to understanding wetland evolution and supporting knowledge-based conservation policies.
Combining multi-source remote sensing images, this study identifies the dynamics of marshes, a core
part of wetlands, in the Small Sanjiang Plain (SSP), from 1965 to 2015. The influence of human
activities on marsh patterns is estimated quantitatively by the trajectory analysis method. The results
indicate that the marsh area decreased drastically by 53.17% of the total SSP area during the study
period, which covered the last five decades. The marsh mostly transformed to paddy field and dry
farmland in the SSP from 1965 to 2015, indicating that agricultural encroachment was the dominant
contributor to marsh degradation in the area. Analysis of the landscape indexes indicates that
marsh fragmentation was aggravated during the past five decades in the SSP. Trajectory analysis
also indicated that human activities have acted as the primary driving force of marsh changes in the
SSP since 1965. This study provides scientific information to better understand the evolution of the
wetland and to implement ecological conservation and sustainable management of the wetlands in
the future.
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1. Introduction

Wetlands, the kidneys of the landscape, play an important role in hydrological and carbon
cycles, influencing groundwater recharge, gross water balance, flood response, greenhouse gas (GHG)
emissions, carbon storage, and biodiversity maintenance [1–4]. Compared to other ecosystems of
the same climate zone, the productivity of wetland ecosystems is usually much higher [5]. However,
wetlands are quite sensitive to human disturbances, as well as climate change, and this leads to a
severe degradation and loss of wetlands globally [6–10]. Wetland degradation or loss will bring about
a series of ecological and environmental problems, including biodiversity loss, reduced ecosystem
services, soil erosion, and increased flood risk [11–14]. Wetland protection and restoration are essential
all over the world to promote sustainable development, especially in areas where wetlands have
been damaged [13–16]. Clarifying the spatiotemporal patterns of wetlands and distinguishing the
contributions of different factors to wetland changes are key issues for understanding wetland evolution
and implementing wetland protection and restoration activities [17–19]. Therefore, future studies
should quantify the influence of different relevant factors, such as human activities, on wetland areas
and their distribution, to better understand wetland evolution.

Satellite images, an important source for obtaining historical land-use information, may also be
the most inexpensive and effective option [20–22]. However, the unavailability of satellite data before
1972 has become a constraint for monitoring historical land-use patterns during this period. Usually,
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model reconstruction, e.g., using a Cellular Automata (CA) model to reconstruct historical land-use
patterns, was the main method to obtain historical land-use maps before 1972 [23,24]. However,
model reconstruction is accompanied by uncertainty to some extent. Satellite images can provide great
convenience in detecting historical land-use patterns. The CORONA satellite, which was launched
in 1958, can be used as a potential data source for environmental monitoring [25–28]. The CORONA
satellite, during 1960–1972, took many images that can serve as an important dataset for detecting
land-use changes during this period [28–34]. The CORONA satellite was not public before 1995,
which is one of the reasons why these images were not widely used. Acquired with a telescopic camera
system, the CORONA images are black-and-white at 7-micron (3600 dpi) or 14-micron (1800 dpi)
resolution. The best product of the CORONA mission has a resolution of approximately 6 feet
(1.8 m). Generally, classifying land-use patterns from panchromatic images with a high resolution,
like the ones from CORONA, is challenging as a result of spectral limitations [26]. Some efforts
have been made to acquire land-use maps using CORONA images, such as monitoring irrigation
ponds, soil erosion, and cultivated land [22,25,26,35–39]. To cover the coarse spectral limitations of
CORONA images, Gurjar et al. combined contrast, textural, and geometrical information to perform
classification [26]. Chen et al. used textural features, instead of the spectral information, for supervised
land-use classification of CORONA images. In this study, CORONA images were used to obtain
land-use distribution information in 1965. In this study, textural features, shape, structure, and tone
information, as well as ancillary data, were combined to perform the classification. CORONA images
were re-sampled to 30 m to maintain consistency with the Landsat images. Integrating multi-source
RS images is generally the most economically feasible way to acquire historical land-use maps in many
cases. However, the lack of related historical land-use data creates a problem of accuracy validation.
Extensive field surveys, historical records (such as aerial images and statistic data), and interviews
with local residents and experts, as well as Unmanned Aerial Vehicle (UAV) images, were applied to
validate the accuracy of this study.

Bi-temporal detection is the general method to analyze land-use changes [40–42] and is easy
and convenient to carry out. Bi-temporal detection analyzes land-use changes based on a two-epoch
timescale. However, some information is ignored by this bi-temporal detection method. Recovering
the history of land-use changes and linking spatiotemporal changes to different driving forces (human
activities and natural factors) is usually necessary to better understand the land-use evolution process.
Trajectory analysis is a method used to study and discover the trends of land use and land cover
changes (LULCC) in a time series. The trajectory analysis method, which can recover land-use history
as well as link land-use changes to different driving forces, has been widely used to quantitatively study
the influence of human activities on land-use changes [18,43–45]. Additionally, trajectory analysis
can be applied to illustrate the trends of land-use patterns over time [44,45]. The trajectory analysis
method has also been applied to estimate future land-use changes over time [43–46]. In this study,
trajectory analysis was adopted to better understand the marsh evolution process and to quantitatively
research the influence of human factors on marsh loss.

As one of the core parts of wetlands, marsh is defined as an area that is frequently or continually
inundated with soft-stemmed vegetation that is adapted to a saturated soil. The Sanjiang Plain contains
the largest freshwater marsh in China. This study focuses on the dynamic changes of marsh in the
hinterland of Sanjiang Plain, the Small Sanjiang Plain (SSP). Since the 1950s, the marshland in the
SSP has experienced large-scale reclamation [47–49]. Given the importance and necessity of wetland
protection and restoration, it is necessary to link marsh transformations to different land-use changes
and various influencing factors. Based on multi-source remote sensing (RS) data containing CORONA,
Landsat TM (Thematic Mapper), and OLI (Operational Land Imager) images, this study describes
marsh dynamics as well as its related land-use changes. Additionally, we traced marsh transformation
for every location and quantitatively distinguished the effects of different factors on marsh evolution.
In particular, the objectives were (1) to illustrate the marsh patterns and related land-use changes in
the SSP during 1965–2015; (2) to analyze the landscape patterns of marshes in the past five decades
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through landscape indexes; and (3) to trace the marsh change paths and quantify the influence of
human disturbances on marsh loss in the SSP.

2. Materials and Methods

2.1. Study Area

The Small Sanjiang Plain (SSP) (46◦50′05”–48◦27′56” N, 130◦32′57”–135◦05′26′′ E) is a floodplain
in Northeast China, formed by the alluviation of three rivers (Amur, Ussuri, and Songhua) (Figure 1).
Several important National Nature Reserves, including Sanjiang National Nature Reserve, Honghe
National Nature Reserve, and Bachadao National Nature Reserve, are located in the SSP. The total
area of the SSP is approximately 1.6 million ha, in which four counties are included. The yearly
mean temperature in the SSP ranges from 1.4 to 4.3 ◦C with July and January being the warmest and
coldest months, respectively. The yearly mean precipitation in the SSP ranges from 500 to 650 mm.
The SSP has been suffering from both climate warming and extensive human disturbances since the
mid-1950s [18,48]. Large-scale natural wetlands have been reclaimed as cultivated land since the
mid-1950s. Since the 1990s, the great value of wetlands has been recognized, and the government
began to consider the importance of the protection of wetlands in this region. Therefore, wetland
reclamation has decreased significantly. Large-scale conversion of paddy fields to dry farmlands began
in the 1990s. The transformations from wetland to dry farmland and then to paddy fields were the
main land-use change type in the SSP. Therefore, this study chose 1965, 1995, and 2015 to reveal the
major land-use change process.
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2.2. Data Source and Handling

CORONA images, Landsat TM, and Landsat OLI are the main data sources used in this study to
obtain land-use patterns during 1965–2015. In this study, 18 CORONA black-and-white images with a
ground coverage of 14 × 188 (in kms) were used to map the land-use distribution patterns of 1965
(Figure 2). The CORONA images were acquired by a telescopic camera system and scanned as digital
black-and-white images at a 7-micron (3600 dpi) or 14-micron (1800 dpi) resolution. The CORONA
images used in this study have a spatial resolution of 6 feet (1.8 m). Eight CORONA satellite images
acquired on 13 July 1964 and ten images acquired on 24 September 1966 were downloaded from Earth
Explorer, USGS, to cover the whole study area. The CORONA images were re-sampled to 30 m to
maintain consistency with the Landsat images. The principle behind the selection of RS images in order
to obtain land-use data is that the imaging date (season) should be consistent. The imaging date of RS
images in this study ranges from June to September. Image interpretation was mainly based on images
obtained in the same month, with images from other months used as a supplement in the uncovered
area. Georeferencing of CORONA images was carried out using Ground Control Points (GCPs).
For each image scene, at least twenty evenly distributed points served as GCPs. The selected GCPs in
the SSP were generally river intersections or road crossovers. Before further visual interpretation, it was
essential to evaluate the georeferencing accuracy. The root mean squared (RMS) error of geometric
rectification was no larger than 1.5 pixels (45 m) in this study. The minimum mapping unit in this
study was no less than 36 pixels (3.24 ha).
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With only one broadband 8-bit (0–255) gray level, the supervised classification method cannot be
directly used on the CORONA images. Therefore, RS images were visually interpretated and digitized
by the ArcGIS software in this study to obtain land-use classification in the SSP. Uniform quality
control and integration to check for land-use data in different years were conducted to guarantee the
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high-quality and consistency of the land-use maps. Before developing our land-use data, field surveys
were widely performed to generate interpreting samples. The interpreters were first trained to
recognize different land-use types from CORONA/Landsat images. Then, the interpreters made use of
the ArcGIS software to identify different land-use types on the computer screen, according to their
understanding of spectral reflectance, structure, shape, textural features, and other information of
the images. Finally, the interpreters drew the boundaries of different land-use types and added their
attributes to the polygons. After the interpretation tasks were completed, the interpreters first checked
the results by themselves, and then an interpreter with decades of interpretation experience checked
the results a second time. If possible, the same interpreter was responsible for the interpretation of a
certain region. In this study, topographic, vegetation, DEM, roads and rivers, and soil maps in this
area were used as auxiliary data for interpretation. The post-classification comparison method has the
disadvantage of error amplification in the spatial analysis process. To reduce this error, the outlines of
land-use types were delimited by comparing RS images between intervals. For example, the vector
lines of land-use types in 2015 were drawn by comparison with Landsat TM images of 1995 and
Landsat OLI images of 2015 based on land-use maps of 1995 to maintain consistency in this study.
A more detailed description of the prepossessing and interpretation of Landsat images can be found in
our previous publications [50–56].

Many field surveys, aerial photos, historical field survey records, Statistical Yearbooks,
and interviews with locals were adopted to evaluate the accuracy of our results [54–56]. Photos
taken by cameras during field surveys were used as the main data to validate the land-use data
in this study. Considering that marshes are usually distributed in remote place where traffic is
often not convenient, Unmanned Aerial Vehicles (UAVs) were applied to perform field surveys and
accuracy verification in 2015. UAV images were mainly used as a supplement to correct and check the
interpretation results. A battery-powered quadrocopter can fly for approximately 23 min. When the
UAV flies at an attitude of 200 m, it can acquire photos with a resolution of 5–6 cm [18]. Images
obtained from the UAV are a relatively new way to obtain high-resolution images for observing the
Earth’s surface. These images taken by UAVs have been widely used in scientific research, including
forest monitoring, detecting rangeland, and mapping gully erosion [57–59]. UAV images were only
applied for the year 2015 and were used as a supplement for the classification of land-use in this study.
The verification points were randomly chosen at a ratio of 10%. Visual interpretation is usually labor
intensive, but it usually has a relatively high accuracy. The overall accuracy of the four classes (forest
land, grassland, water body, and settlement) was no less than 94.3% and that of the four subclasses
(paddy field, dry farmland, marsh, and other unused land) was no less than 91.2%. For example,
the average accuracy of land-use for 1995 was 92.9% [50].

2.3. Data Analyses

2.3.1. Loss Area and Rate

The annual loss area (ALA, ha/year) and loss rate (LR, %) was calculated by [18]:

ALA = At2 − At1/(t2 − t1) × 100% (1)

LR = At2 − At1/At1 × 100% (2)

where ALA means the annual loss area, while LR represents the loss rate between time t1 and time t2.
At1 and At2 are the areas of marshy wetland at time t1 and time t2, respectively.

2.3.2. Landscape Pattern

In our study, six metrics, including Mean area (AREA_MN), Landscape shape index (LSI), Number
of patches (NP), Landscape division index (DIVISION), Splitting index (SPLIT), and Aggregation
index (AI), were applied to illustrate the landscape pattern changes of the marshland in the SSP (as is
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shown in Table 1). Fragstats software (Fragstats, 4.2, Oregon State University: Corvallis, OR, USA)
was used to calculate these six metrics. All eight land-use types were calculated, but we only analyzed
the landscape changes of the marsh.

Table 1. The landscape metrics.

Type Unit Description

AREA_MN ha Mean area stands for the mean patch size.

LSI None Landscape shape index that provides a standardized measure of the total edge or
edge density and is only meaningful relative to the size of the landscape.

NP None NP means the number of patches of a given landscape type.

DIVISION None Landscape division index equals 1 minus the sum of the patch area (m2) divided by
the total landscape area (m2). A greater DIVISION represents more fragmentation.

SPLIT None Splitting index equals the total landscape area (m2) squared divided by the sum of
the patch area (m2) squared. Greater SPLIT means more fragmentation.

AI % Aggregation index equals the number of like adjacencies involving the
corresponding class. The smaller the AI index means less aggregation.

2.3.3. Trajectory Analysis

The trajectory code was calculated as in Equation (3) to capture the trajectory changes of
marsh changes:

Yi = (G1)i × 10n−1 + (G2)i × 10n−2 + . . . (Gn)i × 10n−n (3)

where Yi and n indicate the trajectory code and the number of time intervals, respectively and (Gn)i
represents the code of different land-use change types in patch i at a time node. Different land-use
types were represented by numbers 1 to 8 in this study (Table 2). For example, number 1 and 2 were
used to represent paddy fields and dry farmland, respectively.

Table 2. Land-use change types.

Type Examples of Trajectory Code

Paddy field “122” indicates that the parcel transformed from paddy to dry farmland from
1965 to 1995 and then kept as dry farmland during 1995–2015.

Dry farmland “721”indicates that the parcel transformed from marsh to dry farmland from 1965
to 1995 and then converted to paddy during 1995–2015.

Forest land “321”indicates that the parcel transformed from forest land to dry farmland
during 1965–1995 and then converted to dry farmland from 1995 to 2015.

Grassland “742”indicates that the parcel transformed from marsh to grassland during
1965–1995 and then converted to dry farmland from 1995 to 2015.

Water body “588”indicates that the parcel transformed from water body to unused land from
1965 to 1995 and then kept as unused land during 1995–2015.

Settlement “726”indicates that the parcel transformed from marsh to dry farmland from 1965
to 1995 and then converted to settlement during 1995–2015.

Marsh “711”indicates that the parcel transformed from marsh to paddy from 1965 to
1995 and then kept as paddy during 1995–2015.

Other unused land “788”indicates that the parcel transformed from marsh to unused land from 1965
to 1995 and then kept as unused land during 1995–2015.

Additionally, land-use types were grouped to 3 classes based on trajectory code Yi: human-induced,
natural-evolution, and unchanged types. This study also breaks the “natural evolution” category into
two subcategories: “natural evolution leading to marsh gain” and “natural evolution leading to marsh
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loss”. Table 3 lists the definitions and examples of different land-use change types related to marsh
changes. Land-use types were classified as human-induced types whenever a land-use change is
human-induced. The unchanged type means that the land-use type remains the same during the study
period (such as code “777”).

Table 3. Land-use change types related to marsh changes.

Type Land-Use Changes Examples

Human-induced type

Marsh→Paddy 711; 771; 721
Marsh→Dry farmland 722; 772; 712

Marsh→Forest 733; 773; 732
Marsh→Settlement 766; 776; 726

Natural evolution leading to
marsh gain

Paddy→Marsh 177; 117
Dry farmland→Marsh 277; 227

Forest→Marsh 377; 337
Grassland→Marsh 477; 447

Water→Marsh 577; 557; 575
Other unused land→Marsh 877; 887; 878

Natural evolution leading to
marsh loss

Marsh→Grassland 744; 774; 747
Marsh→Water 755; 775; 757

Marsh→Other unused land 788; 778; 787

Unchanged type Marsh→Marsh 777

3. Results

3.1. Spatio-Temporal Changes

3.1.1. Percentage Changes

Figure 3 demonstrates the area percentage of marsh in the SSP during 1965–2015. Statistical data
indicate that the area percentage of marsh decreased from 65.07% in 1965 to 11.90% in 2015, with a
drastic drop of 53.17% during the study period. The marsh area in the SSP declined drastically during
period 1 (1965–1995) and then decreased slightly during period 2 (1995–2015). Figure 4 demonstrates
the spatial changes of land-use in the SSP. It can be clearly seen from Figure 4 that the marsh was
reclaimed as cultivated land on a large scale.
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Figure 3. The percentage changes of the marsh area in the SSP since 1965.
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3.1.2. Loss Area and Loss Rate

The loss area, annual loss area, and loss rate of marshes during different periods are shown in
Table 4. Statistics indicate that marshes in the SSP decreased dramatically by 68.96% and 41.08%,
respectively, during period 1 (1965–1995) and period 2 (1995–2015). The loss area during period 1 was
0.72 million ha, with an annual loss area of 23,982.89 ha/year in period 1. The loss area decreased to
0.14 million ha during period 2, with an annual loss area of 6652.36 ha/year in period 2. The dramatic
decrease of marshland in period 1 is largely related to the “Food First” policy published in 1957
and the “Agricultural Modernization” policy implemented from 1978 to 1985. The “Food First”
policy encouraged more people to participate in agricultural reclamation activities [18], while the
“Agricultural Modernization” provided advanced equipment for large-scale reclamation and promoted
large-scale transformation from marsh to cultivated land [48]. The loss rate of marshland showed a
downward trend in period 2, mainly due to wetland protection policies and actions since the 1990s,
such as the establishment of nature reserves.

Table 4. Marsh loss rate in different time intervals.

Period Loss Area (ha) Annual Loss Area (ha/year) Loss Rate (%)

1965–1995 −719,486.55 −23,982.89 −68.96
1995–2015 −133,047.16 −6652.36 −41.08

3.2. Landscape Change

The landscape pattern characteristics are illustrated by the AREA_MN, NP, LSI, DIVISION, SPLIT,
and AI indexes. LSI and AREA_MN (ha) show an obvious downward trend from 1965 to 2015,
indicating a large-scale loss of marsh during the study period. The NP which represents the number of
patches, decreased from 1383 in 1965 to 489 in 2015 (Table 5).

Table 5. Landscape changes of the marsh in the SSP in the past five decades.

Year NP LSI AREA_MN DIVISION SPLIT AI

1965 1383 49.7857 754.7203 0.6759 3.085 98.5668
1995 662 41.3445 489.2211 0.9948 194.014 97.8721
2015 489 32.1449 390.1984 0.9986 696.4322 97.8589
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A smaller AI index represents less aggregation, while higher DIVISION and SPLIT indexes
represent more fragments. This study indicated that the AI declined from 98.57 to 97.86, while the
DIVISION grew from 0.68 to 1.00 during 1965–2015. In the SSP, the SPLIT rose from 3.09 to 696.43
during the last five decades. Changes in these three indexes show that the fragmentation of marshland
was aggravated during 1965–2015 in the SSP. The changes during period 1 were more obvious than
those during period 2.

3.3. Trajectory Computing

Figure 5 describes the trajectory changes of the marsh in the SSP. Figure 5a shows the marsh
change with different steps. In the past five decades, unchanged types of marsh occupied only 7.60%
of the SSP’s area, while the percentages of one-step and two-step changes were 28.15% and 64.25%,
respectively. The above trajectories of marsh changes show the weak stability of the marshland in the
SSP in the last five decades.
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Figure 5. Trajectories of marsh changes, 1965–2015: (a) marsh changes with different steps; (b) marsh
change types.

20 types were included in the one-step changes (Table S1 in Supplementary Materials), mainly
contributed by the conversion from marsh to paddy and dry farmland. Statistic indicated that the
percentage of one-step change was 28.15%, of which the conversion from marsh to cultivated land
accounted for 20.09%. “771” (Marsh→Marsh→ Paddy) accounted for the biggest proportion (10.89%)
among one-step changes, followed by “772” (Marsh→ Marsh→ Dry farmland, 5.31%), and “733”
(Marsh→ Forest→ Forest, 2.55%). The ratio of transformation from other land-use types to marsh
made up merely 0.64%. All these changes showed that marsh in the SSP has been reclaimed intensely
since 1965, and once they were destroyed, they would be hard to restore.

There were 59 types in the two-step change trajectories (Table S2 in Supplementary
Materials), mainly including “721” (Marsh→Dry farmland→Paddy, 27.10%) and “731” ((Marsh→
Grassland→Paddy, 12.64%), which reveals that the marshland in the SSP was reclaimed or forested
on a large scale during period 1 (1965–1995) and then was transformed into paddies during period 2
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(1995–2015). Marsh reclamation for cultivated land still accounted for a relatively large proportion
of two-steps trajectories during this period. The two-step changed trajectories also represent the
conversion from marsh to grassland, as well as that between marsh and water, which may have a
relationship with changes in rainfall.

The spatial patterns of unchanged, naturally induced, and human-induced changes are shown
in Figure 5b. Statistics indicate that the proportion of human-induced types is the biggest (79.95%),
while those of unchanged and naturally induced types only constitute 7.60% and 12.44%, respectively.
Additionally, the proportion of natural evolution leading to marsh loss was much larger than natural
evolution leading to marsh gain. Thus, human activities have played a major role in marsh loss since
1965 in the SSP.

4. Discussion

4.1. Uncertainty Analysis

Integrating multi-source RS images is the most economically feasible way to acquire historical
land-use maps in many cases. However, combining multi-source RS images may produce some
limitations, such as different spectral and spatial resolutions. In order to solve the limitation of
inconsistent spatial resolution, CORONA images were resampled to 30 m in this study, which may
lead to the loss of some information. Considering the limitation of different spectral resolutions, visual
interpretation, which can combine multi-source information such as textures and shapes, was used
in this study. However, visual interpretation is time consuming and laborious. Therefore, under the
premise of ensuring accuracy, classifying multi-source information in combination with automatic
classification to improve efficiency needs to be strengthened in the future. The lack of related historical
land-use data creates a problem of accuracy validation [47,48]. To ensure the accuracy of land-use
data in this study, extensive field surveys were performed in the 1990s and 2015. Photos taken by a
camera during field surveys were used to validate land-use data in this study. The verification points
were randomly chosen at a ratio of 10%. Historical records, such as aerial images and statistical data,
and interviews with local residents and experts were also used to validate the accuracy. The land-use
data in 1965 in this study was compared with a field survey of marshes from the 1960s by the Northeast
Institute of Geography and Agroecology, the Chinese Academy of Sciences. UAV images from 2015
were used for accuracy verification and as a supplement for the classification of land-use. In this
study, UAV images, which can provide more detailed information, were used as a supplement to
validate our land-use map from 2015. Because marshes are always located in areas with poor traffic,
UAVs can provide great convenience in the field surveys of marshes. For example, a UAV can detect
marshes blocked by forests. The overall accuracy of the four classes (forest land, grassland, water body,
and settlement) was no less than 94.3%, and that of the four subclasses (paddy field, dry farmland,
marsh, and other unused land) was no less than 91.2%. There are still some uncertainties in this
study. Due to time and economic constraints, this study does not compare the land-use extraction
results obtained from CORONA and Landsat images captured at a similar time (e.g., the 1970s).
To maintain data consistency, the CORONA images were resampled to 30 m in this study, which may
have reduced the accuracy to some extent. In general, the land-use maps in this study are credible,
despite some uncertainties.

To distinguish the role of human activities and natural factors, we assumed that marsh changes
are human-induced types, provided that one of the observed land-use changes is human-induced,
whenever it occurs. Our hypothesis may have some uncertainties to some extent, but it provides
a preliminary estimation of the effects of human disturbance on marsh loss. Firstly, once a marsh
is destroyed by human beings, it tends to stay stable. For example, once a marsh is converted to
cultivated land and settlement, it usually maintains a stable status [24]. Secondly, the proportion of
marsh changes caused by human disturbances in period 1 and those induced by natural evolution in
period 2 was small. As a result, the hypothesis in this study is relatively reasonable.
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4.2. The Role of Human Activities

This study clarifies the dominant role of human disturbances quantitatively through a trajectory
analysis. Previous studies have also indicated that land-use changes are largely related to human
disturbances [47–49], especially to population expansion and large-scale agricultural reclamation.
Trajectory analysis clarifies that the reclamation of cultivated land is the main driving force of marsh
loss and degradation in the SSP. Rapid population growth promoted the intensive reclamation of
marshes [47,48]. Previous studies have also attempted to quantitatively clarify the effects of climate
change. The study by Zhang et al. [60] revealed that climate factors contributed to 17–30% of marsh
loss during 1954–2005 in the Sanjiang Plain. The research of Xue et al. [61] indicated that the effect of
climate change was approximately 4.33–5.21% from 1981 to 2010. Our results indicate that human
activities contributed to 79.95% of the marsh loss from 1965 to 2015 in the SSP, which was the hinterland
of the Sanjiang Plain. The main conclusions are consistent with the above two studies.

Government policy was also an important driving force that affected human activities, as well as
marsh changes, in the SSP. The “Great Leap Forward” movement in the 1950s [47] and the “Going to the
Countryside and Settling in the Communes” policy published at the beginning of 1970s [18] encouraged
people to participate in agricultural activities. Under the influence of these policies, approximately
531.5 thousand people (approximately 81,500 veterans and 450,000 educated youth) took part in the
wetland reclamation of cultivated land [47], leading to the conversion from marshes to paddy field
and dry farmland (Marsh→Paddy and Marsh→Dry farmland) listed in Table 3. The “Agricultural
Modernization” [48] policy published in 1978 introduced modern agricultural machinery and then
promoted marsh reclamation extensively. The “Three North Shelter Forest Project” implemented in
1979 promoted the transformation from marsh to forest. The time interval in this study is relatively
long. The marsh-to-forest conversion mainly involves the transformation from marsh-to-arable land
to forest. Additionally, some government polices have supported the area growth of marshland in
the SSP, especially during period 2, when natural reservations received more attention. The wetland
restoration project, since the late 1990s, and the establishment of natural reserves, since the late 1980s,
have promoted wetland protection [48,49].

4.3. The Role of Climate Change

Climate change was also an important factor that affected marsh changes in the study area.
Climate warming has been observed since the 1950s in Northeast China, as well as in the Sanjiang
Plain [18,47–49]. Studies indicate that the mean temperature has increased by approximately 0.78 ◦C
per year in the Sanjiang Plain since 1954 [18]. The temperature and precipitation changes since 1965
in the Sanjiang Plain were obtained according to published climate data [18], which were generated
by the Kriging interpolation of data from meteorological stations (Figure 6). The results indicate that
the yearly average temperature increased by 0.28 ◦C/10 y, while precipitation decreased at a rate of
0.24 mm/year in the Sanjiang Plain in the past five decades.

The increasing temperature has helped reclamation from marshland in the SSP, given the fact that
temperature is one of the most critical environmental variables that affects crop growth, especially
in cold regions [62,63]. For example, previous studies indicate that rice cannot be planted in areas
where the yearly mean temperature is low [64,65]. Therefore, climate warming is favorable for the
conversion from marshes to paddy fields (Marsh→Paddy), as well as for the changes from marshland
to dry farmland (Marsh→Dry farmland) listed in Table 3. Despite the fact that the yearly mean
precipitation indicated no obvious trends since the 1950s, drought frequency has increased in the
Sanjiang Plain, promoting marsh loss in the study area [64]. As an important part of marsh wetlands,
the water supply can greatly influence marsh distribution, as well as the conversion between marsh
and grassland/water [66–68]. Increased drought frequency promotes the transformation from marsh to
grassland/water listed in Table 3. Wind speed has obviously declined in the past several decades in
Northeast China [48], which has been beneficial for crop growth. Decreased wind speed promoted the
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transformation from marsh to paddy and from marsh to dry farmland, as listed in Table 3. Both climate
warming and decreased wind speed promoted the transformation from marsh to cultivated land.
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4.4. Wetland Conservation and Restoration

The marsh loss rate has declined in the past five decades in the SSP. One important reason for
this decline is that wetland protection is valued. However, it cannot be ignored that the total area of
marshland still shows a downward trend. Therefore, wetland conservation and restoration still need
to be taken seriously. Wetland conservation can be strengthened by building more wetland nature
reserves, strengthening environmental assessments of wetland development projects, and enhancing
public awareness of wetland protection [69–71]. Wetland conservation can reduce the loss of unchanged
types (Marsh→Marsh) listed in Table 3. Restoring water in a wetland environment has become the key
to solving wetland restoration problems [72–74]. Water restoration helps convert grassland and other
unused land to wetlands (Grassland→Marsh and Other unused land→Marsh listed in Table 3). Human
disturbances, such as road construction and trench digging, have changed the original landform
features of this land, which has led to wetland hydrological disconnection [75]. Therefore, before the
restoration of water depth, these patches need to be connected naturally through micro-landscape
transformation to ensure that water depth gradients are diverse, as well as the normal growth of
vegetation under different water depth conditions during wetland restoration [74,76]. Considering that
reclamation is the main cause of wetland loss, promoting the conversion of cultivated land to wetland
is a priority for wetland restoration [77,78]. The transformation from paddy to marsh (Paddy→Marsh)
and from dry farmland to marsh (Dry farmland→Marsh), as listed in Table 3, can be implemented to
promote wetland restoration. Apart from the ecological aspects of protecting and restoring wetlands,
the economic benefits of wetlands also cannot be ignored [69,71]. Some actions can be taken to promote
the rational use of wetland resources in the SSP. The introduction of aquatic economic plants, such as
lotus seed, can be carried out to increase biodiversity and economic benefits [79–81]. Fish and crab can
be raised in wetland areas to increase economic income and biodiversity [82,83]. Reeds can be used to
raise crabs and achieve a reed–crab compound ecosystem.

5. Conclusions

Monitoring historical wetland dynamics and related land-use changes is essential to understand
the wetland evolution process. Quantitatively assessing the impact of human activities on wetland
changes can help support knowledge-based conservation policies. Combining multi-source RS images,
this study identified marsh dynamics and driving factors in the SSP from 1965 to 2015. The results
indicate that the marsh area in the SSP decreased dramatically during 1965–2015, with a drastic drop
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of 53.17% during the study period. The marshland was mostly transformed into cultivated land in the
SSP from 1965 to 2015, indicating that agricultural encroachment was the dominant contributor to
marsh degradation in the SSP. The analysis of landscape indexes indicates that marsh fragmentation
has been aggravated over the past five decades. Trajectory analysis also shows that human activities
have acted as the primary driving force behind marsh changes in the SSP since 1965.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/20/4/1036/s1,
Table S1: Percentages (>0.01%) of one-step changes by codes, 1965–2015 (%), Table S2: Percentages (>0.01%) of
two-steps changes by codes, 1965–2015 (%).
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