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Abstract 

Eradicating health disparity is a new focus for precision medicine research. Identifying patient subgroups is an 

effective approach to customized treatments for maximizing efficiency in precision medicine. Some features may be 

important risk factors for specific patient subgroups but not necessarily for others, resulting in a potential 

divergence in treatments designed for a given population. In this paper, we propose a tree-based method, called 

Subgroup Detection Tree (SDT), to detect patient subgroups with personalized risk factors. SDT differs from 

conventional CART in the splitting criterion that prioritizes the potential risk factors. Subgroups are automatically 

formed as leaf nodes in the tree growing procedure. We applied SDT to analyze a clinical hypertension (HTN) 

dataset, investigating significant risk factors for hypertensive heart disease in African-American patients, and 

uncovered significant correlations between vitamin D and selected subgroups of patients. Further, SDT is enhanced 

with ensemble learning to reduce the variance of prediction tasks. 

1. Introduction 

Due to health disparities, identifying possible subgroups plays an important role in designing treatment schemes and 

assessing treatment effects for a given individual patient. The subgroups defined by patients' features enable 

clinicians to explore whether and where heterogeneity of the treatment effect occurs; those features defining 

subgroups in turn may shed light on the complex relationships between the disease phenotype and patient’s risk 

factors.  

In recent years, precision medicine has been brought to great attention. As defined by the National Research Council 

(NRC)1, precision medicine is "the tailoring of medical treatment to the individual characteristics of each patient"; 

methodologically, precision medicine is referred to "the ability to classify individuals into subpopulations that differ 

in their susceptibility to a particular disease, in the biology and/or prognosis of those diseases they may develop, or 

in their response to a specific treatment". This implies that accurate identification of patient subgroups and 

associated risk factors emerge as a promising path to precision medicine. Multi-disciplinary collaboration, such as 

medical science, statistics and computer science are essential to designing and developing effective subgroup 

analysis approaches. 

Traditional treatment schemes are designed based on the homogenous diagnosis of patients. However, the “one-size-

fits-all” approach is not always successful due to ubiquitous differences in treatment effects across and within 

patient subgroups. One possible reason accounting for that phenomenon is that there exist different risk factors for 

different patient subgroups, yet the “one-size-fits-all” treatments do not take it into consideration. Therefore, 

identifying patient subgroups and the specific factors associated with risk and treatment response becomes a major 

analytical challenge.  

Frequently, clinical researchers have found that the selected features of patients are possibly linked to a disease 

phenotype, yet there is no strong evidence from the conventional whole group analysis to uncover the opaque 

association. Revealing the subgroup specific linkage could potentially uncover the mechanism of a disease. From the 

new perspective of subgroup analysis, exploring the opaque association boils down to detecting whether the specific 

feature(s) are risk factor(s) for a subgroup of patients, but not necessarily for the whole group. Furthermore, if that 

feature is a key risk factor for a patient subgroup, finding other significant features (risk factors) is also of great 

importance for clinicians. 

There have been many machine learning methods developed to identify, select and prioritize risk factors. Lasso type 

methods2,3 are widely used for risk factor selection4,5 due to the shrinkage effect on feature coefficients; random 

forest6 is capable of measuring importance for features and hence can achieve risk factor selection and 
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prioritization7. However, those techniques are built under an assumption that the patient population is homogenous 

in phenotype that shares the same group of risk factors. Moreover, these techniques are not applicable when a set of 

hypothesized risk factors exist. Consequently, they are not capable of identifying variabilities in risk factors for 

patient subgroups.   

In this paper, in response to the aforementioned challenges, we propose a novel tree-based method, named as 

Subgroup Detection Tree (SDT), to detect subgroups with a (pre-given) hypothesized feature possibly being as a risk 

factor. We developed a novel splitting criterion to grow a SDT. The splitting criterion seeks a split that leads to the 

maximal phenotypic variance reduction jointly in the response (phenotype) and hypothesized features (risk factors), 

and hence links the response and the features. Splits in SDT identify a set of patient features that are closely related 

both to the hypothesized features and the phenotype. Subgroups are automatically generated as leaf nodes from tree 

building procedure. Based on the identified subgroups, personalized risk factors can be developed within each 

subgroup to assist clinician to treat, intervene or prevent disease more effectively. 

The rest of this paper is organized as follows. In Section 2, we describe the problem and motivation in a 

hypertension (HTN) study. In Section 3, we review related works in tree method, including CART and tree-based 

methods developed for subgroup analysis. In Section 4, we present the subgroup detection tree method in details. In 

Section 5 we present a case-study of finding personalized risk factors using a hypertension data. In Section 6, we 

conclude with discussion. 

2. Problem Statement 

Recent data suggest that lower respective serum 25-OH D (which changes into an active form of the vitamin D) 

levels may account for a substantial proportion of the greater age-and sex-adjusted cardiovascular risk among 

African-Americans8,9. Within the framework of subgroup analysis, we focus on a study conducted in the Detroit area 

where the primary interest is to explore the relationships between vitamin D deficiency and cardiovascular disease 

disparities and to evaluate the efficacy of adjunct vitamin D therapy. In the study, data was collected from a 

demographic subgroup (African-Americans) that is at high-risk for HTN. Hypertension has been shown to be the 

single most important contributor to the existing racial differences in life-years lost from cardiovascular disease, 

explaining close to 50% of the excess risk that exists within the black community10. African-Americans experience 

higher disease prevalence and, especially in males, poorer overall BP (BP) control than their white and Hispanic 

counterparts. As a result, African-Americans are at increased risk for adverse, pressure related adverse 

consequences, particularly premature onset of left ventricular (LV) hypertrophy11. The left ventricular mass indexed 

to body surface area (LVMI) on gadolinium-enhanced cardiac magnetic resonance (CMR) was used as a measure of 

structural heart damage.  

Reasons for the glaring disparities in HTN and its pressure-related consequences are myriad with no single 

sufficiently explanatory variable. However, clear racial differences in vitamin D exist and are largely attributable to 

the effects of skin pigmentation on conversion of 7-dehydrocholesterol to vitamin D3 by ultraviolet light. Vitamin D 

deficiency has been linked to incident cardiovascular disease in other, largely white cross-sectional databases but its 

presence predisposes to the development of HTN in blacks12. 

With considerations above in mind, based on the clinical HTN data, our goal is to detect whether there are 

subgroups among the participating patients showing associations between LVMI and vitamin D. In addition to 

subgroup identification, we are also interested in finding the associated features through which LVMI is related to 

vitamin D if there indeed exist patient subgroups showing significant association between LVMI and vitamin D 

levels.  

3. Related Works  

3.1 Tree method  

The tree-based method (or called recursive partitioning) is a widely used machine learning technique that partitions 

feature space into mutually exclusive regions. Starting with a single node containing all the samples, the tree is 

grown by splitting the parent node into two or more child nodes according to some predefined splitting criterion. 

Within each child node, the partitioning procedure continues until stopping criteria are met. 

In general, we may end up with an overly large initial tree that unavoidably leads to overfitting. A standard routine 

for addressing this issue is to prune the initial tree. The pruning algorithm seeks a balance between the goodness-of-

fit for training samples and model complexity, and generates a sequence of subtrees. The best tree is then selected 

using validation methods such as cross validation or other statistical approaches. 

194



  

3.2 Tree methods for prediction task 

The classification and regression tree (CART)13 is one of the most widely used tree methods in statistical learning 

and data mining. CART with its pruning idea for tree size selection has greatly advanced the application of tree 

methods. In the growing procedure, CART seeks a splitting pair (𝑋, 𝑐) of the parent node (where 𝑋 is a feature, c is a 

splitting point associated with) for a binary and univariate partition. For 𝑋 is continuous or ordinal, all samples with 

𝑋 ≤  𝑐 are sent to the left child node otherwise sent to the right child node. For 𝑋 categorical with 𝑘 levels, 𝑐 is a 

level subset, samples with 𝑋 ∈ 𝑐 goes to the left child node and the others goes to the right. The splitting pair (𝑋, 𝑐) 

is obtained by a greedy search among all possible splits that results in the minimal sum of impurity measures of the 

left and right node. 

As the splitting procedure stops, a large initial tree is grown. To avoid overfitting, Breiman et al. proposed a pruning 

algorithm based on what is called "cost-complexity" criterion16. The cost-complexity criterion is essentially a 

tradeoff between tree size and goodness-of-fit to the training samples. Using the so-called "weakest-link pruning" 

(which is an elegant implementation using “cost-complexity” criterion), the pruning procedure ends up with a nested 

sequence of subtrees. The subtree with the best estimated prediction performance (using cross validation or 

validation dataset) is selected as the fitted model. We refer to [16] for details of pruning. With the selected best tree, 

the prediction of a new sample falling into some leaf node is made based on the training samples sitting in the same 

region. 

C4.514 is another popular tree method for classification. It uses information entropy in the partition criterion and 

multi-way split in dealing with categorical variables. Different from CART, C4.5 employs a statistical pruning 

procedure to choose the optimal subtree. Further development of tree methods in classification and regression 

includes GUIDE15 and URPCI16. These methods seek unbiased splitting feature selection. The idea behind them is to 

separate the splitting feature selection and splitting point selection from the greedy search, and splitting feature is 

selected through some statistical procedure such as hypothesis testing. 

3.3 Tree methods in subgroup analysis 

Tree based methods in subgroup analysis are greatly developed in recent years. One advantage of tree method is that 

subgroups are objectively formed as leaf nodes in the tree procedure without any prior hypothesis.  

Tree-based method for subgroup analysis was first used in the context of censored survival data. Ciampi et al.17 

proposed the “recursive partition and amalgamation” (RECPAM) algorithm. In RECPAM, splits in the tree 

algorithm are selected based on a greedy choice of a statistic, which measures the heterogeneity of treatment effects 

between the resultant subgroups (i.e. child nodes). Based on RECPAM’s CART-similar pruning procedure, Negassa  

et al.18 further explored RECPAM in its approach to select the best subtree.  

Su et al.19 developed interaction tree (IT) to identity subgroups showing disparities in treatment effects. The splitting 

criterion in IT is built on a statistical t-test, which measures the interaction between treatment and a feature. The split 

resulting in the most significant test is chosen to grow the tree. To validate an IT, an “interaction-complexity” 

pruning criterion, which balances the overall interaction of IT and the IT complexity, along with the “weakest-link” 

strategy, is used. This pruning procedure generates a nested sequence of subtrees and the optimal subtree is chosen 

via cross-validation or bootstrapping. As subgroups are identified from IT, further analysis can be performed for 

determining the heterogeneity across all subgroups.  

Qualitative interaction tree (QUINT)20 is a further development in discovering the heterogeneity of effects of two 

different treatments. The goal of QUINT is to identify the qualitative interaction in addition to the quantitative 

interaction. QUINT seeks a split maximizing a weighted sum of a measure for difference between two treatment 

effects and the size of subgroups. In validating the qualitative interaction tree, the pruning strategy and a bias-

corrected bootstrap procedure are used to select the optimal subtree. Once the subtree is chosen, qualitative 

interaction is detected by examining which treatment of the two is better in each subgroup.  

Other tree methods developed for subgroup analysis include Loh et al.21 that extends GUIDE15 from regression to 

subgroup analysis by explicitly treating treatment as a predictor in fitting a linear model in each node; virtual twins22 

that combines random forest and CART to form subgroups; model-based recursive partitoning23 fitting parametric 

model in tree building; GLMM trees24, incorporating generalized linear mixed-effect model and tree method for not 

only subgroup analysis but also estimation of random effects for clusters. We refer to original papers for details on 

those methods. 
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3.4 Subgroups detection tree 

Previous works in subgroup analysis are mostly developed in comparing effects for different treatments. However, 

in our problem, we focus on detecting subgroups in which the hypothesized feature(s) are potential risk factor(s). 

The latter is critical in early stage prevention and intervenes of disease outcome. To achieve this goal, we proposed a 

tree method called Subgroup Detection Tree (SDT). 

Developing new tree based method is very suitable for detecting subgroups where hypothesized features are linked 

to disease phenotype. First, tree method is an inherently data-driven and nonparametric statistical learning technique. 

In the biomedical research field, due to the complicated mechanism of disease, the nonparametric nature of tree 

method may bring advantages over other parametric models. Secondly, tree method is excellent in dealing with 

interactions among features. This makes tree method very useful in analyzing clinical data, since it is very likely that 

nonlinear relationships of features are present. Lastly, the automaticity of tree method is suitable in detecting 

subgroup associated with a potential risk factor as in our goals: each leaf node may define a subgroup; following the 

decision path along the tree, models can be easily interpreted, possibly providing insights on finding the association 

between the disease phenotype and risk factors.  

4. Methods 

To grow a subgroup detection tree (SDT), we follow the conventional tree building procedure as in CART: (1) grow 

large initial tree 𝑇0; (2) prune 𝑇0 to obtain a nested sequence of subtrees (in our case, we used the "cost-complexity" 

pruning procedure); (3) choose the optimal subtree by cross-validation or additional samples only assessing 

prediction performance on the response. The best subtree is the one with minimal mean squared error (MSE) with 

respect to the response only. Figure 1 illustrates the overall procedure of training a SDT. 

4.1 SDT splitting criterion 

Suppose that {𝑥1,···, 𝑥𝑝, 𝑥𝑖𝑛} is the set of features, y is the response. 𝑥𝑖𝑛 is the hypothesized (pre-given) risk factor 

that is possibly associated with the response y in some way. In some cases, with prior knowledge, 𝑥𝑖𝑛 is not found to 

be directly associated with 𝑦 in the entire patient group.  But it is possible that 𝑥𝑖𝑛 is an important feature in some 

subgroups of patients in which 𝑥𝑖𝑛 associates to y through other features. In our case, y is LVMI, 𝑥𝑖𝑛 is vitamin D. 

    Figure 1. Flowchart of training a SDT. RSS refers to Residual Sum of Square.  

Our goal is to (1) detect subgroups in which  𝑥𝑖𝑛 possibly be a risk factor, (2) discover the association features. 

Within the framework of tree method, those subgroups are defined by the association features. To achieve goal (2), 

from the perspective of tree method, we will seek a splitting pair (𝑋, 𝑐) (𝑋 ∈ {𝑥1,···, 𝑥𝑝}, 𝑥𝑖𝑛  is not allowed as 

splitting candidate) that leads to the sum of impurity measures of child nodes for y and 𝑥𝑖𝑛 as small as possible. 

We assume that y and 𝑥𝑖𝑛 are continuous. A straightforward choice for node impurity is the residual sum of squares 

(RSS): 

𝐼𝑦(𝑁) = ∑𝑖∈𝑁 (𝑦𝑖 − 𝑦
𝑁

)2,                  (1) 
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𝐼𝑥𝑖𝑛
(𝑁) = ∑𝑖∈𝑁 (𝑥𝑖𝑛,𝑖 − 𝑥𝑖𝑛,𝑁)2,         (2) 

for y and 𝑥𝑖𝑛 respectively, where 𝑁 is a node, 𝑖 represents a sample in the node, 𝑦
𝑁

and 𝑥𝑖𝑛,𝑁 are the sample mean of 

y and 𝑥𝑖𝑛 respectively. 

We will be focusing on binary and univariate split based on the dichotomization of a patient feature. Starting with a 

feature, say 𝑋, and a splitting point 𝑐, for 𝑋 is continuous, whether 𝑋 ≤ 𝑐 is considered. If a sample answer "yes", it 

goes to the left child node. Otherwise, it goes to the right child node. For 𝑋 is a categorical feature, then 𝑐 is a subset 

of levels and the splitting rule is samples go to the left child node if 𝑋 ∈ 𝑐 and the right child node if 𝑋 ∉ 𝑐. 

Combining the simultaneousness in minimizing the residual sum of squares of y and 𝑥𝑖𝑛 as the node impurity (1) and 

(2), we obtain the splitting criterion for seeking a splitting pair (𝑋, 𝑐) as follows: 

𝑄 = [ ∑𝑖∈𝑁𝑙 (𝑦𝑖 − 𝑦
𝑙
)2 + ∑𝑖∈𝑁𝑟 (𝑦𝑖 − 𝑦

𝑟
)2 ]                     (3) 

                                                      + 𝑤[ ∑𝑖∈𝑁𝑙 (𝑥𝑖𝑛,𝑖 − 𝑥𝑖𝑛,𝑙)
2 + ∑𝑖∈𝑁𝑟 (𝑥𝑖𝑛,𝑖 − 𝑥𝑖𝑛,𝑟)2 ], 

where 𝑁𝑙 and 𝑁𝑟 are the left node and right node respectively, 𝑦
𝑙
 and 𝑦

𝑟
 are the sample means of 𝑦 for left and right 

node respectively, 𝑥𝑖𝑛,𝑙 and 𝑥𝑖𝑛,𝑟  are similarly the sample means 𝑥𝑖𝑛 for left and right node respectively. 𝑤 denotes 

the weight for RSS of  𝑥𝑖𝑛. 

As a side note, 𝐼(𝑁) =  𝐼𝑦(𝑁) + 𝑤𝐼𝑥𝑖𝑛
(𝑁) can be viewed as a constrained impurity measure of a node 𝑁. If 𝑤 is set 

to 0, 𝐼(𝑁) is the same with CART and Equation (3) is just equivalent to the splitting criterion for CART in 

regression. One may treat 𝑤  as a tuning parameter. In the following analysis of HTN data, we choose 𝑤 =

 
variance of LVMI

variance of vitamin D
 to put the first and second component of 𝑄 into an approximately same scale since the possible 

maximum for each component is the sample variance. 

SDT uses a greedy search for a splitting pair that minimizes the splitting criterion 𝑄. From a single node containing 

all samples, SDT recursively splits each node until some stopping criterion is reached. At the end, a large initial tree 

is grown, denoted as 𝑇0. 

4.2 Pruning 

The initial tree 𝑇0 might be very large that probably overfits the training data. Imagine an extreme case in which the 

SDT allows each node containing a single sample. Then the grown initial tree 𝑇0 can fit the training data perfectly. 

But it is unlikely to fit future data well. To increase the predictive power of the final tree, we employ the "cost-

complexity" pruning idea from CART to SDT. The final tree is then a subtree of  𝑇0. 

The cost-complexity function defined in SDT pruning is 

𝐶𝛼(𝑇) = ∑𝑘=1
|𝑇|

[  ∑𝑖∈𝑅𝑘 (𝑦𝑖  −  𝑦
𝑘

)2  + 𝑤 ∑𝑖∈𝑅𝑘 (𝑥𝑖𝑛,𝑖  −  𝑥𝑖𝑛,𝑘)2]   + 𝛼|𝑇|  

                                                    = ∑𝑘=1
|𝑇|

𝐼(𝑅𝑘) + 𝛼|𝑇| 

                                                    = 𝐶(𝑇) + 𝛼|𝑇|,                                                                                                        (4) 

where {𝑅1,···, 𝑅|𝑇|} is the set of leaf nodes of 𝑇, 𝐶(𝑇) = ∑𝑘=1
|𝑇|

𝐼(𝑅𝑘) , 𝐼(·) is the impurity measure of a node, 𝛼 is a 

tuning parameter controlling the tradeoff between the tree size and the goodness of the fitted SDT, 𝑇 is a subtree of  

𝑇0 and |𝑇| is the number of leaf nodes of  𝑇. For any 𝛼, there is a unique subtree that minimizes 𝐶𝛼. (see below) 

A property of node impurity 𝐼(𝑁) is that for any node 𝑁𝑝 and its child nodes 𝑁𝑝𝑙 and 𝑁𝑝𝑟 resulted from any split, the 

following inequality hold: 

                              𝐼(𝑁𝑝) ≥  𝐼(𝑁𝑝𝑙) + 𝐼(𝑁𝑝𝑟).                         (5) 

This enables the weakest-link pruning in SDT to adaptively select 𝛼 as follows. 

For 𝛼 = 0, it is obvious from (5)  that 𝑇0  minimizes 𝐶𝛼 . (It is possible that some subtree 𝑇𝑠  satisfies 𝐶0(𝑇0) =
 𝐶0(𝑇𝑠), then we replace 𝑇0 with 𝑇𝑠 as our initial tree). Starting from 𝑇0 and 𝛼 = 0, for any internal node 𝐻, denote 

the subtree rooted at 𝐻 as 𝑇𝐻 . Let  𝛼1 = min𝐻 
𝐼(𝐻)−𝐶(𝑇𝐻)

|𝑇𝐻|−1
  and 𝐻0 be the internal node corresponding to 𝛼1. Also, 

denote 𝑇1 as the subtree by pruning off 𝑇𝐻0
 from 𝑇0. Then we have the following properties: (a) 𝑇1 is the minimal 
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subtree minimizing 𝐶𝛼1
(𝑇). (For the cases that several internal nodes correspond to the same 𝛼1, we prune off all 

subtrees rooted at those nodes. This ensures that 𝑇1 is unique smallest subtree.) (b) For any 𝛼 satisfying 𝛼0 = 0 ≤
𝛼 < 𝛼1, 𝑇0 is the minimal subtree minimizing 𝐶𝛼(𝑇). 

In other words, we prune off a subtree of 𝑇0 with the smallest increase 𝛼1of per node impurity measure. Repeatedly 

applying this procedure until the trivial tree 𝑇𝑡 with one root node only would result in a nested sequence of subtrees 

𝑇0 ⊇ 𝑇1 ⊇ ··· ⊇ 𝑇𝑡  and an increasing sequence of 𝛼: 𝛼0 = 0 < 𝛼1 < 𝛼2 < ··· < 𝛼𝑡 < 𝛼𝑡+1 = ∞. For any 𝑖 ∈ {0, 1 , ·
·· , 𝑡}, 𝑇𝑖  is the unique minimal subtree corresponding to any 𝛼 with 𝛼𝑖 ≤ 𝛼 < 𝛼𝑖+1. 

4.3 Selecting optimal subtree 

The final subtree will be selected from the nested sequence of subtrees resulted from pruning. Since SDT aims at 

discovering the link between the disease and the potential risk factor, the uncovered link is meaningful when the 

model performs well on predicting the disease phenotype. Hence, the optimality criterion of selecting the best 

subtree is to choose one with the best estimated prediction performance on the response 𝑦 through some validation 

method such as cross-validation or a validation dataset. More specifically, the best subtree in SDT should have the 

minimal estimated mean squared error (MSE) for the response. 

5. Results 

In this section, we implement SDT in a clinical dataset to detect whether there are subgroups showing associations 

between the response and the interested feature. In this dataset, the response is LVMI measure and the interested 

feature refers to vitamin D measure, a hypothesized risk factor. Previously, studies have shown that the vitamin D 

does not highly correlate with LVMI at the whole patient group level (see Table 2). But there may exist subgroups 

showing high correlation. We show those subgroups can be detected by our new method SDT, but not by the 

conventional machine learning approaches such as CART.   

5.1 Hypertension data information 

The clinical data used in our experiment was collected by Detroit Receiving Hospital (DRH) from a group of 

African-Americans who are at high risk for cardiovascular disease. After data preprocessing and cleaning, there 

remains 153 samples and 39 features (excluding vitamin D) in the analysis. These features include diabetes history, 

smoking history, demographic information (gender, ethnicity, education et al.), Cornell product and laboratory 

results (calcium, chloride, aldosterone, cholesterol, eGFR, parathyroid hormone et al.). 

5.2 Experimental result on subgroup detection 

To build a SDT, we first used the entire dataset of build a large initial tree 𝑇0 that contains 12 leaf nodes. A node 

was stopped splitting when the size of that node is less than 15. We also set that the minimal size of leaf node is 5. 

𝑇0 was then pruned using “cost-complexity” criterion 

and “weakest-link” procedure back to a trivial tree 

with a root node only. The pruning procedure 

resulted in a nested sequence of 9 subtrees. Due to 

the small sample size (153 samples in the HTN 

dataset), 10-fold cross-validation was used to 

estimate the prediction performance only on LVMI. 

The best subtree was then selected as the one 

corresponding to the minimal cross-validation MSE 

of LVMI. 

Since tree method is of high variance, different runs 

of cross-validation may result in different best 

subtrees. Therefore, in our analysis, instead of 

selecting the best subtree from a single run of 10-fold 

cross-validation, we repeated 10-fold cross validation 

for 100 times. Each run of 10-fold cross-validation 

produced a cross-validation mean squared error 

(MSE) on LVMI for each of 9 subtrees. The best subtree was chosen from 9 subtrees as the one with the minimal 

average cross-validation MSE on LVMI over those 100 runs. The experiment in this section was performed using 

customized functions from R package "mvpart". 

 

 

 

 

 

 

 

 

 

Figure 2.  Average of 10-fold cross-validation MSE on 

LVMI over 100 runs for each subtree. 
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Figure 2 shows the average MSE of 100 runs of 10-fold cross-validation on LVMI for each subtree (MSE vs. 

Number of leaf nodes). The minimal average MSE is achieved by the subtree with 4 leaf nodes. Figures 3(a) 

displays the pruned optimal subtree using SDT.  

To examine the performance of SDT on subgroup detection associated with the potential risk factor, we also built a 

regression tree with CART on the response of LVMI for comparison. R package “tree” was used to build the 

regression tree. As in selecting the best subtree in SDT, the best subtree of CART is chosen as the one with the 

minimal average of 10-fold cross-validation MSEs over 100 runs. Figure 3(b) is the resultant best subtree of the 

regression tree.  

Figure 3. (a) Best subtree for SDT. COR represents Cornell product; ALD is aldosterone; REN refers to renin; (b) 

best subtree for CART. COR is Cornell Product; TRIG represents triglycerides. For each leaf node denoted as a 

rectangle, {A, B, C, D} and {R, S, T} are used to label subgroups (leaf nodes) identified by SDT and CART 

respectively, followed by subgroup size. 

For subgroups detected by the optimal subtree, the average LVMI and vitamin D with their standard deviations are 

calculated. Table 1 summarizes the descriptive statistics for LVMI and vitamin D in SDT and CART.  Note that 

some samples are not sent into subgroups due to their missing values for the selected features. 

Table 1. Average of LVMI and vitamin D (along with standard deviation) for subgroups by SDT and CART.  

Method Subgroup Size LVMI Vitamin D 

 Entire dataset 153 91.08 (17.93) 11.09(4.01) 

SDT 

A 35 80.47 (13.31) 9.57 (3.25) 

B 63 94.62 (12.96) 11.49 (3.76) 

C 10 74.98 (9.17) 11.20 (5.07) 

D 20 109.64 (16.61) 10.85 (4.12) 

CART 

R 65 92.13 (10.85) 10.85 (3.75) 

S 16 99.29 (14.06) 11.44 (4.70) 

T 20 109.64 (16.61) 10.85 (4.12) 

 

To further examine the association between LVMI and vitamin D, association tests using Pearson’s correlation 

coefficient for each detected subgroup were performed: the hypothesis in the tests was chosen as 𝐻0: true correlation 

𝜎 = 0  vs. 𝐻𝑎 : true correlation 𝜎 ≠ 0 . Since multiple tests are performed, one may apply Bonferroni-typed 

adjustment to the resultant p-values. The resultant statistics are shown in Table 2 for SDT and CART.  

From Table 2, there exists relatively strong negative correlation between LVMI and vitamin D < 10 in Subgroup A 

and D, indicating that increasing level of vitamin D may decrease LVMI level. Interestingly, in Subgroup C, there is 
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a positive correlation (0.55) between lower LVMI and vitamin D > 10 suggesting perhaps a threshold effect, 

possibly mediated by an associated factor that is also modified by vitamin D level such as parathyroid hormone. 

Figure 4 is the scatter plot (LVMI vs. Vitamin D) for each subgroup, providing a more straightforward illustration 

for correlation tests. 

Table 2. Statistics of correlation tests (𝜎 = 0 vs. 𝜎 ≠ 0) between LVMI and vitamin D for subgroups in SDT and 

CART. Subgroups of marginal significance are bold-faced. Note that T represents the same subgroup with D. 

Method Subgroup Correlation p-value 

 Entire dataset -0.12 0.15 

SDT 

A -0.30 0.08 

B -0.10 0.43 

C 0.55 0.10 

D -0.40          0.08 

CART 

R -0.07 0.58 

S 0.16 0.54 

T -0.40 0.08 

 

There is a motivation for Pearson’s correlation test from the algorithmic perspective. Based on the splitting criterion 

(3), if the response y and the pre-given feature 𝑥𝑖𝑛 in node 𝑁 are highly correlated (for example, 𝜎 = 0.9), the split 

for 𝑁  could possibly result in 

large RSS reduction for both the 

response and the pre-given 

feature. (Imagine the extreme case 

that y and 𝑥𝑖𝑛 are linearly related, 

the optimal split for maximal RSS 

reduction solely in y is also the 

optimal split for 𝑥𝑖𝑛 , or vice 

versa.) On the contrary, if the 

correlation is small, SDT seeks a 

split that is a compromise in the 

RSS reduction for y and 𝑥𝑖𝑛 , 

possibly resulting in much smaller 

RSS reduction than in the case of 

high correlation. Since the 

pruning criterion (4) and (6) 

collapse subtrees based on the 

per-node reduction of the sum of 

RSS of y and that of 𝑥𝑖𝑛 , the 

pruning procedure tends to keep 

nodes with high correlation 

between y and 𝑥𝑖𝑛  (if such nodes 

were generated in tree growing). 

This characteristic of the SDT 

provides a possible explanation 

that Subgroup A, C and D show 

relatively high correlations of 

marginal significance.  

The first split in the CART 

selected Cornell product (an 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Scatter plots (LVMI vs. Vitamin D) for each subgroup identified 

by SDT (upper panel) and CART (lower panel).  
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electrocardiographic measure of increased LVMI) as in SDT, leading to a same partition. Since vitamin D 

component in the splitting criterion of SDT is weighted to a comparable scale with LVMI, Cornell product being 

selected as the first split indicates that Cornell product is highly correlated with LVMI (an correlation test between 

LVMI and Cornell product for the entire dataset gives a p-value less than 0.00001). In Subgroup R and S, the 

correlation between LVMI and vitamin D is small. In contrast, SDT identifies two more subgroups (A and C) 

showing relatively stronger correlation. This confirms that SDT is more capable of identifying subgroups that are 

associated with a hypothesized risk factor. 

5.3 Prediction performance with bagging SDT 

Since SDT can be viewed as a regression tree with a constraint in splitting each node, SDT can be used in the 

prediction tasks. In general, tree method is known as a supervised model of high variance and data-dependable, so 

the prediction performance of a single tree may 

not be desirable. In practice, tree method is 

often combined with ensemble techniques from 

machine learning, which could significantly 

improve the prediction accuracy. Classic 

ensemble techniques include, to name a few, 

bagging25, random forest6 and boosting26.  

In this paper, we combined SDT with bagging 

on the HTN data. In bagging, a bootstrap 

training set is sampled with replacement from 

the original dataset; we used this bootstrapping 

set to train a SDT model without pruning. We 

repeat this bootstrapping and growing 

procedure 𝐵 times (for example, 𝐵 = 200) and 

obtain a SDT forest. For a future observation, it 

is fed to every SDT and each SDT 𝐵𝑖  produces 

a fitted value 𝑝𝑖 . The final prediction 𝑝 is then 

made as the average of those fitted values. That 

is, 𝑝 =  
1

𝐵
∑𝑖=1

𝐵 𝑝𝑖. 

Before testing prediction performance, missing values were imputed with medians for continuous features and the 

most frequent levels for categorical features. We randomly divided the data into two parts 𝑆1 and 𝑆2. 𝑆1 contains 110 

samples used as the training data. The remaining 43 samples in 𝑆2 were used for testing prediction performance. We 

also ran the data with random forest using R package "randomForest". The comparison of their performances is 

shown in Figure 5. It is clear that bagging with SDT performs better than random forest on the HTN data. 

We randomly divided the data into two parts 𝑆1  and 𝑆2 . 𝑆1  contains 110 samples used as the training data. The 

remaining 43 samples in 𝑆2 were used for testing prediction performance. We also ran the data with random forest 

using R package "randomForest". The comparison of their performances is shown in Figure 5. It is clear that 

bagging with SDT outperforms random forest on the HTN data. 

6. Discussion 

In this paper, we developed a new tree method called SDT for subgroup identification. The SDT tree is grown 

similarly to CART but in a constrained manner. This constrained approach associates a response and an interested 

feature by seeking features that are closely related to both. One of the greatest advantages of tree method in linking a 

subgroup with a specific feature as a risk factor is that each leaf node objectively defines a subgroup without need of 

prior assumption. Further development is to extend SDT to flexibly accommodate categorical responses, multiple 

responses, or multiple features in splitting criterion so that SDT can be adapted to solve a wide range of problems in 

precision medicine.  

Particularly in a special case that the constraint in SDT was treated as another response, SDT can be viewed as the 

regression tree in the multivariate response case. Some works have been done27, with important difference from 

SDT in weight handling for each component in splitting criterion and criterion for subtree selection.  

Acknowledgement: This paper is based upon work supported by the National Science Foundation under Grant No. 

1637312 and 1451316. 

 

 

 

 

 

 

 

 

 

 

Figure 5. Performance comparison between bagging SDT and 

random forest. 
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